Dose Rate Effect on Cell Survival in BNCT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture and Growth Conditions
2.3. X-Irradiation
2.4. Neutron Irradiation
2.5. Measurements for Neutron Flux, Cadmium Ratio, and Gamma
2.6. Cell Clonogenic Assay
2.7. Analysis of RBEBeam and CBE
2.8. Statistical Analysis
3. Results
3.1. RBENeutron beam and CBE
3.2. Thermal Neutron Flux and Gamma-Ray Conditions at Half Power
3.3. Effect of Beam at Half Power on Cell Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirose, K.; Konno, A.; Hiratsuka, J.; Yoshimoto, S.; Kato, T.; Ono, K.; Otsuki, N.; Hatazawa, J.; Tanaka, H.; Takayama, K.; et al. Boron neutron capture therapy using cyclotron-based epithermal neutron source and borofalan ((10)B) for recurrent or locally advanced head and neck cancer (JHN002): An open-label phase II trial. Radiother. Oncol. 2021, 155, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Kato, T.; Harada, T.; Motoyanagi, T.; Tanaka, H.; Takeuchi, A.; Kato, R.; Komori, S.; Yamazaki, Y.; Arai, K.; et al. Determining a methodology of dosimetric quality assurance for commercially available accelerator-based boron neutron capture therapy system. J. Radiat. Res. 2022, 63, 620–635. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Yamamoto, T.; Matsumura, A.; Hiratsuka, J.; Miyatake, S.; Kato, I.; Sakurai, Y.; Kumada, H.; Shrestha, S.J.; Ono, K. Early clinical experience utilizing scintillator with optical fiber (SOF) detector in clinical boron neutron capture therapy: Its issues and solutions. Radiat. Oncol. 2016, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Igaki, H.; Ito, M.; Imamichi, S.; Kashihara, T.; Okamoto, H.; Nishioka, S.; Iijima, K.; Chiba, T.; Nakayama, H.; et al. Neutron flux evaluation model provided in the accelerator-based boron neutron capture therapy system employing a solid-state lithium target. Sci. Rep. 2021, 11, 8090. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, S.; Suzuki, M.; Hirose, K.; Tanaka, H.; Kato, T.; Goto, H.; Narita, Y.; Miyatake, S.I. Accelerator-based BNCT for patients with recurrent glioblastoma: A multicenter phase II study. Neurooncol. Adv. 2021, 3, vdab067. [Google Scholar] [CrossRef] [PubMed]
- Kinashi, Y.; Okumura, K.; Kubota, Y.; Kitajima, E.; Okayasu, R.; Ono, K.; Takahashi, S. Dose-rate effect was observed in T98G glioma cells following BNCT. Appl. Radiat. Isot. 2014, 88, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.C.; Shuryak, I.; Taveras, M.; Bertucci, A.; Perrier, J.R.; Chen, C.; Elliston, C.D.; Johnson, G.W.; Smilenov, L.B.; Amundson, S.A.; et al. Effect of dose rate on residual gamma-H2AX levels and frequency of micronuclei in X-irradiated mouse lymphocytes. Radiat. Res. 2015, 183, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Matsuya, Y.; Tsutsumi, K.; Sasaki, K.; Yoshii, Y.; Kimura, T.; Date, H. Modeling cell survival and change in amount of DNA during protracted irradiation. J. Radiat. Res. 2017, 58, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Matsuya, Y.; Tsutsumi, K.; Sasaki, K.; Date, H. Evaluation of the cell survival curve under radiation exposure based on the kinetics of lesions in relation to dose-delivery time. J. Radiat. Res. 2015, 56, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Matsuya, Y.; McMahon, S.J.; Tsutsumi, K.; Sasaki, K.; Okuyama, G.; Yoshii, Y.; Mori, R.; Oikawa, J.; Prise, K.M.; Date, H. Investigation of dose-rate effects and cell-cycle distribution under protracted exposure to ionizing radiation for various dose-rates. Sci. Rep. 2018, 8, 8287. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J.; Hlatky, L.R.; Hahnfeldt, P.J.; Huang, Y.; Sachs, R.K. The Linear-Quadratic Model and Most Other Common Radiobiological Models Result in Similar Predictions of Time-Dose Relationships. Radiat. Res. 1998, 150, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Bhat, N.N.; Rao, B.S. Dose rate effect on micronuclei induction in cytokinesis blocked human peripheral blood lymphocytes. Radiat. Prot. Dosim. 