Administration of Tamoxifen Can Regulate Changes in Gene Expression during the Acute Phase of Traumatic Spinal Cord Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Model
2.2. Study Groups
2.3. Injury and Postsurgical Care
2.4. Neurological Assessment after SCI
2.5. Preparation and Administration of TMX
2.6. Collection and Processing of Spinal Cord Tissues
2.7. RNA Extraction and Purification
2.8. Microarray Hybridization
2.9. Bioinformatic Analysis
2.10. Functional Enrichment Analysis
2.11. Data Visualization
2.12. Statistical Analysis
3. Results
3.1. TMX Does Not Affect Acute Edema Formation Following Traumatic SCI
3.2. Differential Gene Expression Analysis
4. Discussion
4.1. Transcriptome Changes Induced by SCI
4.2. Effect of TMX on Transcriptome Changes Caused by SCI
4.3. TMX as Modulator of the Inflammatory Response after SCI
4.4. Transcriptome Analysis for Identifying Potential Biomarkers of SCI
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.R.N.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 2017, 3, 17018. [Google Scholar] [CrossRef]
- Chen, Y.; He, Y.; DeVivo, M.J. Changing Demographics and Injury Profile of New Traumatic Spinal Cord Injuries in the United States, 1972–2014. Arch. Phys. Med. Rehabil. 2016, 97, 1610–1619. [Google Scholar] [CrossRef]
- Lifshutz, J.; Colohan, A. A brief history of therapy for traumatic spinal cord injury. Neurosurg. Focus 2004, 16, E5. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.K.; Okon, E.; Hillyer, J.; Mann, C.; Baptiste, D.; Weaver, L.C.; Fehlings, M.G.; Tetzlaff, W. A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J. Neurotrauma 2011, 28, 1545–1588. [Google Scholar] [CrossRef] [PubMed]
- Rust, R.; Kaiser, J. Insights into the Dual Role of Inflammation after Spinal Cord Injury. J. Neurosci. 2017, 37, 4658–4660. [Google Scholar] [CrossRef] [PubMed]
- Ducker, T.B.; Hamit, H.F. Experimental treatments of acute spinal cord injury. J. Neurosurg. 1969, 30, 693–697. [Google Scholar] [CrossRef]
- Bartholdi, D.; Schwab, M.E. Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: An in situ hybridization study. Eur. J. Neurosci. 1997, 9, 1422–1438. [Google Scholar] [CrossRef]
- Yang, L.; Tsai, M.; Juan, S.; Chang, S.; Yu, C.R.; Lin, J.; Johnson, K.R.; Lim, H.G.; Fann, Y.C.; Lee, Y.G. Exerting the Appropriate Application of Methylprednisolone in Acute Spinal Cord Injury Based on Time Course Transcriptomics Analysis. Int. J. Mol. Sci. 2021, 22, 13024. [Google Scholar] [CrossRef]
- Farooque, M.; Suo, Z.; Arnold, P.M.; Wulser, M.J.; Chou, C.; Vancura, R.W.; Fowler, S.; Festoff, B.W. Gender-related differences in recovery of locomotor function after spinal cord injury in mice. Spinal Cord 2006, 44, 182–187. [Google Scholar] [CrossRef]
- Sipski, M.L.; Jackson, A.B.; Gómez-Marín, O.; Estores, I.; Stein, A. Effects of gender on neurologic and functional recovery after spinal cord injury. Arch. Phys. Med. Rehabil. 2004, 85, 1826–1836. [Google Scholar] [CrossRef]
