Colorectal Cancer Archaeome: A Metagenomic Exploration, Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human CRC Tissue Specimens
2.2. DNA Extraction and Library Preparation
2.3. Sequence Technology and Processing
2.4. Taxonomic and Statistical Analysis
3. Results
3.1. Cohort Description
3.2. Extraction and Sequencing Outcome
3.3. Taxonomic Analysis of Archaeome in CRC Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foegeding, N.J.; Jones, Z.S.; Byndloss, M.X. Western lifestyle as a driver of dysbiosis in colorectal cancer. Dis. Model. Mech. 2021, 14, dmm049051. [Google Scholar] [CrossRef]
- Vipperla, K.; O’Keefe, S.J. Diet, microbiota, and dysbiosis: A ‘recipe’ for colorectal cancer. Food Funct. 2016, 7, 1731–1740. [Google Scholar] [CrossRef] [PubMed]
- Genua, F.; Raghunathan, V.; Jenab, M.; Gallagher, W.M.; Hughes, D.J. The role of gut barrier dysfunction and microbiome dysbiosis in colorectal cancer development. Front. Oncol. 2021, 11, 626349. [Google Scholar] [CrossRef] [PubMed]
- Rebersek, M. Gut microbiome and its role in colorectal cancer. BMC Cancer 2021, 21, 1325. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Chan, A.T.; Sun, J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology 2020, 158, 322–340. [Google Scholar] [CrossRef]
- Mirzaei, H.; Goudarzi, H.; Eslami, G.; Faghihloo, E. Role of viruses in gastrointestinal cancer. J. Cell. Physiol. 2018, 233, 4000–4014. [Google Scholar] [CrossRef]
- Selgrad, M.; Malfertheiner, P.; Fini, L.; Goel, A.; Boland, C.R.; Ricciardiello, L. The role of viral and bacterial pathogens in gastrointestinal cancer. J. Cell. Physiol. 2008, 216, 378–388. [Google Scholar] [CrossRef]
- Marongiu, L.; Allgayer, H. Viruses in colorectal cancer. Mol. Oncol. 2022, 16, 1423–1450. [Google Scholar] [CrossRef]
- Nakatsu, G.; Zhou, H.; Wu, W.K.; Wong, S.H.; Coker, O.O.; Dai, Z.; Li, X.; Szeto, C.H.; Sugimura, N.; Lam, T.Y.; et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 2018, 155, 529–541. [Google Scholar] [CrossRef]
- Coker, O.O.; Nakatsu, G.; Dai, R.Z.; Wu, W.K.; Wong, S.H.; Ng, S.C.; Chan, F.K.; Sung, J.J.; Yu, J. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut 2019, 68, 654–662. [Google Scholar] [CrossRef]
- Gaci, N.; Borrel, G.; Tottey, W.; O’Toole, P.W.; Brugère, J.F. Archaea and the human gut: New beginning of an old story. World J. Gastroenterol. 2014, 20, 16062. [Google Scholar] [CrossRef]
- Koga, Y.; Morii, H. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol. Mol. Biol. Rev. 2007, 71, 97–120. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.L.; Reeve, J.N. Histones and nucleosomes in Archaea and Eukarya: A comparative analysis. Extremophiles 1998, 2, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Hockney, R.; Orr, C.H.; Waring, G.J.; Christiaens, I.; Taylor, G.; Cummings, S.P.; Robson, S.C.; Nelson, A. Formalin-Fixed Paraffin-Embedded (FFPE) samples are not a beneficial replacement for frozen tissues in fetal membrane microbiota research. PLoS ONE 2022, 17, e0265441. [Google Scholar] [CrossRef]
- Pinto-Ribeiro, I.; Ferreira, R.M.; Pereira-Marques, J.; Pinto, V.; Macedo, G.; Carneiro, F.; Figueiredo, C. Evaluation of the use of formalin-fixed and paraffin-embedded archive gastric tissues for microbiota characterization using next-generation sequencing. Int. J. Mol. Sci. 2020, 21, 1096. [Google Scholar] [CrossRef]
