Influence of Harvesting Stage on Phytochemical Composition, Antioxidant, and Antidiabetic Activity of Immature Ceratonia siliqua L. Pulp from Béni Mellal-Khénifra Region, Morocco: In Silico, In Vitro, and In Vivo Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Plant Materials Harvest
2.3. Preparation of the Immature Carob Juice
2.4. Quantification of Total Sugar Content
2.5. Quantification of Total Phenolic Content
2.6. Quantification of Flavonoid Content
2.7. Quantification of Total Condensed Tannins
2.8. Antioxidant Activity Evaluation Assays
2.8.1. 2,2-Diphényl 1-Picrylhydrazyle Assay
2.8.2. ABTS Scavenging Assay
2.8.3. Ferric Reducing/Antioxidant Power Assay (FRAP)
2.9. Identification of Unripe Carob Pulp Juice Phytochemical Compounds
2.9.1. Solubilization of Polyphenols of Unripe Carob Pulp Juice
2.9.2. HPLC-UV-MS/MS Analysis
2.10. Animals
2.11. Acute Toxicity Test
2.12. Evaluation of the Inhibitory Effect of Unripe Carob Pulp on Pancreatic α-Amylase Activity
2.12.1. In Vitro Assay
2.12.2. In Vivo Assay
2.13. Assessment of the Inhibitory Effect of Unripe Carob Pulp on Intestinal α-Glucosidase Activity
2.13.1. In Vitro Assay
2.13.2. In Vivo Assay
2.14. Molecular Docking Analysis
2.14.1. Ligand Preparation
2.14.2. Protein Preparation
2.15. ADME Studies
2.16. Statistical Analysis
3. Results
3.1. Total Sugar Content
3.2. Total Phenolic, Flavonoid, and Condensed Tannin Contents
3.3. Antioxidant Activities
3.4. HPLC-UV-MS/MS Analysis
3.5. Acute Safety
3.6. In Vitro, Inhibitory Effect of the Plant Extract on Pancreatic α-Amylase and Intestinal α-Glucosidase Activities
3.6.1. Pancreatic α-Amylase
3.6.2. Intestinal α-Glucosidase
3.7. In Vivo, the Plant Extract’s Effect on Inhibiting Pancreatic α-Amylase and Intestinal α-Glucosidase Activities
3.7.1. Pancreatic α-Amylase
3.7.2. Intestinal α-Glucosidase
3.8. Molecular Docking: Targeting α-Glucosidase and α-Amylase
3.9. ADME Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kassout, J.; Hmimsa, Y.; El Fatehi, S.; Kadaoui, K.; Houssni, M.; Chakkour, S.; Sahli, A.; El Chami, M.A.; Ariza-Mateos, D.; Palacios-Rodríguez, G.; et al. Aridity Gradients Shape Intraspecific Variability of Morphological Traits in Native Ceratonia siliqua L. of Morocco. Plants 2023, 12, 3447. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Arif, M.R.; Ahmed, A.; Laaraj, S.; Firdous, N.; Ali, M.Q.; Fatima, H.; Yaqub, S.; Kauser, S.; Nisar, R.; et al. Evaluation of Carob Tree (Ceratonia siliqua L.) Pods, through Three Different Drying Techniques, and Ultrasonic Assisted Extraction, for Presence of Bioactives. S. Afr. J. Bot. 2024, 173, 388–396. [Google Scholar] [CrossRef]
- Frühbauerová, M.; Červenka, L.; Hájek, T.; Pouzar, M.; Palarčík, J. Bioaccessibility of Phenolics from Carob (Ceratonia siliqua L.) Pod Powder Prepared by Cryogenic and Vibratory Grinding. Food Chem. 2022, 377, 131968. [Google Scholar] [CrossRef] [PubMed]
- Papaefstathiou, E.; Agapiou, A.; Giannopoulos, S.; Kokkinofta, R. Nutritional Characterization of Carobs and Traditional Carob Products. Food Sci. Nutr. 2018, 6, 2151–2161. [Google Scholar] [CrossRef]
