An Overview of Systemic Targeted Therapy in Renal Cell Carcinoma, with a Focus on Metastatic Renal Cell Carcinoma and Brain Metastases
Abstract
:1. Introduction
2. Clear-Cell Renal Cell Carcinoma
3. Non-Clear-Cell Renal Cell Carcinoma
4. Brain Metastases from RCC
5. Available Systemic Agents for Patients with mRCC and BM RCC
6. Trial-Eligible versus Trial-Ineligible Patients
7. The Abscopal Effect
8. Systemic Agents in Monotherapy
9. Multimodal Approach
9.1. Combination of Systemic Agents
9.2. Radiotherapy
9.3. Neurosurgical Excision
9.4. Cytoreductive Nephrectomy
10. Adverse Reactions and Toxicity Associated with Systemic Therapy
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, Z.; Lu, J.; Chen, A.; Zheng, X.; Wu, M.; Tan, Z.; Xie, J. Identification and Validation of Cuproptosis-Related LncRNA Signatures in the Prognosis and Immunotherapy of Clear Cell Renal Cell Carcinoma Using Machine Learning. Biomolecules 2022, 12, 1890. [Google Scholar] [CrossRef]
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Incorvaia, L.; Madonia, G.; Corsini, L.R.; Cucinella, A.; Brando, C.; Gagliardo, C.; Santoni, M.; Fanale, D.; Inno, A.; Fazio, I.; et al. Challenges and advances for the treatment of renal cancer patients with brain metastases: From immunological background to upcoming clinical evidence on immune-checkpoint inhibitors. Crit. Rev. Oncol. 2021, 163, 103390. [Google Scholar] [CrossRef] [PubMed]
- Kattan, J.; El Rassy, E.; Assi, T.; Bakouny, Z.; Pavlidis, N. A comprehensive review of the role of immune checkpoint inhibitors in brain metastasis of renal cell carcinoma origin. Crit. Rev. Oncol. 2018, 130, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Dudani, S.; de Velasco, G.; Wells, J.C.; Gan, C.L.; Donskov, F.; Porta, C.; Fraccon, A.; Pasini, F.; Lee, J.L.; Hansen, A.; et al. Evaluation of Clear Cell, Papillary, and Chromophobe Renal Cell Carcinoma Metastasis Sites and Association with Survival. JAMA Netw. Open 2021, 4, e2021869. [Google Scholar] [CrossRef]
- Pierrard, J.; Tison, T.; Grisay, G.; Seront, E. Global management of brain metastasis from renal cell carcinoma. Crit. Rev. Oncol. 2022, 171, 103600. [Google Scholar] [CrossRef]
- Najafi, M.; Jahanbakhshi, A.; Gomar, M.; Iotti, C.; Giaccherini, L.; Rezaie, O.; Cavallieri, F.; Deantonio, L.; Bardoscia, L.; Botti, A.; et al. State of the Art in Combination Immuno/Radiotherapy for Brain Metastases: Systematic Review and Meta-Analysis. Curr. Oncol. 2022, 29, 2995–3012. [Google Scholar] [CrossRef]
- Lehrer, E.J.; Gurewitz, J.; Bernstein, K.; Patel, D.; Kondziolka, D.; Niranjan, A.; Wei, Z.; Lunsford, L.D.; Malouff, T.D.; Ruiz-Garcia, H.; et al. Radiation necrosis in renal cell carcinoma brain metastases treated with checkpoint inhibitors and radiosurgery: An international multicenter study. Cancer 2022, 128, 1429–1438. [Google Scholar] [CrossRef]
- Shirotake, S. Management of brain metastases from renal cell carcinoma. Ann. Transl. Med. 2019, 7, S369. [Google Scholar] [CrossRef]
- Bates, J.E.; Youn, P.; Peterson III, C.R.; Usuki, K.Y.; Walter, K.A.; Okunieff, P.; Milano, M.T. Radiotherapy for brain metastases from renal cell carcinoma in the targeted therapy era: The University of Rochester experience. Am. J. Clin. Oncol. 2017, 40, 439–443. [Google Scholar] [CrossRef]
- Du, W.; Sirbu, C.; Lucas Jr, B.D.; Jubelirer, S.J.; Khalid, A.; Mei, L. A retrospective study of brain metastases from solid malignancies: The effect of immune checkpoint inhibitors. Front. Oncol. 2021, 11, 667847. [Google Scholar] [CrossRef] [PubMed]
- Alexandru, O.; Horescu, C.; Sevastre, A.-S.; Cioc, C.; Baloi, C.; Oprita, A.; Dricu, A. Receptor tyrosine kinase targeting in glioblastoma: Performance, limitations and future approaches. Contemp. Oncol. 2020, 24, 55–66. [Google Scholar] [CrossRef]
- Dricu, A.; Serban, F.; Artene, S.-A.; Georgescu, A.M.; Purcaru, S.O.; Tache, D.E.; Alexandru, O. Epidermal growth factor, latrophilin, and seven transmembrane domain-containing protein 1 marker, a novel angiogenesis marker. OncoTargets Ther. 2015, ume 8, 3767–3774. [Google Scholar] [CrossRef]
- Gossage, L.; Eisen, T.; Maher, E.R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer 2015, 15, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.; Hutson, T.E.; Lee, J.-L.; Peltola, K.; et al. Faculty Opinions recommendation of Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1814–1823. [Google Scholar] [CrossRef]
- Rini, B.I.; Pal, S.K.; Escudier, B.J.; Atkins, M.B.; Hutson, T.; Porta, C.; Verzoni, E.; Needle, M.N.; McDermott, D.F. Tivozanib versus sorafenib in patients with advanced renal cell carcinoma (TIVO-3): A phase 3, multicentre, randomised, controlled, open-label study. Lancet Oncol. 2020, 21, 95–104. [Google Scholar] [CrossRef]
- Rhoades Smith, K.E.; Bilen, M.A. A Review of Papillary Renal Cell Carcinoma and MET Inhibitors. Kidney Cancer 2019, 3, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Aren Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Menko, F.H.; Maher, E.R.; Schmidt, L.S.; Middelton, L.A.; Aittomäki, K.; Tomlinson, I.; Richard, S.; Linehan, W.M. Hereditary leiomyomatosis and renal cell cancer (HLRCC): Renal cancer risk, surveillance and treatment. Fam. Cancer 2014, 13, 637–644. [Google Scholar] [CrossRef]
- Yamasaki, T.; Tran, T.A.T.; Oz, O.K.; Raj, G.V.; Schwarz, R.E.; DeBerardinis, R.J.; Zhang, X.; Brugarolas, J. Exploring a glycolytic inhibitor for the treatment of an FH-deficient type-2 papillary RCC. Nat. Rev. Urol. 2011, 8, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Jonasch, E.; Donskov, F.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.K.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.K.; Welsh, S.J.; et al. Belzutifan for Renal Cell Carcinoma in von Hippel–Lindau Disease. N. Engl. J. Med. 2021, 385, 2036–2046. [Google Scholar] [CrossRef]
- Maher, E. Hereditary renal cell carcinoma syndromes: Diagnosis, surveillance and management. World J. Urol. 2018, 36, 1891–1898. [Google Scholar] [CrossRef] [PubMed]
- Pavlovich, C.P.; Walther, M.M.; Eyler, R.A.; Hewitt, S.M.; Zbar, B.; Linehan, W.M.; Merino, M.J. Renal tumors in the Birt-Hogg-Dubé syndrome. Am. J. Surg. Pathol. 2002, 26, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
- Woodward, E.R.; Ricketts, C.; Killick, P.; Gad, S.; Morris, M.; Kavalier, F.; Hodgson, S.V.; Giraud, S.; Paillerets, B.B.-D.; Chapman, C.; et al. Familial Non-VHL Clear Cell (Conventional) Renal Cell Carcinoma: Clinical Features, Segregation Analysis, and Mutation Analysis of FLCN. Clin. Cancer Res. 2008, 14, 5925–5930. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, L.; Metwalli, A.R.; Middelton, L.A.; Linehan, W.M. Diagnosis and management of BHD-associated kidney cancer. Fam. Cancer 2013, 12, 397–402. [Google Scholar] [CrossRef]
- Schmidt, L.; Duh, F.-M.; Chen, F.; Kishida, T.; Glenn, G.; Choyke, P.; Scherer, S.W.; Zhuang, Z.; Lubensky, I.; Dean, M.; et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 1997, 16, 68–73. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Vaishampayan, U.; Rosenberg, J.E.; Logan, T.F.; Harzstark, A.L.; Bukowski, R.M.; Rini, B.I.; Srinivas, S.; Stein, M.N.; Adams, L.M.; et al. Phase II and Biomarker Study of the Dual MET/VEGFR2 Inhibitor Foretinib in Patients with Papillary Renal Cell Carcinoma. J. Clin. Oncol. 2013, 31, 181–186. [Google Scholar] [CrossRef]
- Hu, J.; Chen, Z.; Bao, L.; Zhou, L.; Hou, Y.; Liu, L.; Xiong, M.; Zhang, Y.; Wang, B.; Tao, Z.; et al. Single-Cell Transcriptome Analysis Reveals Intratumoral Heterogeneity in ccRCC, which Results in Different Clinical Outcomes. Mol. Ther. 2020, 28, 1658–1672. [Google Scholar] [CrossRef]
- Bahadoram, S.; Davoodi, M.; Hassanzadeh, S.; Bahadoram, M.; Barahman, M.; Mafakher, L. Renal cell carcinoma: An overview of the epidemiology, diagnosis, and treatment. G Ital. Nefrol. 2022, 39, 1. [Google Scholar]
- Kim, B.J.; Kim, J.H.; Kim, H.S.; Zang, D.Y. Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: A meta-analysis and review. Oncotarget 2017, 8, 13979–13985. [Google Scholar] [CrossRef]
- Schults, M.A.; Oligschlaeger, Y.; Godschalk, R.W.; Van Schooten, F.-J.; Chiu, R.K. Loss of VHL in RCC Reduces Repair and Alters Cellular Response to Benzo[a]pyrene. Front. Oncol. 2013, 3, 270. [Google Scholar] [CrossRef]
- Dridi, M.; Bouleftour, W.; Rivoirard, R.; Col, P.D.; Langrand-Escure, J.; Vassal, C.; Guillot, A. Leptomeningeal Metastases in Renal Cell Carcinoma at Initial Diagnosis: 2 Case Reports and Literature Review. Cancer Investig. 2019, 37, 501–505. [Google Scholar] [CrossRef]
- Lalani, A.-K.A.; Gray, K.P.; Albiges, L.; Callea, M.; Pignon, J.-C.; Pal, S.; Gupta, M.; Bhatt, R.S.; McDermott, D.F.; Atkins, M.B.; et al. Differential expression of c-Met between primary and metastatic sites in clear-cell renal cell carcinoma and its association with PD-L1 expression. Oncotarget 2017, 8, 103428–103436. [Google Scholar] [CrossRef]
- Uche, A.; Sila, C.; Tanoura, T.; Yeh, J.; Bhowmick, N.; Posadas, E.; Figlin, R.; Gong, J. Brain Complete Response to Cabozantinib prior to Radiation Therapy in Metastatic Renal Cell Carcinoma. Case Rep. Urol. 2019, 6769017. [Google Scholar] [CrossRef] [PubMed]
- Peverelli, G.; Raimondi, A.; Ratta, R.; Verzoni, E.; Bregni, M.; Cortesi, E.; Cartenì, G.; Fornarini, G.; Facchini, G.; Buti, S.; et al. Cabozantinib in Renal Cell Carcinoma with Brain Metastases: Safety and Efficacy in a Real-World Population. Clin. Genitourin. Cancer 2019, 17, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Climent, C.; Soriano, S.; Bonfill, T.; Lopez, N.; Rodriguez, M.; Sierra, M.; Andreu, P.; Fragio, M.; Busquets, M.; Carrasco, A.; et al. The role of immunotherapy in non-clear cell renal cell carcinoma. Front. Oncol. 2023, 13, 941835. [Google Scholar] [CrossRef]
- Thouvenin, J.; Barthélémy, P.; Ladoire, S. Les cancers du rein non à cellules claires: Caractéristiques clinico-biologiques et prise en charge thérapeutique hors chirurgie [Non-clear cell renal cell carcinoma: Clinico-biological characteristics and therapeutic management except surgery]. Bull. Cancer 2020, 107, S56–S65. [Google Scholar] [CrossRef] [PubMed]
- Lipworth, L.; Morgans, A.K.; Edwards, T.L.; Barocas, D.A.; Chang, S.S.; Herrell, S.D.; Penson, D.F.; Resnick, M.J.; Smith, J.A.; Clark, P.E. Renal cell cancer histological subtype distribution differs by race and sex. BJU Int. 2016, 117, 260–265. [Google Scholar] [CrossRef]
- Bakouny, Z.; Sadagopan, A.; Ravi, P.; Metaferia, N.Y.; Li, J.; AbuHammad, S.; Tang, S.; Denize, T.; Garner, E.R.; Gao, X.; et al. Integrative clinical and molecular characterization of translocation renal cell carcinoma. Cell Rep. 2022, 38, 110190. [Google Scholar] [CrossRef]
- Toni, K.; Choueiri, M.; Sumanta, K.; Pal, M.D. The Treatment of Advanced Non-Clear Cell Renal Carcinoma: UpToDate. 2023. Available online: https://www.uptodate.com/contents/the-treatment-of-advanced-non-clear-cell-renal-carcinoma#H1675781009 (accessed on 19 June 2023).