- Li, Y.; Ritzel, R.M.; Lei, Z.; Cao, T.; He, J.; Faden, A.I.; Wu, J. Sexual dimorphism in neurological function after SCI is associated with disrupted neuroinflammation in both injured spinal cord and brain. Brain Behav. Immun. 2022, 101, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Datto, J.P.; Bastidas, J.C.; Miller, N.L.; Shah, A.K.; Arheart, K.L.; Marcillo, A.E.; Dietrich, W.D.; Pearse, D.D. Female Rats Demonstrate Improved Locomotor Recovery and Greater Preservation of White and Gray Matter after Traumatic Spinal Cord Injury Compared to Males. J. Neurotrauma 2015, 32, 1146–1157. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.N.; MacLean, S.M.; Stromberg, A.J.; Whelan, J.P.; Bailey, W.M.; Gensel, J.C.; Wilson, M.E. Considerations for Studying Sex as a Biological Variable in Spinal Cord Injury. Front. Neurol. 2020, 11, 802. [Google Scholar] [CrossRef]
- Elkabes, S.; Nicot, A.B. Sex steroids and neuroprotection in spinal cord injury: A review of preclinical investigations. Exp. Neurol. 2014, 259, 28–37. [Google Scholar] [CrossRef]
- Ludwig, P.E.; Patil, A.A.; Chamczuk, A.J.; Agrawal, D.K. Hormonal therapy in traumatic spinal cord injury. Am. J. Transl. Res. 2017, 9, 3881–3895. [Google Scholar] [PubMed]
- Colón, J.M.; González, P.A.; Cajigas, Á.; Maldonado, W.I.; Torrado, A.I.; Santiago, J.M.; Salgado, I.K.; Miranda, J.D. Continuous tamoxifen delivery improves locomotor recovery 6h after spinal cord injury by neuronal and glial mechanisms in male rats. Exp. Neurol. 2018, 299, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Colón, J.M.; Miranda, J.D. Tamoxifen: An FDA approved drug with neuroprotective effects for spinal cord injury recovery. Neural Regen. Res. 2016, 11, 1208–1211. [Google Scholar] [CrossRef]
- Guptarak, J.; Wiktorowicz, J.E.; Sadygov, R.G.; Zivadinovic, D.; Paulucci-Holthauzen, A.A.; Vergara, L.; Nesic, O. The cancer drug tamoxifen: A potential therapeutic treatment for spinal cord injury. J. Neurotrauma 2014, 31, 268–283. [Google Scholar] [CrossRef]
- Shvetcov, A.; Ruitenberg, M.J.; Delerue, F.; Gold, W.A.; Brown, D.A.; Finney, C.A. The neuroprotective effects of estrogen and estrogenic compounds in spinal cord injury. Neurosci. Biobehav. Rev. 2023, 146, 105074. [Google Scholar] [CrossRef]
- Suuronen, T.; Nuutinen, T.; Huuskonen, J.; Ojala, J.; Thornell, A.; Salminen, A. Anti-inflammatory effect of selective estrogen receptor modulators (SERMs) in microglial cells. Inflamm. Res. 2005, 54, 194–203. [Google Scholar] [CrossRef]
- Cabrera-Aldana, E.E.; Ruelas, F.; Aranda, C.; Rincon-Heredia, R.; Martínez-Cruz, A.; Reyes-Sánchez, A.; Guizar-Sahagún, G.; Tovar-Y-Romo, L.B. Methylprednisolone Administration Following Spinal Cord Injury Reduces Aquaporin 4 Expression and Exacerbates Edema. Mediat. Inflamm. 2017, 2017, 4792932. [Google Scholar] [CrossRef] [PubMed]
- Basso, D.M.; Beattie, M.S.; Bresnahan, J.C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp. Neurol. 1996, 139, 244–256. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R Foundation for Statistical Computing R: A Language and Environment for Statistical Computing. 2021. Available online: https://www.R-project.org/ (accessed on 26 June 2023).
- Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004, 5, R80. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, J.W. Affycoretools: Functions Useful for Those Doing Repetitive Analyses with Affymetrix GeneChips; R Package 1.70.0; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Carvalho, B.S.; Irizarry, R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 2010, 26, 2363–2367. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Phipson, B.; Lee, S.; Majewski, I.J.; Alexander, W.S.; Smyth, G.K. Robust Hyperparameter Estimation Protects against Hypervariable Genes and Improves Power to Detect Differential Expression. Ann. Appl. Stat. 2016, 10, 946–963. [Google Scholar] [CrossRef]
- MacDonald, J.W. pd.clariom.d.human: Platform Design Info for Affymetrix Clariom_D_Human; R package 3.14.1; R Core Team: Vienna, Austria, 2016. [Google Scholar]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef]
- Martens, M.; Ammar, A.; Riutta, A.; Waagmeester, A.; Slenter, D.N.; Hanspers, K.; Miller, R.A.; Digles, D.; Lopes, E.N.; Ehrhart, F.; et al. WikiPathways: Connecting communities. Nucleic Acids Res. 2021, 49, D613–D621. [Google Scholar] [CrossRef]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef]
- Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Forner, O.; Marin-Garcia, P.; Arnau, V.; D’Eustachio, P.; Stein, L.; Hermjakob, H. Reactome pathway analysis: A high-performance in-memory approach. BMC Bioinform. 2017, 18, 142. [Google Scholar] [CrossRef]
- Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010, 38, W214–W220. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. ggplot2. WIREs Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Blighe, K.; Rana, S.; Lewis, M. EnhancedVolcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling; R package 1.16.0; R Core Team: Vienna, Austria, 2022; Available online: https://github.com/kevinblighe/EnhancedVolcano (accessed on 6 September 2023).
- Hinder, L.M.; Park, M.; Rumora, A.E.; Hur, J.; Eichinger, F.; Pennathur, S.; Kretzler, M.; Brosius, F.C.; Feldman, E.L. Comparative RNA-Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease. J. Cell. Mol. Med. 2017, 21, 2140–2152. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Ding, H.; Zhou, H.X.; Wei, Z.J.; Liu, L.; Pan, D.Y.; Feng, S.Q. Epidemiology of worldwide spinal cord injury: A literature review. J. Neurorestoratol. 2018, 6, 1–9. [Google Scholar] [CrossRef]
- Thawer, S.G.; Mawhinney, L.; Chadwick, K.; de Chickera, S.N.; Weaver, L.C.; Brown, A.; Dekaban, G.A. Temporal changes in monocyte and macrophage subsets and microglial macrophages following spinal cord injury in the Lys-Egfp-ki mouse model. J. Neuroimmunol. 2013, 261, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wu, H.; Wang, Y. Phoenixin-14 Promotes the Recovery of Neurological Dysfunction after Spinal Cord Injury by Regulating Microglial Polarization via PTEN/Akt Signaling Pathway. Hum. Exp. Toxicol. 2022, 41, 9603271221111345. [Google Scholar] [CrossRef]
- Tian, D.; Liu, J.; Xie, M.; Zhan, Y.; Qu, W.; Yu, Z.; Tang, Z.; Pan, D.; Wang, W. Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats. J. Neurochem. 2009, 109, 1658–1667. [Google Scholar] [CrossRef]