- Roseiro, L.B.; Tavares, C.S.; Roseiro, J.C.; Rauter, A.P. Antioxidants from Aqueous Decoction of Carob Pods Biomass (Ceretonia siliqua L.): Optimisation Using Response Surface Methodology and Phenolic Profile by Capillary Electrophoresis. Ind. Crop. Prod. 2013, 44, 119–126. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Antoniou, C.; Rouphael, Y.; Graziani, G.; Kyratzis, A. Mapping the Primary and Secondary Metabolomes of Carob (Ceratonia siliqua L.) Fruit and Its Postharvest Antioxidant Potential at Critical Stages of Ripening. Antioxidants 2021, 10, 57. [Google Scholar] [CrossRef]
- Owen, R.W.; Haubner, R.; Hull, W.E.; Erben, G.; Spiegelhalder, B.; Bartsch, H.; Haber, B. Isolation and Structure Elucidation of the Major Individual Polyphenols in Carob Fibre. Food Chem. Toxicol. 2003, 41, 1727–1738. [Google Scholar] [CrossRef]
- Ortega, N.; Macià, A.; Romero, M.P.; Trullols, E.; Morello, J.R.; Anglès, N.; Motilva, M.J. Rapid Determination of Phenolic Compounds and Alkaloids of Carob Flour by Improved Liquid Chromatography Tandem Mass Spectrometry. J. Agric. Food Chem. 2009, 57, 7239–7244. [Google Scholar] [CrossRef]
- Bengoechea, C.; Romero, A.; Villanueva, A.; Moreno, G.; Alaiz, M.; Milla, F.; Guerrero, A.; Puppo, M.C. Composition and Structure of Carob (Ceratonia siliqua L.) Germ Proteins. Food Chem. 2008, 107, 675–683. [Google Scholar] [CrossRef]
- Achchoub, M.; Azzouzi, H.; Elhajji, L.; Benbati, M.; Elfazazi, K.; Salmaoui, S. Evaluation of Physicochemical, Functional and Sensory Properties of Carob Pulp Beverage (Ceratonia siliqua L). Biosci. Biotechnol. Res. Asia 2021, 18, 611–618. [Google Scholar] [CrossRef]
- Elfazazi, K.; Harrak, H.; Achchoub, M.; Benbati, M. Physicochemical Criteria, Bioactive Compounds and Sensory Quality of Moroccan Traditional Carob Drink. Mater. Today Proc. 2020, 27, 3249–3253. [Google Scholar] [CrossRef]
- Goulas, V.; Stylos, E.; Chatziathanasiadou, M.V.; Mavromoustakos, T.; Tzakos, A.G. Functional Components of Carob Fruit: Linking the Chemical and Biological Space. Int. J. Mol. Sci. 2016, 17, 1875. [Google Scholar] [CrossRef] [PubMed]
- Maier, H.; Anderson, M.; Karl, C.; Magnuson, K.; Whistler, R.L. Guar, Locust Bean, Tara, and Fenugreek Gums. In Industrial Gums: Polysaccharides and Their Derivatives, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 181–226. [Google Scholar] [CrossRef]
- Patmore, J.V.; Goff, H.D.; Fernandes, S. Cryo-Gelation of Galactomannans in Ice Cream Model Systems. Food Hydrocoll. 2003, 17, 161–169. [Google Scholar] [CrossRef]
- Laaraj, S.; Hussain, A.; Mouhaddach, A.; Noutfia, Y.; Gorsi, F.I.; Yaqub, S.; Hussain, I.; Nisar, R.; Salmaoui, S.; Elfazazi, K. Nutritional Benefits and Antihyperglycemic Potential of Carob Fruit (Ceratonia siliqua L.): An Overview. Ecol. Eng. Environ. Technol. 2024, 25, 124–132. [Google Scholar] [CrossRef]
- Laaraj, S.; Salmaoui, S.; Addi, M.; El-Rhouttais, C.; Tikent, A.; Elbouzidi, A.; Taibi, M.; Hano, C.; Noutfia, Y.; Elfazazi, K. Carob (Ceratonia siliqua L.) Seed Constituents: A Comprehensive Review of Composition, Chemical Profile, and Diverse Applications. J. Food Qual. 2023, 2023, 3438179. [Google Scholar] [CrossRef]
- Palipoch, S.; Punsawad, C.; Suwannalert, P. Thunbergia Laurifolia, a New Choice of Natural Antioxidant to Prevent Oxidative Stress-Related Pathology: A Review. J. Med. Plants Res. 2013, 7, 698–701. [Google Scholar] [CrossRef]
- Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [PubMed]
- Raninen, K.; Lappi, J.; Mykkänen, H.; Poutanen, K. Dietary Fiber Type Reflects Physiological Functionality: Comparison of Grain Fiber, Inulin, and Polydextrose. Nutr. Rev. 2011, 69, 9–21. [Google Scholar] [CrossRef]
- de Bock, M.; Derraik, J.G.B.; Cutfield, W.S. Polyphenols and Glucose Homeostasis in Humans. J. Acad. Nutr. Diet. 2012, 112, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Dewanjee, S.; Das, A.K.; Sahu, R.; Gangopadhyay, M. Antidiabetic Activity of Diospyros Peregrina Fruit: Effect on Hyperglycemia, Hyperlipidemia and Augmented Oxidative Stress in Experimental Type 2 Diabetes. Food Chem. Toxicol. 2009, 47, 2679–2685. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, V.; Prakash, O.; Kumar, V. Antidiabetic, Hypolipidemic and Histopathological Analysis of Dillenia indica (L.) Leaves Extract on Alloxan Induced Diabetic Rats. Asian Pac. J. Trop. Med. 2011, 4, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Rtibi, K.; Selmi, S.; Grami, D.; Sebai, H.; Marzouki, L. In vitro α-amylase/α-glucosidase inhibitory activities and in vivo improving glucose tolerance and hypoglycemic effect of Ceratonia siliqua leaves aqueous extract. EC Nutr. 2018, 13, 171–179. [Google Scholar]
- Benchikh, Y.; Louaileche, H.; George, B.; Merlin, A. Changes in Bioactive Phytochemical Content and in Vitro Antioxidant Activity of Carob (Ceratonia siliqua L.) as Influenced by Fruit Ripening. Ind. Crop. Prod. 2014, 60, 298–303. [Google Scholar] [CrossRef]
- Benchikh, Y.; Paris, C.; Louaileche, H.; Charbonne, C.; Ghoul, M.; Chebil, L.; Desk, S. Comparative characterization of green and ripe carob (Ceratonia siliqua L.): Physicochemical attributes and phenolic profile. SDRP J. Food Sci. Technol. 2016, 1, 83–91. [Google Scholar] [CrossRef]
- Benchikh, Y.; Louailèche, H. Effects of Extraction Conditions on the Recovery of Phenolic Compounds and in Vitro Antioxidant Activity of Carob (Ceratonia siliqua L.) Pulp. Acta Bot. Gall. 2014, 161, 175–181. [Google Scholar] [CrossRef]
- Farag, M.A.; El-Kersh, D.M.; Ehrlich, A.; Choucry, M.A.; El-Seedi, H.; Frolov, A.; Wessjohann, L.A. Variation in Ceratonia siliqua Pod Metabolome in Context of Its Different Geographical Origin, Ripening Stage and Roasting Process. Food Chem. 2019, 283, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Ydjedd, S.; Chaalal, M.; Richard, G.; Kati, D.E.; López-Nicolás, R.; Fauconnier, M.L.; Louaileche, H. Assessment of Antioxidant Potential of Phenolic Compounds Fractions of Algerian Ceratonia siliqua L. Pods during Ripening Stages. Int. Food Res. J. 2017, 24, 2041–2049. [Google Scholar]
- Ben Othmen, K.; Elfalleh, W.; Lachiheb, B.; Haddad, M. Evolution of Phytochemical and Antioxidant Activity of Tunisian Carob (Ceratonia siliqua L.) Pods during Maturation. Eurobiotech J. 2019, 3, 135–142. [Google Scholar] [CrossRef]