- Deleuze, A.; Saout, J.; Dugay, F.; Peyronnet, B.; Mathieu, R.; Verhoest, G.; Bensalah, K.; Crouzet, L.; Laguerre, B.; Belaud-Rotureau, M.-A.; et al. Immunotherapy in Renal Cell Carcinoma: The Future Is Now. Int. J. Mol. Sci. 2020, 21, 2532. [Google Scholar] [CrossRef]
- Gan, C.L.; Stukalin, I.; Meyers, D.E.; Dudani, S.; Grosjean, H.A.; Dolter, S.; Ewanchuk, B.W.; Goutam, S.; Sander, M.; Wells, C.; et al. Outcomes of patients with solid tumour malignancies treated with first-line immuno-oncology agents who do not meet eligibility criteria for clinical trials. Eur. J. Cancer 2021, 151, 115–125. [Google Scholar] [CrossRef]
- Sepe, P.; Ottini, A.; Pircher, C.C.; Franza, A.; Claps, M.; Guadalupi, V.; Verzoni, E.; Procopio, G. Characteristics and Treatment Challenges of Non-Clear Cell Renal Cell Carcinoma. Cancers 2021, 13, 3807. [Google Scholar] [CrossRef]
- Ventriglia, J.; Passarelli, A.; Pisano, C.; Cecere, S.C.; Rossetti, S.; Feroce, F.; Forte, M.; Casartelli, C.; Tambaro, R.; Pignata, S.; et al. The role of immunotherapy treatment in non-clear cell renal cell carcinoma: An analysis of the literature. Crit. Rev. Oncol. /Hematol. 2023, 188, 104036. [Google Scholar] [CrossRef]
- Linehan, W.M.; Spellman, P.T.; Ricketts, C.J.; Creighton, C.J.; Fei, S.S.; Davis, C.; Wheeler, D.A.; Murray, B.A.; Schmidt, L.; Vocke, D.C.; et al. Faculty Opinions recommendation of Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 135–145. [Google Scholar] [CrossRef]
- Pal, S.K.; Ali, S.M.; Yakirevich, E.; Geynisman, D.M.; Karam, J.A.; Elvin, J.A.; Frampton, G.M.; Huang, X.; Lin, D.I.; Rosenzweig, M.; et al. Characterization of Clinical Cases of Advanced Papillary Renal Cell Carcinoma via Comprehensive Genomic Profiling. Eur. Urol. 2018, 73, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Albiges, L.; Guegan, J.; Le Formal, A.; Verkarre, V.; Rioux-Leclercq, N.; Sibony, M.; Bernhard, J.C.; Camparo, P.; Merabet, Z.; Molinie, V.; et al. MET is a potential target across all papillary renal cell carcinomas: Result from a large molecular study of pRCC with CGH array and matching gene expression array. Clin. Cancer Res. 2014, 20, 3411–3421. [Google Scholar] [CrossRef]
- Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 2011, 10, 2298–2308. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.Y.; Li, Q.; Lee, J.H.; Arango, M.E.; McDonnell, S.R.; Yamazaki, S.; Koudriakova, T.B.; Alton, G.; Cui, J.J.; Kung, P.P.; et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 2007, 67, 4408–4417. [Google Scholar] [CrossRef]
- Gavine, P.R.; Ren, Y.; Han, L.; Lv, J.; Fan, S.; Zhang, W.; Xu, W.; Liu, Y.J.; Zhang, T.; Fu, H.; et al. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol. Oncol. 2015, 9, 323–333. [Google Scholar] [CrossRef]
- Hasanov, E.; Yeboa, D.N.; Tucker, M.D.; Swanson, T.A.; Beckham, T.H.; Rini, B.; Ene, C.I.; Hasanov, M.; Derks, S.; Smits, M.; et al. An interdisciplinary consensus on the management of brain metastases in patients with renal cell carcinoma. CA: A Cancer J. Clin. 2022, 72, 454–489. [Google Scholar] [CrossRef] [PubMed]
- Rathmell, W.K.; Rumble, R.B.; Van Veldhuizen, P.J.; Al-Ahmadie, H.; Emamekhoo, H.; Hauke, R.J.; Louie, A.V.; Milowsky, M.I.; Molina, A.M.; Rose, T.L.; et al. Management of Metastatic Clear Cell Renal Cell Carcinoma: ASCO Guideline. J. Clin. Oncol. 2022, 40, 2957–2995. [Google Scholar] [CrossRef] [PubMed]
- Matsui, Y. Current Multimodality Treatments against Brain Metastases from Renal Cell Carcinoma. Cancers 2020, 12, 2875. [Google Scholar] [CrossRef] [PubMed]
- Hasanov, E.; Jonasch, E. Management of Brain Metastases in Metastatic Renal Cell Carcinoma. Hematol. Clin. N. Am. 2023, 37, 1005–1014. [Google Scholar] [CrossRef]
- McMahon, J.T.; Faraj, R.R.; Adamson, D.C. Emerging and investigational targeted chemotherapy and immunotherapy agents for metastatic brain tumors. Expert Opin. Investig. Drugs 2020, 29, 1389–1406. [Google Scholar] [CrossRef]
- Duran, I.; Lambea, J.; Maroto, P.; González-Larriba, J.L.; Flores, L.; Granados-Principal, S.; Graupera, M.; Sáez, B.; Vivancos, A.; Casanovas, O. Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action. Target. Oncol. 2017, 12, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Montero, C.M.; Rini, B.I.; Finke, J.H. The immunology of renal cell carcinoma. Nat. Rev. Nephrol. 2020, 16, 721–735. [Google Scholar] [CrossRef]
- Ged, Y.; Gupta, R.; Duzgol, C.; Knezevic, A.; Shapnik, N.; Kotecha, R.; Voss, M.H.; Feldman, D.R.; Akin, O.; Patil, S.; et al. Systemic therapy for advanced clear cell renal cell carcinoma after discontinuation of immune-oncology and VEGF targeted therapy combinations. BMC Urol. 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Lauko, A.; Thapa, B.; Venur, V.A.; Ahluwalia, M.S. Management of Brain Metastases in the New Era of Checkpoint Inhibition. Curr. Neurol. Neurosci. Rep. 2018, 18, 70. [Google Scholar] [CrossRef]
- Botticelli, A.; Cirillo, A.; Scagnoli, S.; Cerbelli, B.; Strigari, L.; Cortellini, A.; Pizzuti, L.; Vici, P.; De Galitiis, F.; Di Pietro, F.R.; et al. The Agnostic Role of Site of Metastasis in Predicting Outcomes in Cancer Patients Treated with Immunotherapy. Vaccines 2020, 8, 203. [Google Scholar] [CrossRef]
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain metastases. Nat. Rev. Dis. Primers 2019, 5, 5. [Google Scholar] [CrossRef]
- Faivre, S.; Demetri, G.; Sargent, W.; Raymond, E. Molecular basis for sunitinib efficacy and future clinical development. Nat. Rev. Drug Discov. 2007, 6, 734–745. [Google Scholar] [CrossRef] [PubMed]
- Mendel, D.B.; Laird, A.D.; Xin, X.; Louie, S.G.; Christensen, J.G.; Li, G.; Schreck, R.E.; Abrams, T.J.; Ngai, T.J.; Lee, L.B.; et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 2003, 9, 327–337. [Google Scholar] [PubMed]
- Goldstein, R.; Pickering, L.; Larkin, J. Does axitinib (AG-01376) have a future role in metastatic renal cell carcinoma and other malignancies? Expert Rev. Anticancer Ther. 2010, 10, 1545–1557. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; Oudard, S.; Hutson, T.E.; Porta, C.; Bracarda, S.; Grünwald, V.; Thompson, J.A.; Figlin, R.A.; Hollaender, N.; et al. Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial. Lancet 2008, 372, 449–456. [Google Scholar] [CrossRef]
- Lombardi, G.; Maruzzo, M.; Minniti, G.; Padovan, M.; Caccese, M.; Zagonel, V. Immune-checkpoint inhibitors in brain metastases from renal cell carcinoma: A battle was lost but not the war. Ann. Transl. Med. 2019, 7 (Suppl. S6), S222. [Google Scholar] [CrossRef]
- Di Nunno, V.; Nuvola, G.; Mosca, M.; Maggio, I.; Gatto, L.; Tosoni, A.; Lodi, R.; Franceschi, E.; Brandes, A.A. Clinical efficacy of immune checkpoint inhibitors in patients with brain metastases. Immunotherapy 2021, 13, 419–432. [Google Scholar] [CrossRef]
- Chen, L.; Douglass, J.; Kleinberg, L.; Ye, X.; Marciscano, A.E.; Forde, P.M.; Brahmer, J.; Lipson, E.; Sharfman, W.; Hammers, H.; et al. Concurrent Immune Checkpoint Inhibitors and Stereotactic Radiosurgery for Brain Metastases in Non-Small Cell Lung Cancer, Melanoma, and Renal Cell Carcinoma. Int. J. Radiat. Oncol. 2018, 100, 916–925. [Google Scholar] [CrossRef]
- Yomo, S.; Oda, K.; Oguchi, K. Effectiveness of immune checkpoint inhibitors in combination with stereotactic radiosurgery for patients with brain metastases from renal cell carcinoma: Inverse probability of treatment weighting using propensity scores. J. Neurosurg. 2022, 138. [Google Scholar] [CrossRef]
- Lehrer, E.J.; Kowalchuk, R.O.; Gurewitz, J.; Bernstein, K.; Kondziolka, D.; Niranjan, A.; Wei, Z.; Lunsford, L.D.; Fakhoury, K.R.; Rusthoven, C.G.; et al. Concurrent Administration of Immune Checkpoint Inhibitors and Single Fraction Stereotactic Radiosurgery in Patients with Non-Small Cell Lung Cancer, Melanoma, and Renal Cell Carcinoma Brain Metastases. Int. J. Radiat. Oncol. 2023, 116, 858–868. [Google Scholar] [CrossRef]
- Samlowski, W.E.; Majer, M.; Boucher, K.M.; Shrieve, A.F.; Dechet, C.; Jensen, R.L.; Shrieve, D.C. Multidisciplinary treatment of brain metastases derived from clear cell renal cancer incorporating stereotactic radiosurgery. Cancer 2008, 113, 2539–2548. [Google Scholar] [CrossRef]
- Giraldo, N.A.; Becht, E.; Vano, Y.; Petitprez, F.; Lacroix, L.; Validire, P.; Sanchez-Salas, R.; Ingels, A.; Oudard, S.; Moatti, A.; et al. Tumor-Infiltrating and Peripheral Blood T-cell Immunophenotypes Predict Early Relapse in Localized Clear Cell Renal Cell Carcinoma. Clin. Cancer Res. 2017, 23, 4416–4428. [Google Scholar] [CrossRef] [PubMed]