- Mosquera, L.; Colón, J.M.; Santiago, J.M.; Torrado, A.I.; Meléndez, M.; Segarra, A.C.; Rodríguez-Orengo, J.F.; Miranda, J.D. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: Their antioxidant effect and role of estrogen receptor alpha. Brain Res. 2014, 1561, 11–22. [Google Scholar] [CrossRef]
- Chelluboina, B.; Nalamolu, K.R.; Klopfenstein, J.D.; Pinson, D.M.; Wang, D.Z.; Vemuganti, R.; Veeravalli, K.K. MMP-12, a Promising Therapeutic Target for Neurological Diseases. Mol. Neurobiol. 2018, 55, 1405–1409. [Google Scholar] [CrossRef]
- Colón, J.M.; Torrado, A.I.; Cajigas, Á.; Santiago, J.M.; Salgado, I.K.; Arroyo, Y.; Miranda, J.D. Tamoxifen Administration Immediately or 24 Hours after Spinal Cord Injury Improves Locomotor Recovery and Reduces Secondary Damage in Female Rats. J. Neurotrauma 2016, 33, 1696–1708. [Google Scholar] [CrossRef]
- Wei, H.; Ma, X. Tamoxifen reduces infiltration of inflammatory cells, apoptosis and inhibits IKK/NF-kB pathway after spinal cord injury in rats. Neurol. Sci. 2014, 35, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Deng, S.; Lu, H.; Zheng, Y.; Yang, G.; Kim, D.; Cao, Q.; Wu, J.Q. RNA-seq characterization of spinal cord injury transcriptome in acute/subacute phases: A resource for understanding the pathology at the systems level. PLoS ONE 2013, 8, e72567. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Lv, Y.; Li, S.; Feng, T.; Zhou, Y.; Sun, Y.; Mi, D. Changes in transcriptome profiling during the acute/subacute phases of contusional spinal cord injury in rats. Ann. Transl. Med. 2020, 8, 1682. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, N.; Xie, X.; Chen, Y.; Wang, R.; Shen, L.; Zhou, J.; Hu, J.; Lü, H. Transcriptome profile of rat genes in injured spinal cord at different stages by RNA-sequencing. BMC Genom. 2017, 18, 173. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, W.; Chen, J.; Luo, Y.; Yin, G. Bioinformatics analysis of the molecular mechanisms underlying traumatic spinal cord injury. Mol. Med. Rep. 2018, 17, 8484–8492. [Google Scholar] [CrossRef] [PubMed]
- Squair, J.W.; Tigchelaar, S.; Moon, K.; Liu, J.; Tetzlaff, W.; Kwon, B.K.; Krassioukov, A.V.; West, C.R.; Foster, L.J.; Skinnider, M.A. Integrated systems analysis reveals conserved gene networks underlying response to spinal cord injury. eLife 2018, 7, e39188. [Google Scholar] [CrossRef]
Transcript ID | Gene Symbol | Gene Name | Log2FC | p Value |
---|---|---|---|---|
mRNARGD7697195_1 | LOC102546732 | Uncharacterized LOC102546732 | 1.25611 | 1.05 × 10−8 |
NM_199374 | Spata18 | Spermatogenesis associated 18 | 0.8805877 | 2.20 × 10−6 |
NM_053749 | Aurkb | Aurora kinase B | 0.8106 | 3.29 × 10−5 |
ENSRNOT00000061950 | Hspa1a | Heat shock 70 kD protein 1A | −0.8484825 | 0.0005 |
NM_130741 | Lcn2 | Lipocalin 2 | −1.0030 | 0.0010 |
NM_031327 | Cyr61 | Cysteine-rich, angiogenic inducer, 61 | 0.7176 | 0.0015 |
mRNARGD7732176_1 | LOC102551298 | MLV-related proviral Env polyprotein-like | 0.7595 | 0.0054 |
Database | Pathway | ID | Adjusted p Value |
---|---|---|---|
WP | Spinal cord injury | WP2433 | 0.00002 |
Burn wound healing | WP5057 | 0.00153 | |
Type II interferon signaling (IFNG) | WP1289 | 0.00555 | |
Prostaglandin synthesis and regulation | WP303 | 0.01417 | |
Toll-like receptor signaling pathway | WP1309 | 0.04706 | |
KEGG | Malaria | KEGG:05144 | 6.3 × 10−7 |