- Rtibi, K.; Selmi, S.; Grami, D.; Saidani, K.; Sebai, H.; Amri, M.; Eto, B.; Marzouki, L. Ceratonia siliqua L. (Immature Carob Bean) Inhibits Intestinal Glucose Absorption, Improves Glucose Tolerance and Protects against Alloxan-Induced Diabetes in Rat. J. Sci. Food Agric. 2017, 97, 2664–2670. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Tavarini, S.; Degl’Innocenti, E.; Remorini, D.; Massai, R.; Guidi, L. Antioxidant Capacity, Ascorbic Acid, Total Phenols and Carotenoids Changes during Harvest and after Storage of Hayward Kiwifruit. Food Chem. 2008, 107, 282–288. [Google Scholar] [CrossRef]
- Lamaison, J.L.; Petitjen-Freytet, C.; Carnat, A. Teneurs En Acide Rosmarinique, En Dérivés Hydroxycinnamiques Totaux et Activité Antioxydante Chez Les Apiacées, Les Borraginacées et Les Laminacées Médicinales. Ann. Pharm. Françaises 1990, 48, 103–108. [Google Scholar]
- Broadhurst, R.B.; Jones, W.T. Analysis of Condensed Tannins Using Acidified Vanillin. J. Sci. Food Agric. 1978, 29, 788–794. [Google Scholar] [CrossRef]
- Szabo, K.; Zorit, D.; Cătoi, A.F.; Vodnar, D.C. Screening of Ten Tomato Varieties Processing Waste for Bioactive Components and Their Related Antioxidant and Antimicrobial Activities. Antioxidants 2019, 8, 292. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Aktumsek, A.; Karatas, S. Chemical and Biological Approaches on Nine Fruit Tree Leaves Collected from the Mediterranean Region of Turkey. J. Funct. Foods 2016, 22, 518–532. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Ma, T.; Tian, C.; Luo, J.; Zhou, R.; Sun, X.; Ma, J. Influence of Technical Processing Units on Polyphenols and Antioxidant Capacity of Carrot (Daucus Carrot L.) Juice. Food Chem. 2013, 141, 1637–1644. [Google Scholar] [CrossRef]
- Bouaouda, K.; Elagdi, C.; El Hachlafi, N.; Mohtadi, K.; Hsaine, M.; Kettani, A.; Flouchi, R.; Wen Goh, K.; Bouyahya, A.; Naceiri Mrabti, H.; et al. HPLC-UV-MS/MS Profiling of Phenolics from Euphorbia nicaeensis (All.) Leaf and Stem and Its Antioxidant and Anti-Protein Denaturation Activities. Prog. Microbes Mol. Biol. 2023, 6, a0000331. [Google Scholar] [CrossRef]
- Guide for the Care and Use of Laboratory Animals; National Academies Press: Washington, DC, USA, 2011; ISBN 9780309154000.
- Elrherabi, A.; Bouhrim, M.; Abdnim, R.; Berraaouan, A.; Ziyyat, A.; Mekhfi, H.; Legssyer, A.; Bnouham, M. Antihyperglycemic Potential of the Lavandula Stoechas Aqueous Extract via Inhibition of Digestive Enzymes and Reduction of Intestinal Glucose Absorption. J. Ayurveda Integr. Med. 2023, 14, 100795. [Google Scholar] [CrossRef]
- Srivastava, V.; Yadav, A.; Sarkar, P. Molecular Docking and ADMET Study of Bioactive Compounds of Glycyrrhiza Glabra against Main Protease of SARS-CoV2. Mater. Today Proc. 2022, 49, 2999–3007. [Google Scholar] [CrossRef]
- Zrouri, H.; Elbouzidi, A.; Bouhrim, M.; Bencheikh, N.; Kharchoufa, L.; Ouahhoud, S.; Ouassou, H.; El Assri, S.; Choukri, M. Phytochemical Analysis, Antioxidant Activity, and Nephroprotective Effect of the Raphanus Sativus Aqueous Extract. Mediterr. J. Chem. 2021, 11, 84. [Google Scholar] [CrossRef]
- Siddique, M.H.; Ashraf, A.; Hayat, S.; Aslam, B.; Fakhar-e-Alam, M.; Muzammil, S.; Atif, M.; Shahid, M.; Shafeeq, S.; Afzal, M.; et al. Antidiabetic and Antioxidant Potentials of Abelmoschus Esculentus: In Vitro Combined with Molecular Docking Approach. J. Saudi Chem. Soc. 2022, 26, 101418. [Google Scholar] [CrossRef]