- Nakano, O.; Sato, M.; Naito, Y.; Suzuki, K.; Orikasa, S.; Aizawa, M.; Suzuki, Y.; Shintaku, I.; Nagura, H.; Ohtani, H. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: Clinicopathologic demonstration of antitumor immunity. Cancer Res. 2001, 61, 5132–5136. [Google Scholar]
- Reed, J.P.; Posadas, E.M.; Figlin, R.A. Brain Metastases in Renal Cell Carcinoma: Immunotherapy Responsiveness Is Multifactorial and Heterogeneous. J. Clin. Oncol. 2019, 37, 1987–1989. [Google Scholar] [CrossRef]
- Peddi, P.F.; Hurvitz, S.A. PI3K pathway inhibitors for the treatment of brain metastases with a focus on HER2+ breast cancer. J. Neuro-Oncol. 2014, 117, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Small, E.J. Biology and Clinical Development of Vascular Endothelial Growth Factor–Targeted Therapy in Renal Cell Carcinoma. J. Clin. Oncol. 2005, 23, 1028–1043. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Voss, M.H.; Carlo, M.I.; Chen, Y.-B.; Zucker, M.; Knezevic, A.; Lefkowitz, R.A.; Shapnik, N.; Dadoun, C.; Reznik, E.; et al. Phase II Trial of Cabozantinib Plus Nivolumab in Patients with Non–Clear-Cell Renal Cell Carcinoma and Genomic Correlates. J. Clin. Oncol. 2022, 40, 2333–2341. [Google Scholar] [CrossRef]
- Johnson, D.B.; Sullivan, R.J.; Menzies, A.M. Immune checkpoint inhibitors in challenging populations. Cancer 2017, 123, 1904–1911. [Google Scholar] [CrossRef]
- Arvanitis, C.D.; Ferraro, G.B.; Jain, R.K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 2020, 20, 26–41. [Google Scholar] [CrossRef]
- Gotink, K.J.; Verheul, H.M. Anti-angiogenic tyrosine kinase inhibitors: What is their mechanism of action? Angiogenesis 2010, 13, 1–14. [Google Scholar] [CrossRef]
- Dudek, A.Z.; Raza, A.; Chi, M.; Singhal, M.; Oberoi, R.; Mittapalli, R.K.; Agarwal, S.; Elmquist, W.F. Brain Metastases from Renal Cell Carcinoma in the Era of Tyrosine Kinase Inhibitors. Clin. Genitourin. Cancer 2013, 11, 155–160. [Google Scholar] [CrossRef]
- Tan, J.; Li, M.; Zhong, W.; Hu, C.; Gu, Q.; Xie, Y. Tyrosine kinase inhibitors show different anti-brain metastases efficacy in NSCLC: A direct comparative analysis of icotinib, gefitinib, and erlotinib in a nude mouse model. Oncotarget 2017, 8, 98771–98781. [Google Scholar] [CrossRef]
- Ahluwalia, M.S.; Becker, K.; Levy, B.P. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Central Nervous System Metastases from Non-Small Cell Lung Cancer. Oncol. 2018, 23, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Batich, K.A.; Almquist, G.; Villa, L.; George, D.J.; Zhang, T. Control of renal cell carcinoma brain metastases with cabozantinib following progression on immune checkpoint inhibitor therapy. Curr. Probl. Cancer Case Rep. 2021, 3, 100060. [Google Scholar] [CrossRef]
- Négrier, S.; Moriceau, G.; Attignon, V.; Haddad, V.; Pissaloux, D.; Guerin, N.; Carrie, C. Activity of cabozantinib in radioresistant brain metastases from renal cell carcinoma: Two case reports. J. Med. Case Rep. 2018, 12, 351. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Kijima, T.; Imasato, N.; Nagoshi, A.; Nakamura, G.; Uematsu, T.; Suzuki, I.; Nishihara, D.; Kamai, T. Efficacy of cabozantinib therapy for brain metastases from renal cell carcinoma. IJU Case Rep. 2022, 5, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Gore, M.E.; Hariharan, S.; Porta, C.; Bracarda, S.; Hawkins, R.; Bjarnason, G.A.; Oudard, S.; Lee, S.-H.; Carteni, G.; Nieto, A.; et al. Sunitinib in metastatic renal cell carcinoma patients with brain metastases. Cancer 2011, 117, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Alesini, D.; Mosillo, C.; Naso, G.; Cortesi, E.; Iacovelli, R. Clinical experience with everolimus in the second-line treatment of advanced renal cell carcinoma. Ther. Adv. Urol. 2015, 7, 286–294. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiang, Y. mTOR Inhibitors at a Glance. Mol. Cell. Pharmacol. 2015, 7, 15–20. [Google Scholar]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 2020, 10, 31. [Google Scholar] [CrossRef]
- Zhao, H.; Cui, K.; Nie, F.; Wang, L.; Brandl, M.B.; Jin, G.; Li, F.; Mao, Y.; Xue, Z.; Rodriguez, A.; et al. The effect of mTOR inhibition alone or combined with MEK inhibitors on brain metastasis: An in vivo analysis in triple-negative breast cancer models. Breast Cancer Res. Treat. 2012, 131, 425–436. [Google Scholar] [CrossRef]
- Brandt, C.; Hillmann, P.; Noack, A.; Römermann, K.; Öhler, L.A.; Rageot, D.; Beaufils, F.; Melone, A.; Sele, A.M.; Wymann, M.P.; et al. The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology 2018, 140, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.H.; Connor, T.; Chopra, V.; Dorsey, K.; Kama, J.A.; Bleckmann, D.; Betschart, C.; Hoyer, D.; Frentzel, S.; DiFiglia, M.; et al. The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington’s disease. Mol. Neurodegener. 2010, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.; Wolchok, J. Toxicities Associated with Checkpoint Inhibitor Immunotherapy. UpToDate. 2023. Available online: https://www.uptodate.com/contents/toxicities-associated-with-checkpoint-inhibitor-immunotherapy (accessed on 19 June 2023).
- Petejova, N.; Martinek, A. Renal cell carcinoma: Review of etiology, pathophysiology and risk factors. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2016, 160, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Plunkett, W.; Huang, P.; Xu, Y.Z.; Heinemann, V.; Grunewald, R.; Gandhi, V. Gemcitabine: Metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 1995, 22 (Suppl. S11), 3–10. [Google Scholar] [PubMed]
- Geisberg, C.A.; Sawyer, D.B. Mechanisms of anthracycline cardiotoxicity and strategies to decrease cardiac damage. Curr. Hypertens. Rep. 2010, 12, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Pan, A.W.; Lin, T.-Y.; Zhang, H.; Malfatti, M.; Turteltaub, K.; Henderson, P.T.; Pan, C.-X. Paclitaxel Enhances Carboplatin-DNA Adduct Formation and Cytotoxicity. Chem. Res. Toxicol. 2015, 28, 2250–2252. [Google Scholar] [CrossRef]
- van den Bent, M.J. The role of chemotherapy in brain metastases. Eur. J. Cancer 2003, 39, 2114–2120. [Google Scholar] [CrossRef]
- Lee, J.-L.; Ahn, J.-H.; Lim, H.Y.; Park, S.H.; Lee, S.H.; Kim, T.M.; Lee, D.-H.; Cho, Y.M.; Song, C.; Hong, J.H.; et al. Multicenter phase II study of sunitinib in patients with non-clear cell renal cell carcinoma. Ann. Oncol. 2012, 23, 2108–2114. [Google Scholar] [CrossRef]
- Carpentier, A.; Canney, M.; Vignot, A.; Reina, V.; Beccaria, K.; Horodyckid, C.; Karachi, C.; Leclercq, D.; Lafon, C.; Chapelon, J.-Y.; et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci. Transl. Med. 2016, 8, 343re2. [Google Scholar] [CrossRef]
- Powles, T.; Albiges, L.; Bex, A.; Grünwald, V.; Porta, C.; Procopio, G.; Schmidinger, M.; Suárez, C.; de Velasco, G. ESMO Clinical Practice Guideline update on the use of immunotherapy in early stage and advanced renal cell carcinoma. Ann. Oncol. 2021, 32, 1511–1519. [Google Scholar] [CrossRef]
- Ljungberg, B.; Albiges, L.; Abu-Ghanem, Y.; Bedke, J.; Capitanio, U.; Dabestani, S.; Fernández-Pello, S.; Giles, R.H.; Hofmann, F.; Hora, M.; et al. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2022 Update. Eur. Urol. 2022, 82, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Heng, D.Y.; Lee, J.L.; Cancel, M.; Verheijen, R.B.; Mellemgaard, A.; Ottesen, L.H.; Frigault, M.M.; L’Hernault, A.; Szijgyarto, Z.; et al. Efficacy of Savolitinib vs Sunitinib in Patients With MET-Driven Papillary Renal Cell Carcinoma: The SAVOIR Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Schöffski, P.; Wozniak, A.; Escudier, B.; Rutkowski, P.; Anthoney, A.; Bauer, S.; Sufliarsky, J.; van Herpen, C.; Lindner, L.H.; Grünwald, V.; et al. Crizotinib achieves long-lasting disease control in advanced papillary renal-cell carcinoma type 1 patients with MET mutations or amplification. EORTC 90101 CREATE trial. Eur. J. Cancer 2017, 87, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.J.; Halabi, S.; Eisen, T.; Broderick, S.; Stadler, W.M.; Jones, R.J.; Garcia, J.A.; Vaishampayan, U.N.; Picus, J.; Hawkins, R.E.; et al. Everolimus versus sunitinib for patients with metastatic non-clear cell renal cell carcinoma (ASPEN): A multicentre, open-label, randomised phase 2 trial. Lancet Oncol. 2016, 17, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.H.; Molina, A.M.; Chen, Y.-B.; Woo, K.M.; Chaim, J.L.; Coskey, D.T.; Redzematovic, A.; Wang, P.; Lee, W.; Selcuklu, S.D.; et al. Phase II Trial and Correlative Genomic Analysis of Everolimus Plus Bevacizumab in Advanced Non–Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2016, 34, 3846–3853. [Google Scholar] [CrossRef]