- Borgognone, A.; Serna, G.; Noguera-Julian, M.; Alonso, L.; Parera, M.; Català-Moll, F.; Sanchez, L.; Fasani, R.; Paredes, R.; Nuciforo, P. Performance of 16S metagenomic profiling in formalin-fixed paraffin-embedded versus fresh-frozen colorectal cancer tissues. Cancers 2021, 13, 5421. [Google Scholar] [CrossRef] [PubMed]
- Tyakht, A.V.; Kostryukova, E.S.; Popenko, A.S.; Belenikin, M.S.; Pavlenko, A.V.; Larin, A.K.; Karpova, I.Y.; Selezneva, O.V.; Semashko, T.A.; Ospanova, E.A.; et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 2013, 4, 2469. [Google Scholar] [CrossRef] [PubMed]
- Coker, O.O.; Wu, W.K.; Wong, S.H.; Sung, J.J.; Yu, J. Altered gut archaea composition and interaction with bacteria are associated with colorectal cancer. Gastroenterology 2020, 159, 1459–1470. [Google Scholar] [CrossRef]
- Abdi, H.; Kordi-Tamandani, D.M.; Lagzian, M.; Bakhshipour, A. Archaeome in Colorectal Cancer: High Abundance of Methanogenic Archaea in Colorectal Cancer Patients. Int. J. Cancer Manag. 2022, 15, e117843. [Google Scholar] [CrossRef]
- Debesa-Tur, G.; Pérez-Brocal, V.; Ruiz-Ruiz, S.; Castillejo, A.; Latorre, A.; Soto, J.L.; Moya, A. Metagenomic analysis of formalin-fixed paraffin-embedded tumor and normal mucosa reveals differences in the microbiome of colorectal cancer patients. Sci. Rep. 2021, 11, 391. [Google Scholar] [CrossRef]
- Oba, U.; Kohashi, K.; Sangatsuda, Y.; Oda, Y.; Sonoda, K.H.; Ohga, S.; Yoshimoto, K.; Arai, Y.; Yachida, S.; Shibata, T.; et al. An efficient procedure for the recovery of DNA from formalin-fixed paraffin-embedded tissue sections. Biol. Methods Protoc. 2022, 7, bpac014. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.Y.; Ioannou, A.; Konstanti, P.; Visseren, T.; Doukas, M.; Peppelenbosch, M.P.; Belzer, C.; Fuhler, G.M. Technical challenges regarding the use of formalin-fixed paraffin embedded (FFPE) tissue specimens for the detection of bacterial alterations in colorectal cancer. BMC Microbiol. 2021, 21, 297. [Google Scholar] [CrossRef] [PubMed]
- Saunderson, E.A.; Baker, A.M.; Williams, M.; Curtius, K.; Jones, J.L.; Graham, T.A.; Ficz, G. A novel use of random priming-based single-strand library preparation for whole genome sequencing of formalin-fixed paraffin-embedded tissue samples. NAR Genom. Bioinform. 2020, 2, lqz017. [Google Scholar] [CrossRef] [PubMed]
- Coombs, N.J.; Gough, A.C.; Primrose, J.N. Optimisation of DNA and RNA extraction from archival formalin-fixed tissue. Nucleic Acids Res. 1999, 27, e12-i–e12-iii. [Google Scholar] [CrossRef]
- Bérénice, B.; Maria, D. Quality Control (Galaxy Training Materials). 2021. Available online: https://training.galaxyproject.org/archive/2021-11-01/topics/sequence-analysis/tutorials/quality-control/tutorial.html (accessed on 2 November 2022).
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef]
- World Health Organization International Agency for Research on Cancer (IARC). GLOBOCAN 2020: Estimated Colorectal Cancer Incidence, Mortality and Prevalence in Tunisia in 2020. Available online: https://gco.iarc.fr/today/data/factsheets/populations/788-tunisia-fact-sheets.pdf (accessed on 10 January 2023).