- Mendie, L.E.; Hemalatha, S. Molecular Docking of Phytochemicals Targeting GFRs as Therapeutic Sites for Cancer: An In Silico Study. Appl. Biochem. Biotechnol. 2022, 194, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- van de Waterbeemd, H.; Gifford, E. ADMET in Silico Modelling: Towards Prediction Paradise? Nat. Rev. Drug Discov. 2003, 2, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Tikent, A.; Laaraj, S.; Marhri, A.; Taibi, M.; Elbouzidi, A.; Khalid, I.; Bouhrim, M.; Elfazazi, K.; Elamrani, A.; Addi, M. The Antioxidant and Antimicrobial Activities of Two Sun-Dried Fig Varieties (Ficus carica L.) Produced in Eastern Morocco and the Investigation of Pomological, Colorimetric, and Phytochemical Characteristics for Improved Valorization. Int. J. Plant Biol. 2023, 14, 845–863. [Google Scholar] [CrossRef]
- Vekiari, A.S.; Ouzounidou, G.; Gork, G.; Ozturk, M.; Asfi, M. Compositional Changes of Major Chemical Compounds in Greek Carob Pods during Development. Bull. Chem. Soc. Ethiop. 2012, 26, 343–351. [Google Scholar] [CrossRef]
- Prasanna, V.; Prabha, T.N.; Tharanathan, R.N. Fruit Ripening Phenomena–An Overview. Crit. Rev. Food Sci. Nutr. 2007, 47, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Abubaker, M.A.; Akhtar, M.; Elimam, A.M.; Zhu, X.; Zhang, J. Chemical Characterization Analysis, Antioxidants, and Anti-Diabetic Activity of Two Novel Acidic Water-Soluble Polysaccharides Isolated from Baobab Fruits. Foods 2024, 13, 912. [Google Scholar] [CrossRef]
- Gull, J.; Sultana, B.; Anwar, F.; Naseer, R.; Ashraf, M.; Ashrafuzzaman, M. Variation in Antioxidant Attributes at Three Ripening Stages of Guava (Psidium guajava L.) Fruit from Different Geographical Regions of Pakistan. Molecules 2012, 17, 3165–3180. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, D.; Wang, S.; Cao, X.; Ye, Y.; Suo, Y. Comparison of Phenols Content and Antioxidant Activity of Fruits from Different Maturity Stages of Ribes Stenocarpum Maxim. Molecules 2018, 23, 3148. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Advances in Flavonoid Research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Saci, F.; Bachirbey, M.; Louaileche, H.; Gali, L.; Bensouici, C. Changes in Anticholinesterase, Antioxidant Activities and Related Bioactive Compounds of Carob Pulp (Ceratonia siliqua L.) during Ripening Stages. J. Food Meas. Charact. 2020, 14, 937–945. [Google Scholar] [CrossRef]
- Richane, A.; Rim, B.M.; Wided, M.; Riadh, K.; Khaoula, A.; Nizar, M.; Hanen, B.I. Variability of Phenolic Compounds and Antioxidant Activities of Ten Ceratonia siliqua L. Provenances. Biochem. Syst. Ecol. 2022, 104, 104486. [Google Scholar] [CrossRef]
- Kim, I.; Lee, J. Variations in Anthocyanin Profiles and Antioxidant Activity of 12 Genotypes of Mulberry (Morus Spp.) Fruits and Their Changes during Processing. Antioxidants 2020, 9, 242. [Google Scholar] [CrossRef]
- Saensouk, S.; Senavongse, R.; Papayrata, C.; Chumroenphat, T. Evaluation of Color, Phytochemical Compounds and Antioxidant Activities of Mulberry Fruit (Morus alba L.) during Ripening. Horticulturae 2022, 8, 1146. [Google Scholar] [CrossRef]