- Davis, C.F.; Ricketts, C.J.; Wang, M.; Yang, L.; Cherniack, A.D.; Shen, H.; Buhay, C.; Kang, H.; Kim, S.C.; Fahey, C.C.; et al. The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell 2014, 26, 319–330. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Plantade, A.; Elson, P.; Negrier, S.; Ravaud, A.; Oudard, S.; Zhou, M.; Rini, B.I.; Bukowski, R.M.; Escudier, B. Faculty Opinions recommendation of Efficacy of sunitinib and sorafenib in metastatic papillary and chromophobe renal cell carcinoma. J. Clin. Oncol. 2008, 26, 127–131. [Google Scholar] [CrossRef]
- Schwartz, C.; Pfanzelter, N.; Kuzel, T.M. The Efficacy of Lenvatinib and Everolimus in Chromophobe-type Non–Clear-Cell Renal Cell Carcinoma: A Case Report and Literature Review. Clin. Genitourin. Cancer 2017, 15, e903–e906. [Google Scholar] [CrossRef]
- Suárez, C.; Larkin, J.M.; Patel, P.; Valderrama, B.P.; Rodriguez-Vida, A.; Glen, H.; Thistlethwaite, F.; Ralph, C.; Srinivasan, G.; Mendez-Vidal, M.J.; et al. Phase II Study Investigating the Safety and Efficacy of Savolitinib and Durvalumab in Metastatic Papillary Renal Cancer (CALYPSO). J. Clin. Oncol. 2023, 41, 2493–2502. [Google Scholar] [CrossRef]
- Hutson, T.E.; Michaelson, M.D.; Kuzel, T.M.; Agarwal, N.; Molina, A.M.; Hsieh, J.J.; Vaishampayan, U.N.; Xie, R.; Bapat, U.; Ye, W.; et al. A Single-arm, Multicenter, Phase 2 Study of Lenvatinib Plus Everolimus in Patients with Advanced Non-Clear Cell Renal Cell Carcinoma. Eur. Urol. 2021, 80, 162–170. [Google Scholar] [CrossRef]
- Milowsky, M.I.; Rosmarin, A.; Tickoo, S.K.; Papanicolaou, N.; Nanus, D.M. Active chemotherapy for collecting duct carcinoma of the kidney: A case report and review of the literature. Cancer 2002, 94, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Oudard, S.; Banu, E.; Vieillefond, A.; Fournier, L.; Priou, F.; Medioni, J.; Banu, A.; Duclos, B.; Rolland, F.; Escudier, B.; et al. Prospective Multicenter Phase II Study of Gemcitabine Plus Platinum Salt for Metastatic Collecting Duct Carcinoma: Results of a GETUG (Groupe d’Etudes des Tumeurs Uro-Génitales) Study. J. Urol. 2007, 177, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- McGregor, B.A.; McKay, R.R.; Braun, D.A.; Werner, L.; Gray, K.; Flaifel, A.; Signoretti, S.; Hirsch, M.S.; Steinharter, J.A.; Bakouny, Z.; et al. Results of a Multicenter Phase II Study of Atezolizumab and Bevacizumab for Patients with Metastatic Renal Cell Carcinoma With Variant Histology and/or Sarcomatoid Features. J. Clin. Oncol. 2020, 38, 63–70. [Google Scholar] [CrossRef]
- Pécuchet, N.; Bigot, F.; Gachet, J.; Massard, C.; Albiges, L.; Teghom, C.; Allory, Y.; Méjean, A.; Escudier, B.; Oudard, S. Triple combination of bevacizumab, gemcitabine and platinum salt in metastatic collecting duct carcinoma. Ann. Oncol. 2013, 24, 2963–2967. [Google Scholar] [CrossRef]
- Gollob, J.; Upton, M.P.; DeWolf, W.C.; Atkins, M.B. Long-term remission in a patient with metastatic collecting duct carcinoma treated with taxol/carboplatin and surgery. Urology 2001, 58, 1058. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A.; Kelly, D.R.; Vaid, Y.N.; Hilliard, L.M.; Friedman, G.K. Complete response to carboplatin, gemcitabine, and paclitaxel in a patient with advanced metastatic renal medullary carcinoma. Pediatr. Blood Cancer 2010, 55, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Maroja Silvino, M.C.; Venchiarutti Moniz, C.M.; Munhoz Piotto, G.H.; Siqueira, S.; Galapo Kann, A.; Dzik, C. Renal medullary carcinoma response to chemotherapy: A referral center experience in Brazil. Rare Tumors 2013, 5, e44. [Google Scholar] [CrossRef]
- Shah, A.Y.; Karam, J.A.; Malouf, G.G.; Rao, P.; Lim, Z.D.; Jonasch, E.; Xiao, L.; Gao, J.; Vaishampayan, U.N.; Heng, D.Y.; et al. Management and outcomes of patients with renal medullary carcinoma: A multicentre collaborative study. BJU Int. 2017, 120, 782–792. [Google Scholar] [CrossRef]
- Schaeffer, E.M.; Guzzo, T.J.; Furge, K.A.; Netto, G.; Westphal, M.; Dykema, K.; Yang, X.; Zhou, M.; Teh, B.T.; Pavlovich, C.P. Renal medullary carcinoma: Molecular, pathological and clinical evidence for treatment with topoisomerase-inhibiting therapy. BJU Int. 2010, 106, 62–65. [Google Scholar] [CrossRef]
- Kondagunta, G.V.; Drucker, B.J.; Schwartz, L.H.; Bacik, J.; Marion, S.; Russo, P.; Mazumdar, M.; Motzer, R.J. Phase II Trial of Bortezomib for Patients with Advanced Renal Cell Carcinoma. J. Clin. Oncol. 2004, 22, 3720–3725. [Google Scholar] [CrossRef]
- Ronnen, E.A.; Kondagunta, G.V.; Motzer, R.J. Medullary Renal Cell Carcinoma and Response to Therapy with Bortezomib. J. Clin. Oncol. 2006, 24, e14. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Lim, Z.D.; Hirsch, M.S.; Tamboli, P.; Jonasch, E.; McDermott, D.F.; Cin, P.D.; Corn, P.; Vaishampayan, U.; Heng, D.Y.; et al. Vascular endothelial growth factor-targeted therapy for the treatment of adult metastatic Xp11.2 translocation renal cell carcinoma. Cancer 2010, 116, 5219–5225. [Google Scholar] [CrossRef] [PubMed]
- Chahoud, J.; Msaouel, P.; Campbell, M.T.; Bathala, T.; Xiao, L.; Gao, J.; Zurita, A.J.; Shah, A.Y.; Jonasch, E.; Sharma, P.; et al. Nivolumab for the Treatment of Patients with Metastatic Non-Clear Cell Renal Cell Carcinoma (nccRCC): A Single-Institutional Experience and Literature Meta-Analysis. Oncologist 2020, 25, 252–258. [Google Scholar] [CrossRef]
- Tykodi, S.S.; Gordan, L.N.; Alter, R.S.; Arrowsmith, E.; Harrison, M.R.; Singal, R.; Van Veldhuizen, P.; George, D.J.; Hutson, T.; Zhang, J.; et al. Safety and efficacy of nivolumab plus ipilimumab in patients with advanced non-clear cell renal cell carcinoma: Results from the phase 3b/4 CheckMate 920 trial. J. Immunother. Cancer 2022, 10, e003844. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Ornstein, M.C.; Li, H.; Allman, K.D.; Wood, L.S.; Gilligan, T.; Garcia, J.A.; Von Merveldt, D.; Hammers, H.J.; Rini, B.I. Clinical Activity of Ipilimumab Plus Nivolumab in Patients with Metastatic Non–Clear Cell Renal Cell Carcinoma. Clin. Genitourin. Cancer 2020, 18, 429–435. [Google Scholar] [CrossRef] [PubMed]
- McDermott, D.F.; Lee, J.L.; Ziobro, M.; Suarez, C.; Langiewicz, P.; Matveev, V.B.; Wiechno, P.; Gafanov, R.A.; Tomczak, P.; Pouliot, F.; et al. Open-Label, Single-Arm, Phase II Study of Pembrolizumab Monotherapy as First-Line Therapy in Patients with Advanced Non-Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2021, 39, 1029–1039. [Google Scholar] [CrossRef]
- Tannir, N.M.; Jonasch, E.; Albiges, L.; Altinmakas, E.; Ng, C.S.; Matin, S.F.; Wang, X.; Qiao, W.; Lim, Z.D.; Tamboli, P.; et al. Everolimus Versus Sunitinib Prospective Evaluation in Metastatic Non–Clear Cell Renal Cell Carcinoma (ESPN): A Randomized Multicenter Phase 2 Trial. Eur. Urol. 2016, 69, 866–874. [Google Scholar] [CrossRef]
- Chanzá, N.M.; Xie, W.; Bilen, M.A.; Dzimitrowicz, H.; Burkart, J.; Geynisman, D.M.; Balakrishnan, A.; Bowman, I.A.; Jain, R.; Stadler, W.; et al. Cabozantinib in advanced non-clear-cell renal cell carcinoma: A multicentre, retrospective, cohort study. Lancet Oncol. 2019, 20, 581–590. [Google Scholar] [CrossRef]
- Malouf, G.G.; Camparo, P.; Oudard, S.; Schleiermacher, G.; Theodore, C.; Rustine, A.; Dutcher, J.; Billemont, B.; Rixe, O.; Bompas, E.; et al. Targeted agents in metastatic Xp11 translocation/TFE3 gene fusion renal cell carcinoma (RCC): A report from the Juvenile RCC Network. Ann. Oncol. 2010, 21, 1834–1838. [Google Scholar] [CrossRef]
- Boilève, A.; Carlo, M.I.; Barthélémy, P.; Oudard, S.; Borchiellini, D.; Voss, M.H.; George, S.; Chevreau, C.; Landman-Parker, J.; Tabone, M.-D.; et al. Immune checkpoint inhibitors in MITF family translocation renal cell carcinomas and genetic correlates of exceptional responders. J. Immunother. Cancer 2018, 6, 159. [Google Scholar] [CrossRef]
- Marschner, N.; Staehler, M.; Müller, L.; Nusch, A.; Harde, J.; Koska, M.; Jänicke, M.; Goebell, P.J. Survival of Patients With Advanced or Metastatic Renal Cell Carcinoma in Routine Practice Differs From That in Clinical Trials—Analyses From the German Clinical RCC Registry. Clin. Genitourin. Cancer 2017, 15, e209–e215. [Google Scholar] [CrossRef] [PubMed]
- Heng, D.Y.C.; Choueiri, T.K.; Rini, B.I.; Lee, J.; Yuasa, T.; Pal, S.K.; Srinivas, S.; Bjarnason, G.A.; Knox, J.J.; MacKenzie, M.; et al. Outcomes of patients with metastatic renal cell carcinoma that do not meet eligibility criteria for clinical trials. Ann. Oncol. 2014, 25, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.E.B.; Quinn, D.I.; Bjarnason, G.A.; North, S.A.; Sridhar, S.S.M. Eligibility Criteria and Endpoints in Metastatic Renal Cell Carcinoma Trials. Am. J. Clin. Oncol. 2020, 43, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Rendon, R.; Kapoor, A.; Heng, D.Y.C.; Kollmannsberger, C. (Eds.) Practical Approaches to Managing Advanced Kidney Cancer: Version 2020; Canadian Urological Association: Dorval, QC, Canada, 2020. [Google Scholar]