TNF signaling pathway | KEGG:04668 | 6.3 × 10−7 | |
IL-17 signaling pathway | KEGG:04657 | 1.5752 × 10−6 | |
Cytokine-cytokine receptor interaction | KEGG:04060 | 8.8134 × 10−6 | |
Viral protein interaction with cytokine and cytokine receptor | KEGG:04061 | 8.8134 × 10−6 | |
Reactome | Neutrophil degranulation | R-RNO-6798695 | 0.00002 |
Innate Immune System | R-RNO-168249 | 0.00189 | |
Class A/1 (Rhodopsin-like receptors) | R-RNO-373076 | 0.00858 | |
Chemokine receptors bind chemokines | R-RNO-380108 | 0.01344 | |
Hemostasis | R-RNO-109582 | 0.01358 |
Database | Pathway | ID | Adjusted p Value |
---|---|---|---|
* WP | Complement and coagulation cascades | WP547 | 0.02669 |
Spinal cord injury | WP2433 | 0.04960 | |
Toll-like receptor signaling pathway | WP1309 | 0.04960 | |
KEGG | Complement and coagulation cascades | KEGG:04610 | 1.6415 × 10−05 |
Viral protein interaction with cytokine and cytokine receptor | KEGG:04061 | 0.00392 | |
Cytokine-cytokine receptor interaction | KEGG:04060 | 0.00392 | |
Toll-like receptor signaling pathway | KEGG:04620 | 0.00392 | |
Fat digestion and absorption | KEGG:04975 | 0.00630 | |
Reactome | Peptide ligand-binding receptors | R-RNO-375276 | 0.00014 |
G alpha (i) signaling events | R-RNO-418594 | 0.00014 | |
GPCR ligand binding | R-RNO-500792 | 0.00014 | |
Class A/1 (Rhodopsin-like receptors) | R-RNO-373076 | 0.00235 | |
Signaling by GPCR | R-RNO-372790 | 0.00625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera-Aldana, E.E.; Balderas-Martinez, Y.I.; Velázquez-Cruz, R.; Tovar-y-Romo, L.B.; Sevilla-Montoya, R.; Martínez-Cruz, A.; Martinez-Cordero, C.; Valdes-Flores, M.; Santamaria-Olmedo, M.; Hidalgo-Bravo, A.; et al. Administration of Tamoxifen Can Regulate Changes in Gene Expression during the Acute Phase of Traumatic Spinal Cord Injury. Curr. Issues Mol. Biol. 2023, 45, 7476-7491. https://doi.org/10.3390/cimb45090472
Cabrera-Aldana EE, Balderas-Martinez YI, Velázquez-Cruz R, Tovar-y-Romo LB, Sevilla-Montoya R, Martínez-Cruz A, Martinez-Cordero C, Valdes-Flores M, Santamaria-Olmedo M, Hidalgo-Bravo A, et al. Administration of Tamoxifen Can Regulate Changes in Gene Expression during the Acute Phase of Traumatic Spinal Cord Injury. Current Issues in Molecular Biology. 2023; 45(9):7476-7491. https://doi.org/10.3390/cimb45090472
Chicago/Turabian StyleCabrera-Aldana, Eibar E., Yalbi I. Balderas-Martinez, Rafael Velázquez-Cruz, Luis B. Tovar-y-Romo, Rosalba Sevilla-Montoya, Angelina Martínez-Cruz, Claudia Martinez-Cordero, Margarita Valdes-Flores, Monica Santamaria-Olmedo, Alberto Hidalgo-Bravo, and et al. 2023. "Administration of Tamoxifen Can Regulate Changes in Gene Expression during the Acute Phase of Traumatic Spinal Cord Injury" Current Issues in Molecular Biology 45, no. 9: 7476-7491. https://doi.org/10.3390/cimb45090472
APA StyleCabrera-Aldana, E. E., Balderas-Martinez, Y. I., Velázquez-Cruz, R., Tovar-y-Romo, L. B., Sevilla-Montoya, R., Martínez-Cruz, A., Martinez-Cordero, C., Valdes-Flores, M., Santamaria-Olmedo, M., Hidalgo-Bravo, A., & Guízar-Sahagún, G. (2023). Administration of Tamoxifen Can Regulate Changes in Gene Expression during the Acute Phase of Traumatic Spinal Cord Injury. Current Issues in Molecular Biology, 45(9), 7476-7491. https://doi.org/10.3390/cimb45090472