- Dahmani, W.; Elaouni, N.; Abousalim, A.; Akissi, Z.L.E.; Legssyer, A.; Ziyyat, A.; Sahpaz, S. Exploring Carob (Ceratonia siliqua L.): A Comprehensive Assessment of Its Characteristics, Ethnomedicinal Uses, Phytochemical Aspects, and Pharmacological Activities. Plants 2023, 12, 3303. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wu, L.; Deng, W.; Yi, K.; Li, Y. Polyphenol Composition, Antioxidant Capacity and Xanthine Oxidase Inhibition Mechanism of Furong Plum Fruits at Different Maturity Stages. Foods 2023, 12, 4253. [Google Scholar] [CrossRef]
- Barku, Y.A.; Opoku-Boahen, Y.; Owusu-Ansah, E.; Dayie, N.T.K.D.; Mensah, F.E. In-Vitro Assessment of Antioxidant and Antimicrobial Activities of Methanol Extracts of Six Wound Healing Medicinal Plants. J. Nat. Sci. Res. 2013, 3, 74–80. [Google Scholar]
- Mena, P.; García-Viguera, C.; Navarro-Rico, J.; Moreno, D.A.; Bartual, J.; Saura, D.; Martí, N. Phytochemical Characterisation for Industrial Use of Pomegranate (Punica granatum L.) Cultivars Grown in Spain. J. Sci. Food Agric. 2011, 91, 1893–1906. [Google Scholar] [CrossRef] [PubMed]
- Jafri, S.A.A.; Khalid, Z.M.; Khan, M.Z.; Jogezai, N.U. Evaluation of Phytochemical and Antioxidant Potential of Various Extracts from Traditionally Used Medicinal Plants of Pakistan. Open Chem. 2022, 20, 1337–1356. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Nobre, C.; Rodrigues, R.M.; Genisheva, Z.; Botelho, C.; Teixeira, J.A. Extraction of Phenolic Compounds from Grape Pomace Using Ohmic Heating: Chemical Composition, Bioactivity and Bioaccessibility. Food Chem. 2024, 436, 137780. [Google Scholar] [CrossRef]
- Inga, M.; Betalleluz-Pallardel, I.; Puma-Isuiza, G.; Cumpa-Arias, L.; Osorio, C.; Valdez-Arana, J.-D.-C.; Vargas-De-La-Cruz, C. Chemical Analysis and Bioactive Compounds from Agrifood By-Products of Peruvian Crops. Front. Sustain. Food Syst. 2024, 8, 1341895. [Google Scholar] [CrossRef]
- Kabtni, S.; Sdouga, D.; Bettaib Rebey, I.; Save, M.; Trifi-Farah, N.; Fauconnier, M.L.; Marghali, S. Influence of Climate Variation on Phenolic Composition and Antioxidant Capacity of Medicago Minima Populations. Sci. Rep. 2020, 10, 8293. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Can-Cauich, C.A.; Sauri-Duch, E.; Betancur-Ancona, D.; Chel-Guerrero, L.; González-Aguilar, G.A.; Cuevas-Glory, L.F.; Pérez-Pacheco, E.; Moo-Huchin, V.M. Tropical Fruit Peel Powders as Functional Ingredients: Evaluation of Their Bioactive Compounds and Antioxidant Activity. J. Funct. Foods 2017, 37, 501–506. [Google Scholar] [CrossRef]
- Rubio, S.; Quintana, J.; Eiroa, J.L.; Triana, J.; Estévez, F. Acetyl Derivative of Quercetin 3-Methyl Ether-Induced Cell Death in Human Leukemia Cells Is Amplified by the Inhibition of ERK. Carcinogenesis 2007, 28, 2105–2113. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Kim, H.J.; Song, Y.S.; Jin, C.; Lee, K.T.; Cho, J.; Lee, Y.S. Constituents of the Stems and Fruits Of Opuntia Ficus-Indica Var.Saboten. Arch. Pharmacal Res. 2003, 26, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Takeara, R.; Albuquerque, S.; Lopes, N.P.; Callegari Lopes, J.L. Trypanocidal Activity of Lychnophora Staavioides Mart. (Vernonieae, Asteraceae). Phytomedicine 2003, 10, 490–493. [Google Scholar] [CrossRef]
- Wei, B.L.; Lu, C.M.; Tsao, L.T.; Wang, J.P.; Lin, C.N. In Vitro, Anti-Inflammatory Effects of Quercetin 3-O-Methyl Ether and Other Constituents from Rhamnus Species. Planta Medica 2001, 67, 745–747. [Google Scholar] [CrossRef]