- Castro, D.V.; Prajapati, S.R.; Feng, M.I.; Chan, E.H.; Lee, K.O.; Paul, T.; Sehgal, I.; Patel, J.; Li, X.; Zengin, Z.B.; et al. Assessment of eligibility criteria in renal cell carcinoma trials evaluating systemic therapy. BJU Int. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Averitt, A.J.; Weng, C.; Ryan, P.; Perotte, A. Translating evidence into practice: Eligibility criteria fail to eliminate clinically significant differences between real-world and study populations. npj Digit. Med. 2020, 3, 67. [Google Scholar] [CrossRef]
- Karim, S.; Xu, Y.; Kong, S.; Abdel-Rahman, O.; Quan, M.; Cheung, W. Generalisability of Common Oncology Clinical Trial Eligibility Criteria in the Real World. Clin. Oncol. 2019, 31, e160–e166. [Google Scholar] [CrossRef]
- Pangal, D.J.; Yarovinsky, B.; Cardinal, T.; Cote, D.J.; Ruzevick, J.; Attenello, F.J.; Chang, E.L.; Ye, J.; Neman, J.; Chow, F.; et al. The abscopal effect: Systematic review in patients with brain and spine metastases. Neurooncol. Adv. 2022, 4, vdac132. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Farhood, B.; Musa, A.E.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol. 2020, 85, 106663. [Google Scholar] [CrossRef]
- Craig, D.J.; Nanavaty, N.S.; Devanaboyina, M.; Stanbery, L.; Hamouda, D.; Edelman, G.; Dworkin, L.; Nemunaitis, J.J. The abscopal effect of radiation therapy. Future Oncol. 2021, 17, 1683–1694. [Google Scholar] [CrossRef]
- Wu, T.; Dai, Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017, 387, 61–68. [Google Scholar] [CrossRef]
- Flippot, R.; Dalban, C.; Laguerre, B.; Borchiellini, D.; Gravis, G.; Négrier, S.; Chevreau, C.; Joly, F.; Geoffrois, L.; Ladoire, S.; et al. Safety and Efficacy of Nivolumab in Brain Metastases from Renal Cell Carcinoma: Results of the GETUG-AFU 26 NIVOREN Multicenter Phase II Study. J. Clin. Oncol. 2019, 37, 2008–2016. [Google Scholar] [CrossRef] [PubMed]
- Allaf, M.; Kim, S.; Harshman, L.; McDermott, D.; Master, V.; Signoretti, S.; Cole, S.; Moon, H.; Adra, N.; Singer, E.; et al. LBA67 Phase III randomized study comparing perioperative nivolumab (nivo) versus observation in patients (Pts) with renal cell carcinoma (RCC) undergoing nephrectomy (PROSPER, ECOG-ACRIN EA8143), a National Clinical Trials Network trial. Ann. Oncol. 2022, 33, S1432–S1433. [Google Scholar] [CrossRef]
- McFarlane, J.J.; Kochenderfer, M.D.; Olsen, M.R.; Bauer, T.M.; Molina, A.; Hauke, R.J.; Reeves, J.A.; Babu, S.; Veldhuizen, P.V.; Somer, B.; et al. Safety and Efficacy of Nivolumab in Patients with Advanced Clear Cell Renal Cell Carcinoma: Results From the Phase IIIb/IV CheckMate 374 Study. Clin. Genitourin Cancer 2020, 18, 469–476.e4. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef]
- Bellmunt, J.; De Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef]
- Rijnders, M.; de Wit, R.; Boormans, J.L.; Lolkema, M.P.; van der Veldt, A.A. Systematic Review of Immune Checkpoint Inhibition in Urological Cancers. Eur. Urol. 2017, 72, 411–423. [Google Scholar] [CrossRef]
- Takemura, K.; Lemelin, A.; Ernst, M.S.; Wells, C.; Basappa, N.S.; Szabados, B.; Powles, T.; Davis, I.D.; Wood, L.; Kapoor, A.; et al. Outcomes of patients with brain metastases from renal cell carcinoma treated with first-line therapies: Results from the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC). J. Clin. Oncol. 2023, 41, 600. [Google Scholar] [CrossRef]
- Haas, N.B.; Manola, J.; Dutcher, J.P.; Flaherty, K.T.; Uzzo, R.G.; Atkins, M.B.; DiPaola, R.S.; Choueiri, T.K. Adjuvant Treatment for High-Risk Clear Cell Renal Cancer: Updated Results of a High-Risk Subset of the ASSURE Randomized Trial. JAMA Oncol. 2017, 3, 1249–1252. [Google Scholar] [CrossRef]
- Bedke, J.; Albiges, L.; Capitanio, U.; Giles, R.H.; Hora, M.; Ljungberg, B.; Marconi, L.; Klatte, T.; Volpe, A.; Abu-Ghanem, Y.; et al. Renal Cell Carcinoma. European Association of Urology Guidelines 2023; European Association of Urology: Arnhem, The Netherlands, 2023; p. 100. [Google Scholar]
- Powles, T.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Symeonides, S.N.; Hajek, J.; Gurney, H.; Chang, Y.H.; Lee, J.L.; et al. Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for clear cell renal cell carcinoma (KEYNOTE-564): 30-month follow-up analysis of a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022, 23, 1133–1144. [Google Scholar] [CrossRef]
- Pal, S.K.; Uzzo, R.; Karam, J.A.; Master, V.; Donskov, F.; Suarez, C.; Albiges, L.; Rini, B.; Tomita, Y.; Kann, A.G.; et al. Adjuvant atezolizumab versus placebo for patients with renal cell carcinoma at increased risk of recurrence following resection (IMmotion010): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2022, 400, 1103–1116. [Google Scholar] [CrossRef] [PubMed]
- Cochin, V.; Gross-Goupil, M.; Ravaud, A.; Godbert, Y.; Le Moulec, S. Cabozantinib: Modalités d’action, efficacité et indications. Bull. Cancer 2017, 104, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021, 6, 201. [Google Scholar] [CrossRef] [PubMed]
- Hojjat-Farsangi, M. Small-Molecule Inhibitors of the Receptor Tyrosine Kinases: Promising Tools for Targeted Cancer Therapies. Int. J. Mol. Sci. 2014, 15, 13768–13801. [Google Scholar] [CrossRef]
- D’angelo, A.; Bagby, S.; Di Pierro, G.; Chirra, M.; Nobili, S.; Mini, E.; Villari, D.; Roviello, G. An overview of the clinical use of cabozantinib in the treatment of advanced non-clear-cell renal cell carcinoma (NCCRCC). Crit. Rev. Oncol. 2020, 149, 102921. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.H. Anticancer Hybrids. In Design of Hybrid Molecules for Drug Development; Elsevier: Amsterdam, The Netherlands, 2017; pp. 193–218. [Google Scholar]
- Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer 2018, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Eng, C. RET Proto-Oncogene in the Development of Human Cancer. J. Clin. Oncol. 1999, 17, 380. [Google Scholar] [CrossRef]
- Wells, S.A.; Santoro, M. Targeting the RET Pathway in Thyroid Cancer. Clin. Cancer Res. 2009, 15, 7119–7123. [Google Scholar] [CrossRef]
- Santoro, M.; Carlomagno, F. Central Role of RET in Thyroid Cancer. Cold Spring Harb. Perspect. Biol. 2013, 5, a009233. [Google Scholar] [CrossRef]
- Zhu, C.; Wei, Y.; Wei, X. AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Mol. Cancer 2019, 18, 153. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Huang, Y.-H.; Lin, S.-M.; Hsu, C. AXL and MET in Hepatocellular Carcinoma: A Systematic Literature Review. Liver Cancer 2022, 11, 94–112. [Google Scholar] [CrossRef]
- Linger, R.M.; Keating, A.K.; Earp, H.S.; Graham, D.K. Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors. Expert Opin. Ther. Targets 2010, 14, 1073–1090. [Google Scholar] [CrossRef]
- Ciccarese, C.; Iacovelli, R.; Mosillo, C.; Tortora, G. Exceptional Response to Cabozantinib of Rapidly Evolving Brain Metastases of Renal Cell Carcinoma: A Case Report and Review of the Literature. Clin. Genitourin. Cancer 2018, 16, e1069–e1071. [Google Scholar] [CrossRef]
- Hirsch, L.; Chanza, N.M.; Farah, S.; Xie, W.; Flippot, R.; Braun, D.A.; Rathi, N.; Thouvenin, J.; Collier, K.A.; Seront, E.; et al. Clinical Activity and Safety of Cabozantinib for Brain Metastases in Patients with Renal Cell Carcinoma. JAMA Oncol. 2021, 7, 1815–1823. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Halabi, S.; Sanford, B.L.; Hahn, O.; Michaelson, M.D.; Walsh, M.K.; Feldman, D.R.; Olencki, T.; Picus, J.; Small, E.J.; et al. Cabozantinib Versus Sunitinib As Initial Targeted Therapy for Patients With Metastatic Renal Cell Carcinoma of Poor or Intermediate Risk: The Alliance A031203 CABOSUN Trial. J. Clin. Oncol. 2017, 35, 591–597. [Google Scholar] [CrossRef]
- Ceolin, L.; Siqueira, D.R.; Romitti, M.; Ferreira, C.V.; Maia, A.L. Molecular Basis of Medullary Thyroid Carcinoma: The Role of RET Polymorphisms. Int. J. Mol. Sci. 2012, 13, 221–239. [Google Scholar] [CrossRef]
- Motzer, R.J.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Shah, A.Y.; Suárez, C.; Hamzaj, A.; Porta, C.; Hocking, C.M.; et al. Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): Long-term follow-up results from an open-label, randomised, phase 3 trial. Lancet Oncol. 2022, 23, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Chamie, K.; Donin, N.M.; Klöpfer, P.; Bevan, P.; Fall, B.; Wilhelm, O.; Störkel, S.; Said, J.; Gambla, M.; Hawkins, R.E.; et al. Adjuvant weekly girentuximab following nephrectomy for high-risk renal cell carcinoma: The ARISER randomized clinical trial. JAMA Oncol. 2017, 3, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.T.; Matin, S.F.; Tam, A.L.; Sheth, R.A.; Ahrar, K.; Tidwell, R.S.; Rao, P.; Karam, J.A.; Wood, C.G.; Tannir, N.M.; et al. Pilot study of Tremelimumab with and without cryoablation in patients with metastatic renal cell carcinoma. Nat. Commun. 2021, 12, 6375. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Plimack, E.; Arkenau, H.-T.; Jonasch, E.; Heng, D.Y.C.; Powles, T.; Frigault, M.M.; Clark, E.A.; Handzel, A.A.; Gardner, H.; et al. Biomarker-Based Phase II Trial of Savolitinib in Patients with Advanced Papillary Renal Cell Cancer. J. Clin. Oncol. 2017, 35, 2993–3001. [Google Scholar] [CrossRef]
