The Role of Nicotinic Receptors on Ca2+ Signaling in Bovine Chromaffin Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methods and Materials
2.1.1. α3-nAchR, SNAP-25, and LifeAct DNA Constructs
2.1.2. Chromaffin Cell Culture and Electroporation
2.1.3. Confocal Microscopy Studies of Fluorescent Structures
2.1.4. Image Analysis
2.2. Geometrical Model
3. Results
3.1. Experimental Findings
3.1.1. Localization of α3β4 nAChRs Structures Close to Actin Cytoskeleton
3.1.2. Localization of α3β4 nAChRs in the Vicinity of Secretory Machinery
3.2. Modeling
3.2.1. Localization of Voltage-Dependent Calcium Channels (VDCCs) Modulate the Intensity and Distribution of Calcium Signals
3.2.2. Nicotinic Receptors Reinforce the Border Effect of the Cytoskeletal Cage on Calcium Concentrations
3.2.3. Secretion Is Improved Thanks to Local Ca2+ Signals
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García, A.G.; García-De-Diego, A.M.; Gandía, L.; Borges, R.; García-Sancho, J. Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol. Rev. 2006, 86, 1093–1131. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.T. Nicotinic Acetylcholine Receptors in Health and Disease; Academic Press: Cambridge, MA, USA, 2023; ISBN 9780128199589. [Google Scholar] [CrossRef]
- Sala, F.; Nistri, A.; Criado, M. Nicotinic acetylcholine receptors of adrenal chromaffin cells. Acta Physiol. 2008, 192, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.G.; Montiel, C.; Herrero, C.J.; Garcia-Palomero, E.; Mayorgas, I.; Hernandez-Guijo, J.M.; Villarroya, M.; Olivares, R.; Gandia, L.; McIntosh, J.M.; et al. Unmasking the functions of the chromaffin cell α7 nicotinic receptor by using short pulses of acetylcholine and selective blockers. Proc. Natl. Acad. Sci. USA 1998, 95, 14184–14189. [Google Scholar] [CrossRef]
- Jiménez-Pompa, A.; Sanz-Lázaro, S.; Omodolor, R.E.; Medina-Polo, J.; González-Enguita, C.; Blázquez, J.; McIntosh, J.M.; Albillos, A. Cross Talk between α7 and α3β4 Nicotinic Receptors Prevents Their Desensitization in Human Chromaffin Cells. J. Neurosci. 2022, 42, 1173–1183. [Google Scholar] [CrossRef]
- Arnáiz-Cot, J.J.; de Diego, A.M.; Hernández-Guijo, J.M.; Gandía, L.; García, A.G. A two-step model for acetylcholine control of exocytosis via nicotinic receptors. Biochem. Biophys. Res. Commun. 2008, 365, 413–419. [Google Scholar] [CrossRef]
- Neher, E. Neurosecretion: What can we learn from chromaffin cells. Pflug. Arch. 2018, 470, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Carbone, E.; Borges, R.; Eiden, L.E.; García, A.G.; Hernández-Cruz, A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr. Physiol. 2019, 9, 1443–1502. [Google Scholar] [CrossRef]
- García-de-Diego, A.M.; García-García, A. Altered exocytosis in chromaffin cells from mouse models of neurodegenerative diseases. Acta Physiol. 2018, 224, e13090. [Google Scholar] [CrossRef]
- Giner, D.; Ñeco, P.; Francés, M.M.; López, I.; Viniegra, S.; Gutiérrez, L.M. Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells. J. Cell Sci. 2005, 118, 2871–2880. [Google Scholar] [CrossRef]
- Torregrosa-Hetland, C.J.; Villanueva, J.; Giner, D.; Lopez-Font, I.; Nadal, A.; Quesada, I.; Viniegra, S.; Expósito-Romero, G.; Gil, A.; González-Vélez, V.; et al. The F-actin cortical network is a major factor influencing the organization of the secretory machinery in chromaffin cells. J. Cell Sci. 2011, 124, 727–734. [Google Scholar] [CrossRef]
- Villanueva, J.; Criado, M.; Giménez-Molina, Y.; González-Vélez, V.; Gil, A.; Gutiérrez, L.M. α3β4 Acetylcholine Nicotinic Receptors Are Components of the Secretory Machinery Clusters in Chromaffin Cells. Int. J. Mol. Sci. 2022, 23, 9101. [Google Scholar] [CrossRef]
- Campos-Caro, A.; Smillie, F.I.; Domínguez del Toro, E.; Rovira, J.C.; Vicente-Agulló, F.; Chapuli, J.; Juíz, J.M.; Sala, S.; Sala, F.; Ballesta, J.J.; et al. Neuronal nicotinic acetylcholine receptors on bovine chromaffin cells: Cloning expression and genomic organization of receptor subunits. J. Neurochem. 1997, 68, 488–497. [Google Scholar] [CrossRef]
- Bark, I.C.; Wilson, M.C. Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25. Gene 1994, 139, 291–292. [Google Scholar] [CrossRef]
- Almazan, G.; Aunis, D.; García, A.G.; Montiel, C.; Nicolás, G.P.; Sánchez-García, P. Effects of collagenase on the release of [3H]-noradrenaline from bovine cultured adrenal chromaffin cells. Br. J. Pharmacol. 1984, 81, 599–610. [Google Scholar] [CrossRef]
- Bolte, S.; Cordelières, F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224, 213–232. [Google Scholar] [CrossRef] [PubMed]