2003, 106, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.W.; Chen, Y.W.; Ho, C.Y.; Hsueh Liu, Y.W.; Chou, F.I.; Liu, Y.H.; Liu, H.M.; Peir, J.J.; Jiang, S.H.; Chang, C.W.; et al. Fractionated Boron Neutron Capture Therapy in Locally Recurrent Head and Neck Cancer: A Prospective Phase I/II Trial. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Kankaanranta, L.; Saarilahti, K.; Makitie, A.; Valimaki, P.; Tenhunen, M.; Joensuu, H. Boron neutron capture therapy (BNCT) followed by intensity modulated chemoradiotherapy as primary treatment of large head and neck cancer with intracranial involvement. Radiother. Oncol. 2011, 99, 98–99. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Mitsumoto, T.; Fujita, K.; Kashino, G.; Kinashi, Y.; Liu, Y.; Takada, M.; et al. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS). Appl. Radiat. Isot. 2011, 69, 1642–1645. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Igaki, H.; Ito, M.; Okamoto, H.; Nishioka, S.; Iijima, K.; Nakayama, H.; Takemori, M.; Imamichi, S.; Kashihara, T.; et al. Characterization of the relationship between neutron production and thermal load on a target material in an accelerator-based boron neutron capture therapy system employing a solid-state Li target. PLoS ONE 2019, 14, e0225587. [Google Scholar] [CrossRef] [PubMed]
- Igaki, H.; Murakami, N.; Nakamura, S.; Yamazaki, N.; Kashihara, T.; Takahashi, A.; Namikawa, K.; Takemori, M.; Okamoto, H.; Iijima, K.; et al. Scalp angiosarcoma treated with linear accelerator-based boron neutron capture therapy: A report of two patients. Clin. Transl. Radiat. Oncol. 2022, 33, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Nitta, K.; Yagihashi, T.; Eide, P.; Koivunoro, H.; Sato, N.; Gotoh, S.; Shiba, S.; Omura, M.; Nagata, H.; et al. Initial evaluation of accelerator-based neutron source system at the Shonan Kamakura General Hospital. Appl. Radiat. Isot. 2023, 199, 110898. [Google Scholar] [CrossRef] [PubMed]
- Kumada, H.; Takada, K.; Tanaka, S.; Matsumoto, Y.; Naito, F.; Kurihara, T.; Sugimura, T.; Sato, M.; Matsumura, A.; Sakurai, H.; et al. Evaluation of the characteristics of the neutron beam of a linac-based neutron source for boron neutron capture therapy. Appl. Radiat. Isot. 2020, 165, 109246. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Yoshihashi, S.; Ishikawa, A.; Honda, S.; Yamazaki, A.; Tsurita, Y.; Uritani, A.; Tsuchida, K.; Kiyanagi, Y. First experimental verification of the neutron field of Nagoya University Accelerator-driven neutron source for boron neutron capture therapy. Appl. Radiat. Isot. 2021, 168, 109553. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Maruhashi, A.; Ono, K. Study on the dose evaluation using glass rod dosimeter for boron neutron capture therapy. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Beijing, China, 26–31 May 2012; IFMBE Proceedings. Springer: Berlin/Heidelberg, Germany, 2013; Volume 39, pp. 1142–1144. [Google Scholar]
Cell Type | D0.1 for X-Irradiation (Gy) | D0.1 for Neutron Beam (Gy) | RBEBeam | CBE |
---|---|---|---|---|
SAS | 5.50 | 2.61 | 2.11 | 5.23 |
A172 | 5.35 | 2.25 | 2.38 | 2.97 |
Cell Type | Thermal Neutron (Gy-Eq) | Epithermal Neutron (Gy-Eq) | Fast Neutron (Gy-Eq) | Gamma (Gy) | 10B Dose (Gy-Eq) | Total RBE Dose (Gy-Eq) |
---|---|---|---|---|---|---|
SAS | 0.41 | 0.01 | 0.72 | 0.70 | 11.87 | 13.70 |
A172 | 6.85 | 8.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirose, K.; Sato, M.; Ichise, K.; Aoki, M. Dose Rate Effect on Cell Survival in BNCT. Curr. Issues Mol. Biol. 2023, 45, 6986-6994. https://doi.org/10.3390/cimb45090441
Hirose K, Sato M, Ichise K, Aoki M. Dose Rate Effect on Cell Survival in BNCT. Current Issues in Molecular Biology. 2023; 45(9):6986-6994. https://doi.org/10.3390/cimb45090441
Chicago/Turabian StyleHirose, Katsumi, Mariko Sato, Koji Ichise, and Masahiko Aoki. 2023. "Dose Rate Effect on Cell Survival in BNCT" Current Issues in Molecular Biology 45, no. 9: 6986-6994. https://doi.org/10.3390/cimb45090441
APA StyleHirose, K., Sato, M., Ichise, K., & Aoki, M. (2023). Dose Rate Effect on Cell Survival in BNCT. Current Issues in Molecular Biology, 45(9), 6986-6994. https://doi.org/10.3390/cimb45090441