- Pal, S.K.; Tangen, C.; Thompson, I.M.; Balzer-Haas, N.; George, D.J.; Heng, D.Y.C.; Shuch, B.; Stein, M.; Tretiakova, M.; Humphrey, P.; et al. A comparison of sunitinib with cabozantinib, crizotinib, and savolitinib for treatment of advanced papillary renal cell carcinoma: A randomised, open-label, phase 2 trial. Lancet 2021, 397, 695–703. [Google Scholar] [CrossRef]
- Vogelzang, N.J.; Olsen, M.R.; McFarlane, J.J.; Arrowsmith, E.; Bauer, T.M.; Jain, R.K.; Somer, B.; Lam, E.T.; Kochenderfer, M.D.; Molina, A.; et al. Safety and Efficacy of Nivolumab in Patients with Advanced Non-Clear Cell Renal Cell Carcinoma: Results From the Phase IIIb/IV CheckMate 374 Study. Clin. Genitourin. Cancer 2020, 18, 461–468.e3. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Pello, S.; Hofmann, F.; Tahbaz, R.; Marconi, L.; Lam, T.B.; Albiges, L.; Bensalah, K.; Canfield, S.E.; Dabestani, S.; Giles, R.H.; et al. A Systematic Review and Meta-analysis Comparing the Effectiveness and Adverse Effects of Different Systemic Treatments for Non-clear Cell Renal Cell Carcinoma. Eur. Urol. 2017, 71, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Kusuda, Y.; Miyake, H.; Terakawa, T.; Furukawa, J.; Muramaki, M.; Fujisawa, M. Treatment of brain metastases from renal cell carcinoma with sunitinib and radiotherapy: Our experience and review of the literature. Int. J. Urol. 2011, 18, 326–329. [Google Scholar] [CrossRef]
- Cheung, P.; Patel, S.; North, S.A.; Sahgal, A.; Chu, W.; Soliman, H.; Ahmad, B.; Winquist, E.; Niazi, T.; Patenaude, F.; et al. Stereotactic Radiotherapy for Oligoprogression in Metastatic Renal Cell Cancer Patients Receiving Tyrosine Kinase Inhibitor Therapy: A Phase 2 Prospective Multicenter Study. Eur. Urol. 2021, 80, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Franzese, C.; Marvaso, G.; Francolini, G.; Borghetti, P.; Trodella, L.E.; Sepulcri, M.; Matrone, F.; Nicosia, L.; Timon, G.; Ognibene, L.; et al. The role of stereotactic body radiation therapy and its integration with systemic therapies in metastatic kidney cancer: A multicenter study on behalf of the AIRO (Italian Association of Radiotherapy and Clinical Oncology) genitourinary study group. Clin. Exp. Metastasis 2021, 38, 527–537. [Google Scholar] [CrossRef]
- Ali, M.; Mooi, J.; Lawrentschuk, N.; McKay, R.R.; Hannan, R.; Lo, S.S.; Hall, W.A.; Siva, S. The Role of Stereotactic Ablative Body Radiotherapy in Renal Cell Carcinoma. Eur. Urol. 2022, 82, 613–622. [Google Scholar] [CrossRef]
- McKay, R.R.; McGregor, B.A.; Xie, W.; Braun, D.A.; Wei, X.; Kyriakopoulos, C.E.; Zakharia, Y.; Maughan, B.L.; Rose, T.L.; Stadler, W.M.; et al. Optimized Management of Nivolumab and Ipilimumab in Advanced Renal Cell Carcinoma: A Response-Based Phase II Study (OMNIVORE). J. Clin. Oncol. 2020, 38, 4240–4248. [Google Scholar] [CrossRef]
- Atkins, M.B.; Jegede, O.; Haas, N.B.; McDermott, D.F.; Bilen, M.A.; Drake, C.G.; Sosman, J.A.; Alter, R.S.; Plimack, E.R.; Rini, B.I.; et al. Phase II study of nivolumab and salvage nivolumab + ipilimumab in treatment-naïve patients (pts) with advanced renal cell carcinoma (RCC) (HCRN GU16-260). J. Clin. Oncol. 2020, 38, 5006. [Google Scholar] [CrossRef]
- Pal, S.; Tsao, C.-K.; Suarez, C.; Kelly, W.; Pagliaro, L.; Vaishampayan, U.; Loriot, Y.; Srinivas, S.; McGregor, B.; Panneerselvam, A.; et al. 702O Cabozantinib (C) in combination with atezolizumab (A) as first-line therapy for advanced clear cell renal cell carcinoma (ccRCC): Results from the COSMIC-021 study. Ann. Oncol. 2020, 31, S554. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef]
- Motzer, R.J.; Russo, P.; Grünwald, V.; Tomita, Y.; Zurawski, B.; Parikh, O.; Buti, S.; Barthélémy, P.; Goh, J.C.; Ye, D.; et al. Adjuvant nivolumab plus ipilimumab versus placebo for localised renal cell carcinoma after nephrectomy (CheckMate 914): A double-blind, randomised, phase 3 trial. Lancet 2023, 401, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Bedke, J.; Albiges, L.; Capitanio, U.; Giles, R.H.; Hora, M.; Lam, T.B.; Ljungberg, B.; Marconi, L.; Klatte, T.; Volpe, A.; et al. 2021 Updated European Association of Urology Guidelines on the Use of Adjuvant Pembrolizumab for Renal Cell Carcinoma. Eur. Urol. 2022, 81, 134–137. [Google Scholar] [CrossRef]
- Motzer, R.; Alekseev, B.; Rha, S.-Y.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Kopyltsov, E.; Méndez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. New Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Alekseev, B.; Rha, S.Y.; Kopyltsov, E.; Méndez Vidal, M.J.; et al. Phase 3 trial of lenvatinib (LEN) plus pembrolizumab (PEMBRO) or everolimus (EVE) versus sunitinib (SUN) monotherapy as a first-line treatment for patients (pts) with advanced renal cell carcinoma (RCC) (CLEAR study). Clin. Oncol. 2021, 39, 269. [Google Scholar] [CrossRef]
- Hutson, T.E. Targeted Therapy for Renal Cell Carcinoma: A New Treatment Paradigm. Bayl. Univ. Med. Cent. Proc. 2007, 20, 244–248. [Google Scholar] [CrossRef]
- Powles, T.; Plimack, E.R.; Soulières, D.; Waddell, T.; Stus, V.; Gafanov, R.; Nosov, D.; Pouliot, F.; Melichar, B.; Vynnychenko, I.; et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): Extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020, 21, 1563–1573. [Google Scholar] [CrossRef]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef]
- Emberley, E.; Pan, A.; Chen, J.; Dang, R.; Gross, M.; Huang, T.; Li, W.; MacKinnon, A.; Singh, D.; Sotirovska, N.; et al. The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma. PLoS ONE 2021, 16, e0259241. [Google Scholar] [CrossRef]
- Tannir, N.M.; Agarwal, N.; Porta, C.; Lawrence, N.J.; Motzer, R.; McGregor, B.; Lee, R.J.; Jain, R.K.; Davis, N.; Appleman, L.J.; et al. Efficacy and Safety of Telaglenastat Plus Cabozantinib vs Placebo Plus Cabozantinib in Patients with Advanced Renal Cell Carcinoma: The CANTATA Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1411–1418. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Tannir, N.M.; Iliopoulos, O.; Lee, R.J.; Telli, M.L.; Fan, A.C.; DeMichele, A.; Haas, N.B.; Patel, M.R.; Harding, J.J.; et al. Telaglenastat Plus Cabozantinib or Everolimus for Advanced or Metastatic Renal Cell Carcinoma: An Open-Label Phase I Trial. Clin. Cancer Res. 2022, 28, 1540–1548. [Google Scholar] [CrossRef]
- Lee, C.-H.; Motzer, R.; Emamekhoo, H.; Matrana, M.; Percent, I.; Hsieh, J.J.; Hussain, A.; Vaishampayan, U.; Liu, S.; McCune, S.; et al. Telaglenastat plus Everolimus in Advanced Renal Cell Carcinoma: A Randomized, Double-Blinded, Placebo-Controlled, Phase II ENTRATA Trial. Clin. Cancer Res. 2022, 28, 3248–3255. [Google Scholar] [CrossRef] [PubMed]
- Hasanov, E.; Jonasch, E. MK-6482 as a potential treatment for von Hippel-Lindau disease-associated clear cell renal cell carcinoma. Expert Opin. Investig. Drugs 2021, 30, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Deeks, E.D. Belzutifan: First Approval. Drugs 2021, 81, 1921–1927. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; McGregor, B.; Suárez, C.; Tsao, C.-K.; Kelly, W.; Vaishampayan, U.; Pagliaro, L.; Maughan, B.L.; Loriot, Y.; Castellano, D.; et al. Cabozantinib in Combination with Atezolizumab for Advanced Renal Cell Carcinoma: Results From the COSMIC-021 Study. J. Clin. Oncol. 2021, 39, 3725–3736. [Google Scholar] [CrossRef] [PubMed]
- Albiges, L.; Gurney, H.; Atduev, V.; Suarez, C.; Climent, M.; Pook, D.; Tomczak, P.; Barthelemy, P.; Lee, J.L.; Stus, V.; et al. Pembrolizumab plus lenvatinib as first-line therapy for advanced non-clear-cell renal cell carcinoma (KEYNOTE-B61): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2023, 24, 881–891. [Google Scholar] [CrossRef]
- Garcia, D. OncoZine—The International Oncology Network. 2022. Available online: https://www.oncozine.com/stellar-304-phase-3-trial-evaluating-zanzalintinib-in-advanced-non-clear-cell-kidney-cancer-starts/ (accessed on 25 July 2023).
- Exelixis. Good Clinical Practice Network. 2023. Available online: https://ichgcp.net/clinical-trials-registry/NCT05678673 (accessed on 20 July 2023).