- Lopez, I.; Giner, D.; Ruiz-Nuno, A.; Fuentealba, J.; Viniegra, S.; Garcia, A.G.; Davletov, B.; Gutiérrez, L.M. Tight coupling of the t-SNARE and calcium channel microdomains in adrenomedullary slices and not in cultured chromaffin cells. Cell Calcium 2007, 41, 547–558. [Google Scholar] [CrossRef]
- Maneu, V.; Borges, R.; Gandía, L.; García, A.G. Forty years of the adrenal chromaffin cell through ISCCB meetings around the world. Pflug. Arch.-Eur. J. Physiol. 2023, 475, 667–690. [Google Scholar] [CrossRef] [PubMed]
- Marcantoni, A.; Carabelli, V.; Comunanza, V.; Hoddah, H.; Carbone, E. Calcium channels in chromaffin cells: Focus on L and T types. Acta Physiol. 2008, 192, 233–246. [Google Scholar] [CrossRef]
- Gil, A.; Segura, J.; Pertusa, J.A.G.; Soria, B. Monte Carlo simulation of 3-D buffered Ca2+ diffusion in neuroendocrine cells. Biophys. J. 2000, 78, 13–33. [Google Scholar] [CrossRef]
- Riedl, J.; Crevenna, A.H.; Kessenbrock, K.; Yu, J.H.; Neukirchen, D.; Bista, M.; Radke, F.; Jenne, D.; A Holak, T.; Werb, Z.; et al. Lifeact: A versatile marker to visualize F-actin. Nat. Methods 2008, 5, 605–607. [Google Scholar] [CrossRef] [PubMed]
- Jall, S.; De Angelis, M.; Lundsgaard, A.M.; Fritzen, A.M.; Nicolaisen, T.S.; Klein, A.B.; Novikoff, A.; Sachs, S.; Richter, E.A.; Kiens, B.; et al. Pharmacological targeting of alpha3beta4 nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity. Diabetologia 2020, 63, 1236–1247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Neher, E. Calcium permeability of nicotinic acetylcholine receptor channels in bovine adrenal chromaffin cells. Pflug. Arch. 1993, 425, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Criado, M.; Domínguez del Toro, E.; Carrasco-Serrano, C.; Smillie, F.I.; Juiz, J.M.; Viniegra, S.; Crossbow, J.J. Differential expression of neuronal nicotinic receptors sensitive to α-bungarotoxin in adrenergic chromaffin cells: A role for transcription factor Egr-1. J. Neurosci. 1997, 17, 6554–6564. Available online: https://www.jneurosci.org/content/17/17/6554 (accessed on 1 January 2023). [CrossRef] [PubMed]
- Criado, M. Acetylcholine nicotinic receptor subtypes in chromaffin cells. Pflug. Arch.-Eur. J. Physiol. 2018, 470, 13–20. Available online: https://link.springer.com/article/10.1007/s00424-017-2050-7 (accessed on 1 January 2023). [CrossRef] [PubMed]
- Lax, P.; Fucile, S.; Eusebi, F. Ca2+ permeability of human heteromeric nAChRs expressed by transfection in human cells. Cell Calcium 2002, 32, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, C.; Chow, R.H.; Neher, E.; Zucker, R.S. Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys. J. 1994, 67, 2546–2557. [Google Scholar] [CrossRef] [PubMed]
- Neher, E. Vesicle pools and Ca2+ microdomains: New tools for understanding their roles in neurotransmitter release. Neuron 1998, 20, 389–399. [Google Scholar] [CrossRef]
- Tapia, L.; García-Eguiagaray, J.; García, A.G.; Gandía, L. Preconditioning stimuli that augment chromaffin cell secretion. Am. J. Physiol. Cell Physiol. 2009, 296, C792–C800. [Google Scholar] [CrossRef]
- Li, P.; Bademosi, A.T.; Luo, J.; Meunier, F.A. Actin Remodeling in Regulated Exocytosis: Toward a Mesoscopic View. Trends Cell Biol. 2018, 28, P685–P697. [Google Scholar] [CrossRef]
- Colombo, S.F.; Galli, C.; Crespi, A.; Renzi, M.; Gotti, C. Rare Missense Variants of the Human β4 Subunit Alter Nicotinic α3β4 Receptor Plasma Membrane Localisation. Molecules 2023, 28, 1247. [Google Scholar] [CrossRef]
- Mohammadi, S.A.; Burton, T.J.; Christie, M.J. α9-nAChR knockout mice exhibit dysregulation of stress responses, affect and reward-related behaviour. Behav. Brain Res. 2017, 328, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Anantharam, A.; Kreutzberger, A.J.B. Unraveling the mechanisms of calcium-dependent secretion. J. Gen. Physiol. 2019, 151, 417–434. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, A.; González-Vélez, V.; Gutiérrez, L.M.; Villanueva, J. The Role of Nicotinic Receptors on Ca2+ Signaling in Bovine Chromaffin Cells. Curr. Issues Mol. Biol. 2024, 46, 808-820. https://doi.org/10.3390/cimb46010052
Gil A, González-Vélez V, Gutiérrez LM, Villanueva J. The Role of Nicotinic Receptors on Ca2+ Signaling in Bovine Chromaffin Cells. Current Issues in Molecular Biology. 2024; 46(1):808-820. https://doi.org/10.3390/cimb46010052
Chicago/Turabian StyleGil, Amparo, Virginia González-Vélez, Luis Miguel Gutiérrez, and José Villanueva. 2024. "The Role of Nicotinic Receptors on Ca2+ Signaling in Bovine Chromaffin Cells" Current Issues in Molecular Biology 46, no. 1: 808-820. https://doi.org/10.3390/cimb46010052
APA StyleGil, A., González-Vélez, V., Gutiérrez, L. M., & Villanueva, J. (2024). The Role of Nicotinic Receptors on Ca2+ Signaling in Bovine Chromaffin Cells. Current Issues in Molecular Biology, 46(1), 808-820. https://doi.org/10.3390/cimb46010052