- Khiari, H.; Ayoub, H.W.; Khadhra, H.B.; Hsairi, M. Colorectal Cancer incidence trend and projections in Tunisia (1994–2024). Asian Pac. J. Cancer Prev. 2017, 18, 2733. [Google Scholar]
- Belfki, H.; Ben Ali, S.; Aounallah-Skhiri, H.; Traissac, P.; Bougatef, S.; Maire, B.; Delpeuch, F.; Achour, N.; Ben Romdhane, H. Prevalence and determinants of the metabolic syndrome among Tunisian adults: Results of the Transition and Health Impact in North Africa (TAHINA) project. Public Health Nutr. 2013, 16, 582–590. [Google Scholar] [CrossRef]
- El Ati, J.; Traissac, P.; Delpeuch, F.; Aounallah-Skhiri, H.; Beji, C.; Eymard-Duvernay, S.; Bougatef, S.; Kolsteren, P.; Maire, B.; Ben Romdhane, H. Gender obesity inequities are huge but differ greatly according to environment and socio-economics in a North African setting: A national cross-sectional study in Tunisia. PLoS ONE 2012, 7, e48153. [Google Scholar] [CrossRef]
- Fares, W.; Ghedira, K.; Gdoura, M.; Chouikha, A.; Haddad-Boubaker, S.; Khedhiri, M.; Ayouni, K.; Lamari, A.; Touzi, H.; Hammemi, W.; et al. Sequencing using a two-step strategy reveals high genetic diversity in the S gene of SARS-CoV-2 after a high-transmission period in Tunis, Tunisia. Microbiol. Spectr. 2021, 9, e00639-21. [Google Scholar] [CrossRef]
- Afgan, E.; Baker, D.; Batut, B.; Van Den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef]
- Goecks, J.; Nekrutenko, A.; Taylor, J.; The Galaxy Team. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010, 11, R86. [Google Scholar] [CrossRef]
- Chong, J.; Liu, P.; Zhou, G.; Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020, 15, 799–821. [Google Scholar] [CrossRef]
- Dhariwal, A.; Chong, J.; Habib, S.; King, I.L.; Agellon, L.B.; Xia, J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017, 45, W180–W188. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, J.R.; Dutilh, B.E.; Hall, N.; Peters, W.H.; Roelofs, R.; Boleij, A.; Tjalsma, H. Towards the human colorectal cancer microbiome. PLoS ONE 2011, 6, e20447. [Google Scholar] [CrossRef]
- Bang, C.; Schmitz, R.A. Archaea: Forgotten players in the microbiome. Emerg. Top. Life Sci. 2018, 2, 459–468. [Google Scholar]
- Guindo, C.O.; Drancourt, M.; Grine, G. Digestive tract methanodrome: Physiological roles of human microbiota-associated methanogens. Microb. Pathog. 2020, 149, 104425. [Google Scholar] [CrossRef] [PubMed]
- Doggui, R.; El Ati, J.; Sassi, S.; Ben Gharbia, H.; Al-Jawaldeh, A.; El Ati-Hellal, M. Unbalanced intakes of sodium and potassium among Tunisian adults: A cross-sectional study. Food Sci. Nutr. 2021, 9, 2234–2246. [Google Scholar] [CrossRef]
- The Global Health Observatory. Salt Intake. 2022. Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3082 (accessed on 10 January 2023).