- López, R.A.M.; Belenchon, I.R.; Mazuecos-Quirós, J.; Congregado-Ruíz, C.B.; Couñago, F. Update on the treatment of metastatic renal cell carcinoma. World J. Clin. Oncol. 2022, 13, 1–8. [Google Scholar] [CrossRef]
- Dizman, N.; Philip, E.J.; Pal, S.K. Genomic profiling in renal cell carcinoma. Nat. Rev. Nephrol. 2020, 16, 435–451. [Google Scholar] [CrossRef]
- Peyraud, F.; Larroquette, M.; Ravaud, A.; Gross-Goupil, M. New Insights into Adjuvant Therapy in Renal Cell Carcinoma: Is the Chapter of VEGF Inhibitors Definitely Closed? Eur. Urol. 2021, 80, 269–274. [Google Scholar] [CrossRef]
- Zengin, Z.; Weipert, C.; Hsu, J.; Salgia, N.; Saam, J.; Choueiri, T.; Agarwal, N.; Pal, S. 701O Assessment of circulating cell-free tumor DNA (ctDNA) in 847 patients (pts) with metastatic renal cell carcinoma (mRCC) and concordance with tissue-based testing. Ann. Oncol. 2020, 31, S553–S554. [Google Scholar] [CrossRef]
- Zengin, Z.B.; Weipert, C.; Salgia, N.J.; Dizman, N.; Hsu, J.; Meza, L.; Chehrazi-Raffle, A.; Muddasani, R.; Salgia, S.; Malhotra, J.; et al. Complementary Role of Circulating Tumor DNA Assessment and Tissue Genomic Profiling in Metastatic Renal Cell Carcinoma. Clin. Cancer Res. 2021, 27, 4807–4813. [Google Scholar] [CrossRef]
- Tang, C.; Msaouel, P.; Hara, K.; Choi, H.; Le, V.; Shah, A.Y.; Wang, J.; Jonasch, E.; Choi, S.; Nguyen, Q.N.; et al. Definitive radiotherapy in lieu of systemic therapy for oligometastatic renal cell carcinoma: A single-arm, single-centre, feasibility, phase 2 trial. Lancet Oncol. 2021, 22, 1732–1739. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Zhao, Z.; Arooj, S.; Liao, G. Impact of Tyrosine Kinase Inhibitors (TKIs) Combined With Radiation Therapy for the Management of Brain Metastases From Renal Cell Carcinoma. Front. Oncol. 2020, 10, 1246. [Google Scholar] [CrossRef] [PubMed]
- Cannady, S.B.; Cavanaugh, K.; Lee, S.-Y.; Bukowski, R.M.; Olencki, T.; Stevens, G.H.; Barnett, G.H.; Suh, J.H. Results of whole brain radiotherapy and recursive partitioning analysis in patients with brain metastases from renal cell carcinoma: A retrospective study. Int. J. Radiat. Oncol. 2004, 58, 253–258. [Google Scholar] [CrossRef]
- Hara, W.; Tran, P.; Li, G.; Su, Z.; Puataweepong, P.; Adler, J.R.; Soltys, S.G.; Chang, S.D.; Gibbs, I.C. CYBERKNIFE FOR BRAIN METASTASES OF MALIGNANT MELANOMA AND RENAL CELL CARCINOMA. Neurosurgery 2009, 64, A26–A32. [Google Scholar] [CrossRef]
- Chang, E.L.; Selek, U.; Hassenbusch III, S.J.; Maor, M.H.; Allen, P.K.; Mahajan, A.; Sawaya, R.; Woo, S.Y. Outcome variation among "radioresistant" brain metastases treated with stereotactic radiosurgery. Neurosurgery 2005, 56, 936–945. [Google Scholar] [PubMed]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D.; et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients with Brain Metastases: Phase III Trial NRG Oncology CC001. J. Clin. Oncol. 2020, 38, 1019–1029. [Google Scholar] [CrossRef]
- Fokas, E.; Henzel, M.; Hamm, K.; Surber, G.; Kleinert, G.; Engenhart-Cabillic, R. Radiotherapy for Brain Metastases from Renal Cell Cancer: Should Whole-Brain Radiotherapy Be Added to Stereotactic Radiosurgery? Strahlenther. Onkol. 2010, 186, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.; Black, J.R.; Reading, J.L.; Litchfield, K.; Turajlic, S.; McGranahan, N.; Jamal-Hanjani, M.; Swanton, C. Tracking Cancer Evolution through the Disease Course. Cancer Discov. 2021, 11, 916–932. [Google Scholar] [CrossRef]
- Chitti, B.; Goyal, S.; Sherman, J.H.; Caputy, A.; Sarfaraz, M.; Cifter, G.; Aghdam, H.; Rao, Y.J. The role of brachytherapy in the management of brain metastases: A systematic review. J. Contemp. Brachytherapy 2020, 12, 67–83. [Google Scholar] [CrossRef]
- Petrelli, F.; Coinu, A.; Vavassori, I.; Cabiddu, M.; Borgonovo, K.; Ghilardi, M.; Lonati, V.; Barni, S. Cytoreductive Nephrectomy in Metastatic Renal Cell Carcinoma Treated with Targeted Therapies: A Systematic Review with a Meta-Analysis. Clin. Genitourin. Cancer 2016, 14, 465–472. [Google Scholar] [CrossRef]
- Mathieu, R.; Pignot, G.; Ingles, A.; Crepel, M.; Bigot, P.; Bernhard, J.C.; Joly, F.; Guy, L.; Ravaud, A.; Azzouzi, A.R.; et al. Nephrectomy improves overall survival in patients with metastatic renal cell carcinoma in cases of favorable MSKCC or ECOG prognostic features. Urol Oncol. 2015, 33, 339.e9–339.e15. [Google Scholar] [CrossRef]
- Song, Y.; Du, C.-X.; Zhang, W.; Sun, Y.-K.; Yang, L.; Cui, C.-X.; Chi, Y.-B.; Shou, J.-Z.; Zhou, A.-P.; Li, C.-L.; et al. Impact of Cytoreductive Nephrectomy on Survival in Patients with Metastatic Renal Cell Carcinoma Treated by Targeted Therapy. Chin. Med. J. 2016, 129, 530–535. [Google Scholar] [CrossRef] [PubMed]
- You, D.; Jeong, I.G.; Song, C.; Lee, J.-L.; Hong, B.; Hong, J.H.; Ahn, H.; Kim, C.-S. Analysis of pre-operative variables for identifying patients who might benefit from upfront cytoreductive nephrectomy for metastatic renal cell carcinoma in the targeted therapy era. Jpn. J. Clin. Oncol. 2015, 45, 96–102. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, R.; Wimalasingham, A.; Szabados, B.; Stewart, G.D.; Welsh, S.J.; Kuusk, T.; Blank, C.; Haanen, J.; Klatte, T.; Staehler, M.; et al. Deferred Cytoreductive Nephrectomy Following Presurgical Vascular Endothelial Growth Factor Receptor–targeted Therapy in Patients with Primary Metastatic Clear Cell Renal Cell Carcinoma: A Pooled Analysis of Prospective Trial Data. Eur. Urol. Oncol. 2020, 3, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Méjean, A.; Ravaud, A.; Thezenas, S.; Colas, S.; Beauval, J.-B.; Bensalah, K.; Geoffrois, L.; Thiery-Vuillemin, A.; Cormier, L.; Lang, H.; et al. Sunitinib Alone or after Nephrectomy in Metastatic Renal-Cell Carcinoma. New Engl. J. Med. 2018, 379, 417–427. [Google Scholar] [CrossRef]
- Bex, A.; Mulders, P.; Jewett, M.; Wagstaff, J.; Van Thienen, J.V.; Blank, C.U.; Van Velthoven, R.; Del Pilar Laguna, M.; Wood, L.; Van Melick, H.H.E.; et al. Comparison of Immediate vs Deferred Cytoreductive Nephrectomy in Patients With Synchronous Metastatic Renal Cell Carcinoma Receiving Sunitinib: The SURTIME Randomized Clinical Trial. JAMA Oncol. 2019, 5, 164–170. [Google Scholar] [CrossRef]
- Stellato, M.; Santini, D.; Verzoni, E.; De Giorgi, U.; Pantano, F.; Casadei, C.; Fornarini, G.; Maruzzo, M.; Sbrana, A.; Di Lorenzo, G.; et al. Impact of Previous Nephrectomy on Clinical Outcome of Metastatic Renal Carcinoma Treated with Immune-Oncology: A Real-World Study on Behalf of Meet-URO Group (MeetUro-7b). Front. Oncol. 2021, 11, 682449. [Google Scholar] [CrossRef]
- Van Praet, C.; Slots, C.; Vasdev, N.; Rottey, S.; Fonteyne, V.; Andras, I.; Albersen, M.; De Meerleer, G.; Bex, A.; Decaestecker, K. Current role of cytoreductive nephrectomy in metastatic renal cell carcinoma. Turk. J. Urol. 2021, 47, S79–S84. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Kaelin, W.G., Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat. Med. 2020, 26, 1519–1530. [Google Scholar] [CrossRef]
- Labadie, B.W.; Liu, P.; Bao, R.; Crist, M.; Fernandes, R.; Ferreira, L.; Graupner, S.; Poklepovic, A.S.; Duran, I.; Maleki Vareki, S.; et al. BMI, irAE, and gene expression signatures associate with resistance to immune-checkpoint inhibition and outcomes in renal cell carcinoma. J. Transl. Med. 2019, 17, 386. [Google Scholar] [CrossRef]
- Tran, T.T.; Jilaveanu, L.B.; Omuro, A.; Chiang, V.L.; Huttner, A.; Kluger, H.M. Complications associated with immunotherapy for brain metastases. Curr. Opin. Neurol. 2019, 32, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Atkins, M.B. Overview of the Treatment of Renal Cell Carcinoma. UpToDate. 2023. Available online: https://www.uptodate.com/contents/overview-of-the-treatment-of-renal-cell-carcinoma (accessed on 19 June 2023).
- Bracarda, S.; Galli, L.; Maruzzo, M.; Re, G.L.; Buti, S.; Favaretto, A.; Di Costanzo, F.; Sacco, C.; Merlano, M.; Mucciarini, C.; et al. Negative prognostic factors and resulting clinical outcome in patients with metastatic renal cell carcinoma included in the Italian nivolumab-expanded access program. Future Oncol. 2018, 14, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Haugh, A.M.; Probasco, J.C.; Johnson, D.B. Neurologic complications of immune checkpoint inhibitors. Expert Opin. Drug Saf. 2020, 19, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.B.; Oudard, S. Antiangiogenic therapy for advanced renal cell carcinoma: Management of treatment-related toxicities. Investig. New Drugs 2012, 30, 2066–2079. [Google Scholar] [CrossRef]
- McGregor, B.; Mortazavi, A.; Cordes, L.; Salabao, C.; Vandlik, S.; Apolo, A.B. Management of adverse events associated with cabozantinib plus nivolumab in renal cell carcinoma: A review. Cancer Treat. Rev. 2022, 103, 102333. [Google Scholar] [CrossRef]
- Cheng, Q.-W.; Shen, H.-L.; Dong, Z.-H.; Zhang, Q.-Q.; Wang, Y.-F.; Yan, J.; Wang, Y.-S.; Zhang, N.-G. Pneumocystis jirovecii diagnosed by next-generation sequencing of bronchoscopic alveolar lavage fluid: A case report and review of literature. World J. Clin. Cases 2023, 11, 866–873. [Google Scholar] [CrossRef]
Classification and Category | Agent Name | Mechanism of Action | Central Nervous System Penetration |
---|---|---|---|
| Nivolumab, Pembrolizumab [40]; Atezolizumab [40]; Avelumab [53] Durvalumab [77], Ipilimumab [53] | Anti-programmed cell death ligand 1 (PD-L1) [40,53] Anti-cytotoxic T lymphocye-associated antigen 4 (CTLA-4) [53]; Blocking the binding of PD-L1 to PD-1 and cluster of differentiation 80 [77]; Anti-cytotoxic T lymphocye-associated antigen 4 (CTLA-4) [40,53] | It is still not clear whether this category of systemic agents can travel across the BBB; however, animal studies show moderate penetrance, while many clinical studies have demonstrated intracranial response [67,78,79]. |
| Sunitinib, Cabozantinib, Axitinib, and Lenvatinib [53]; Sorafenib [81]; Erlotinib, Bevacizumab [40] | Inhibition of tyrosine kinase activity or tumor anti-angiogenesis [80] | This category of systemic agents has a lower molecular weight and good BBB permeability [34,35,82,83,84,85,86,87]. |
| Everolimus [53,88], Temsirolimus [40] | Stimulates the degradation of cycline D1 and is involved in the phospho-p70 S6 kinase downregulation [89,90] | mTOR inhibitors are lipophilic agents with good BBB penetration in animal models and anti-tumor activity in real-life patients [75,91,92,93]. |
| 5-fluorouracil [95]; Anthracyclines, Gemcitabine, Cisplatin, Carboplatin ☨, and Paclitaxel [40] | Inhibits thymidylate synthase and/or the replication of the DNA [95,96,97]; induction of carboplatin-DNA adducts; anti-depolymerization of microtubules; and cell cycle arrest at the G2/M phase [98] | Due to BBB disruption in BM, the penetrance of chemotherapy is not limited, but the administration should be based on the chemosensitivity of the primary tumor [99]. |
Pathology | Proposed Systemic Therapy |
---|---|
Clear-cell RCC◆ | AMERICAN SOCIETY OF CLINICAL ONCOLOGY (ASCO) GUIDELINES [52] FIRTS LINE: Combinations of ICIs (i.e., Ipilimumab, Nivolumab) or ICI + VEGFR TKI; VEGFR monotherapy or ICI monotherapy in selected patients (e.g., co-existing medical problems); SECOND OR LATER LINE Nivolumab or Cabozantinib ✢ VEGFR TKI (for progression on combination of ICI (e.g., Nivolumab, Ipilimumab), and for patients who progress on ICI + VEGFR TKI. EUROPEAN SOCIETY OF MEDICAL ONCOLOGY (ESMO) GUIDELINES [102] FIRST LINE PD-1 inhibitor therapy + VEGFR-targeted therapy; PD-1 inhibitor + CTLA-4 inhibition (e.g., Lenvatinib–Pembrolizumab, Axitinib–Pembrolizumab, Cabozantinib–Nivolumab, Ipilimumab–Nivolumab; If immunotherapy is contraindicated/not available: Pazopanib, Sunitinib, Tivozanib; Cabozantinib—in patients who cannot receive first-line PD-1 inhibitor-based therapy; SECOND LINE A VEGFR systemic agent that has not been previously given (Axitinib, Cabozantinib, Pazopanib, Sunitinib) or Lenvatinib–Everolimus. EUROPEAN ASSOCIATION OF UROLOGY (EAU) GUIDELINES [103] FIRST LINE ICIs targeting PD-1, complemented by a TKI, or a second ICI directed against CTLA-4 (Nivolumab–Cabozantinib, Pembrolizumab–Axitinib, Pembrolizumab–Lenvatinib, Nivolumab–Ipilimumab) For patients who cannot receive ICI: Pazopanib, Cabozantinib, Sunitinib; SECOND OR LATER LINE In patients with prior immunotherapy: Anti-VEGF that has not been previously administered + Immunotherapy; In patients with prior TKI: Nivolumab, Cabozantinib. Alternative: Axitinib. |
Papillary RCC | ESMO GUIDELINES [102] FIRST LINE Cabozantinib Alternative: Sunitinib, Pembrolizumab, Savolitinib in MET-altered tumors; SECOND LINE A systemic agent that has not been given previously to the aforementioned agents. EAU GUIDELINES [103] Cabozantinib; OTHER STUDIES MET-inhibitor-based approach for MET-driven papillary tumors (Crizotinib, Foretinib, Savolitinib) *, Pazopanib **, Axitinib ** [27,40,104,105]. |
Chromophobe RCC | EAU GUIDELINES [103] Sunitinib (based on results from the phase II ASPEN clinical trial) [106]; OTHER STUDIES Everolimus [106,107], Sunitinib [108], Levantinib–Everolimus [109,110], Bevacizumab–Everolimus [111], Nivolumab–Cabozantinib *** [77], Bevacizumab–Atezolizumab *** [112]. |
Collecting duct and renal medullary carcinoma | OTHER STUDIES Cytotoxic chemotherapy is suggested as first approach (Cisplatin–Gemcitabine, Carboplatin–Gemcitabine, Carboplatin–Paclitaxel) [113,114,115,116,117]; Anthracyclines ****, Bortezomib ****, Sunitinib **** [118,119,120,121]. |
Trans-locational RCC | OTHER STUDIES Sunitinib, Nivolumab, Cytokine therapy (interferon-α or interleukin-2) [122,123]; Atezolizumab, Ipilimumab [124]. |
Unclassified RCC | EAU GUIDELINES [103] Sunitinib (based on results from the phase II ASPEN clinical trial) [106]; OTHER STUDIES Nivolumab–Ipilimumab [125,126,127]; Pembrolizumab [128]; Sunitinib monotherapy [106,129]; Cabozantinib monotherapy [130]; Levantinib–Everolimus [131]; Bevacizumab + Everolimus [132]. |
Sarcomatoid RCC | ASCO GUIDELINES [52] FIRST LINE Combination of ICIs, or alternatively ICI + VEGFR TKI ESMO GUIDELINES [102] FIRST LINE ICI |
Systemic Adverse Events | Types of Events | Systemic Agents Associated with irAEs |
---|---|---|
Dermatological reactions | Inflammatory skin reaction [126,128,229,230,231], Immunobullous disease, Vasculitis, Neutrophilic dermatoses, Hand–foot syndrome (HFS) [190,232] | Nivolumab–Ipilimumab [126,229], Bevacizumab + IFN-α [232], Sorafenib [232], Sunitinib [232], Pazopanib, Axitinib [232], Sunitinib [190], Sorafenib [190], Temsirolimus [190], Combination of ICIs [231], Pembrolizumab [128], Nivolumab [230] |
Gastrointestinal | Constipation, Diarrhea [59,94,126,128,153,190,199,229,230,232,233], Mucositis [232,233], Colitis [59,94,126,128,153,229,233], Hepatotoxicity [94,126,229,230], Emesis [59,126,232,233], Anorexia [232], Dysgeusia [199,232,233] | Nivolumab–Ipilimumab [126,229], Nivolumab [230], Bevacizumab + IFN-α [232], Sorafenib [232], Sunitinib [232], Pazopanib, Axitinib [232], Sunitinib [190], Cabozantinib–Nivolumab [233], Cabozantinib–Atezolizumab [199], Pembrolizumab [128,153], Combination of ICIs [59,94,231] |
Respiratory | Dyspnea, Pneumonitis (may be delayed) [59,94,126,128,153,230,233], Cough [128,231] | Nivolumab–Ipilimumab [126], Nivolumab [230], Cabozantinib–Nivolumab [233], Pembrolizumab [128,153], Combination of ICIs [59,94,231] |
Endocrinopathies and Metabolic disturbances | Hashimoto disease [59,126,153], Graves’ disease, Hypothyroidism [94,126,128,153,199,230,231,232,233], Hyperthyroidism [94,126,153,233], Hypophysitis [59,94,126,153,229,233], Adrenal insufficiency [94,126,128,153,233], Hyperlipidemia, Hypophosphatemia [232], Type 1 diabetes mellitus [94,128,153], Increased serum glucose [230] | Nivolumab–Ipilimumab [126,229], Nivolumab [230], Bevacizumab + IFN-α [232], Sorafenib [232], Sunitinib [232], Pazopanib, Axitinib [232], Cabozantinib–Nivolumab [233], Cabozantinib–Atezolizumab [199], Pembrolizumab [128,153], Combination of ICIs [59,94,231] |
Opportunistic infections | Rare, unusual (e.g., Pneumocystis pneumonia) [94,234] | ICIs [94,234] |
Neurologic | Headache [59,94,128], Peripheral sensory neuropathy [94,231], Guillain–Barré syndrome [94,231], Cranial neuropathies [153,230,231], Myasthenia gravis [229], Encephalopathy [59,231], Aseptic meningitis [231], Enteric neuropathy, Transverse myelitis, Pancerebellitis, Autoimmune encephalitis; Insomnia, Myastenia Gravis [231], Ptosis [231] | Nivolumab [230], Nivolumab–Ipilimumab [229], Pembrolizumab [128,153], Combination of ICIs [59,94,231] |
Cardiovascular | Hypertension [190,200,230,231,232,233] Myocarditis [94], Myocardial infarction [153], Pericarditis [94], Heart failure [94], Arrhythmias [94,153], Vasculitis [94], Venous thromboembolism [94] | Nivolumab [230], Bevacizumab + IFN-α [232], Sorafenib [232], Sunitinib [232], Pazopanib, Axitinib [232], Sorafenib [190], Bevacizumab [190], Cabozantinib–Nivolumab [233], Pembrolizumab [153], Pembrolizumab–Lenvatinib [200], ICIs [94,231] |
Hematologic | Thrombocytopenia [94,153,190,232], Acquired red cell aplasia, Acquired hemophilia A [94], Autoimmune hemolytic anemia [94], Hemophagocytic syndrome [94], Neutropenia [94,128,153,190,232], Cryoglobulinemia [94] | Bevacizumab + IFN-α [232], Sorafenib [232], Sunitinib [232], Pazopanib, Axitinib [232], Sunitinib [190], Pembrolizumab [94,128,153], ICIs [94] |
Rheumatologic and musculoskeletal | Muscular weakness [126], Inflammatory arthritis, Sicca syndrome, Vasculitis [94], Arthralgia [128,153] | Nivolumab–Ipilimumab [126], Pembrolizumab [128,153], ICIs [94] |
Less frequent side effects | Eye: Episcleritis, Conjunctivitis, Uveitis, Orbital inflammation [94]; Kidney: Acute kidney injury [94,153], Proteinuria [199,200], Increased Serum creatinine [126,231,233]; Exocrine pancreas dysfunction [94], Tremor [229,230], Pyrexia [126,128,153], Fatigue [128,190] | Nivolumab–Ipilimumab [126,229], Nivolumab [230], Sunitinib [190], Sorafenib, Cabozantinib–Nivolumab [233], Cabozantinib–Atezolizumab [199], Pembrolizumab [128,153], Combination of ICIs [94,231], Pembrolizumab–Lenvatinib [200] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenescu, L.E.; Kamel, A.; Ciubotaru, V.; Baez-Rodriguez, S.M.; Furtos, M.; Costachi, A.; Dricu, A.; Tătăranu, L.G. An Overview of Systemic Targeted Therapy in Renal Cell Carcinoma, with a Focus on Metastatic Renal Cell Carcinoma and Brain Metastases. Curr. Issues Mol. Biol. 2023, 45, 7680-7704. https://doi.org/10.3390/cimb45090485
Semenescu LE, Kamel A, Ciubotaru V, Baez-Rodriguez SM, Furtos M, Costachi A, Dricu A, Tătăranu LG. An Overview of Systemic Targeted Therapy in Renal Cell Carcinoma, with a Focus on Metastatic Renal Cell Carcinoma and Brain Metastases. Current Issues in Molecular Biology. 2023; 45(9):7680-7704. https://doi.org/10.3390/cimb45090485
Chicago/Turabian StyleSemenescu, Liliana Eleonora, Amira Kamel, Vasile Ciubotaru, Silvia Mara Baez-Rodriguez, Mircea Furtos, Alexandra Costachi, Anica Dricu, and Ligia Gabriela Tătăranu. 2023. "An Overview of Systemic Targeted Therapy in Renal Cell Carcinoma, with a Focus on Metastatic Renal Cell Carcinoma and Brain Metastases" Current Issues in Molecular Biology 45, no. 9: 7680-7704. https://doi.org/10.3390/cimb45090485
APA StyleSemenescu, L. E., Kamel, A., Ciubotaru, V., Baez-Rodriguez, S. M., Furtos, M., Costachi, A., Dricu, A., & Tătăranu, L. G. (2023). An Overview of Systemic Targeted Therapy in Renal Cell Carcinoma, with a Focus on Metastatic Renal Cell Carcinoma and Brain Metastases. Current Issues in Molecular Biology, 45(9), 7680-7704. https://doi.org/10.3390/cimb45090485