- Chellapandi, P.; Bharathi, M.; Sangavai, C.; Prathiviraj, R. Methanobacterium formicicum as a target rumen methanogen for the development of new methane mitigation interventions: A review. Vet. Anim. Sci. 2018, 6, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Mitsumori, M.; Sun, W. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian Australas. J. Anim. Sci. 2008, 21, 144–154. [Google Scholar] [CrossRef]
- Rizzo, A.; Nannini, M.; Novelli, M.; Dalia Ricci, A.; Scioscio, V.D.; Pantaleo, M.A. Dose reduction and discontinuation of standard-dose regorafenib associated with adverse drug events in cancer patients: A systematic review and meta-analysis. Ther. Adv. Med. Oncol. 2020, 12, 1758835920936932. [Google Scholar] [CrossRef]
- Viscardi, G.; Tralongo, A.C.; Massari, F.; Lambertini, M.; Mollica, V.; Rizzo, A.; Comito, F.; Di Liello, R.; Alfieri, S.; Imbimbo, M.; et al. Comparative assessment of early mortality risk upon immune checkpoint inhibitors alone or in combination with other agents across solid malignancies: A systematic review and meta-analysis. Eur. J. Cancer 2022, 177, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Brandi, G.; Ricci, A.D.; Rizzo, A.; Zanfi, C.; Tavolari, S.; Palloni, A.; De Lorenzo, S.; Ravaioli, M.; Cescon, M. Is post-transplant chemotherapy feasible in liver transplantation for colorectal cancer liver metastases? Cancer Commun. 2020, 40, 461. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, V.; Helmink, B.A.; Spencer, C.N.; Reuben, A.; Wargo, J.A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018, 33, 570–580. [Google Scholar] [CrossRef]
- Routy, B.; Gopalakrishnan, V.; Daillère, R.; Zitvogel, L.; Wargo, J.A.; Kroemer, G. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 2018, 15, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Fessler, J.; Matson, V.; Gajewski, T.F. Exploring the emerging role of the microbiome in cancer immunotherapy. J. Immunother. Cancer 2019, 7, 108. [Google Scholar] [CrossRef]
p Value | Spearman Correlation Coefficient r | |
---|---|---|
Halobacteria | 0.049426 | 0.24103 |
Methanococci | 0.14671 | −0.17923 |
Nitrososphaeria | 0.16139 | 0.17305 |
Thermococci | 0.48629 | −0.086525 |
Methanobacteria | 0.60186 | 0.064894 |
Methanomicrobia | 0.65482 | −0.055623 |
Thermoprotei | 0.84259 | −0.024722 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathlouthi, N.E.H.; Oumarou Hama, H.; Belguith, I.; Charfi, S.; Boudawara, T.; Lagier, J.-C.; Ammar Keskes, L.; Grine, G.; Gdoura, R. Colorectal Cancer Archaeome: A Metagenomic Exploration, Tunisia. Curr. Issues Mol. Biol. 2023, 45, 7572-7581. https://doi.org/10.3390/cimb45090477
Mathlouthi NEH, Oumarou Hama H, Belguith I, Charfi S, Boudawara T, Lagier J-C, Ammar Keskes L, Grine G, Gdoura R. Colorectal Cancer Archaeome: A Metagenomic Exploration, Tunisia. Current Issues in Molecular Biology. 2023; 45(9):7572-7581. https://doi.org/10.3390/cimb45090477
Chicago/Turabian StyleMathlouthi, Nour El Houda, Hamadou Oumarou Hama, Imen Belguith, Slim Charfi, Tahya Boudawara, Jean-Christophe Lagier, Leila Ammar Keskes, Ghiles Grine, and Radhouane Gdoura. 2023. "Colorectal Cancer Archaeome: A Metagenomic Exploration, Tunisia" Current Issues in Molecular Biology 45, no. 9: 7572-7581. https://doi.org/10.3390/cimb45090477
APA StyleMathlouthi, N. E. H., Oumarou Hama, H., Belguith, I., Charfi, S., Boudawara, T., Lagier, J. -C., Ammar Keskes, L., Grine, G., & Gdoura, R. (2023). Colorectal Cancer Archaeome: A Metagenomic Exploration, Tunisia. Current Issues in Molecular Biology, 45(9), 7572-7581. https://doi.org/10.3390/cimb45090477