- Kim, S.H.; Naveen Kumar, C.; Kim, H.J.; Kim, D.H.; Cho, J.; Jin, C.; Lee, Y.S. Glucose-Containing Flavones—Their Synthesis and Antioxidant and Neuroprotective Activities. Bioorganic Med. Chem. Lett. 2009, 19, 6009–6013. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mottamal, M.; Li, H.; Liu, K.; Zhu, F.; Cho, Y.-Y.; Sosa, C.P.; Zhou, K.; Bowden, G.T.; Bode, A.M.; et al. Quercetin-3-Methyl Ether Suppresses Proliferation of Mouse Epidermal JB6 P1 Cells by Targeting ERKs. Carcinogenesis 2012, 33, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Motta, E.V.S.; Lemos, M.; Costa, J.C.; Banderó-Filho, V.C.; Sasse, A.; Sheridan, H.; Bastos, J.K. Galloylquinic Acid Derivatives from Copaifera Langsdorffii Leaves Display Gastroprotective Activity. Chem.-Biol. Interact. 2017, 261, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Hassani, S.; Ghanbari, F.; Lotfi, M.; Alam, W.; Aschner, M.; Popović-Djordjević, J.; Shahcheraghi, S.H.; Khan, H. How Gallic Acid Regulates Molecular Signaling: Role in Cancer Drug Resistance. Med. Oncol. 2023, 40, 308. [Google Scholar] [CrossRef] [PubMed]
- Bhuia, M.S.; Rahaman, M.M.; Islam, T.; Bappi, M.H.; Sikder, M.I.; Hossain, K.N.; Akter, F.; Al Shamsh Prottay, A.; Rokonuzzman, M.; Gürer, E.S.; et al. Neurobiological Effects of Gallic Acid: Current Perspectives. Chin. Med. 2023, 18, 27. [Google Scholar] [CrossRef]
- Moumou, M.; Mokhtari, I.; Tayebi, A.; Milenkovic, D.; Amrani, S.; Harnafi, H. Immature Carob Pods Extract and Its Fractions Prevent Lipid Metabolism Disorders and Lipoprotein-Rich Plasma Oxidation in Mice: A Phytochemical and Pharmacological Study. J. Ethnopharmacol. 2023, 322, 117557. [Google Scholar] [CrossRef]
- Agarwal, P.; Gupta, R. Alpha-Amylase Inhibition Can Treat Diabetes Mellitus. Res. Rev. J. Med. Health Sci. RRJMHS 2016, 5, 1–8. [Google Scholar]
- Custódio, L.; Patarra, J.; Alberício, F.; Neng, N.R.; Nogueira, J.M.F.; Romano, A. In Vitro Antioxidant and Inhibitory Activity of Water Decoctions of Carob Tree (Ceratonia siliqua L.) on Cholinesterases, α-Amylase and α-Glucosidase. Nat. Prod. Res. 2015, 29, 2155–2159. [Google Scholar] [CrossRef]
- Darwish, W.S.; Khadr, A.E.S.; Kamel, M.A.E.N.; Abd Eldaim, M.A.; El Sayed, I.E.T.; Abdel-Bary, H.M.; Ullah, S.; Ghareeb, D.A. Phytochemical Characterization and Evaluation of Biological Activities of Egyptian Carob Pods (Ceratonia siliqua L.) Aqueous Extract: In Vitro Study. Plants 2021, 10, 2626. [Google Scholar] [CrossRef]
- Kamtekar, S.; Keer, V.; Patil, V. Estimation of Phenolic Content, Flavonoid Content, Antioxidant and Alpha Amylase Inhibitory Activity of Marketed Polyherbal Formulation. J. Appl. Pharm. Sci. 2014, 4, 61–65. [Google Scholar] [CrossRef]
- Hanefeld, M. The Role of Acarbose in the Treatment of Non–Insulin-Dependent Diabetes Mellitus. J. Diabetes Its Complicat. 1998, 12, 228–237. [Google Scholar] [CrossRef]
- Subramanian, R.; Asmawi, M.Z.; Sadikun, A. In Vitro α-Glucosidase and α-Amylase Enzyme Inhibitory Effects of Andrographis paniculata Extract and Andrographolide. Acta Biochim. Pol. 2008, 55, 391–398. [Google Scholar] [CrossRef]
- Reddy, N.V.L.S.; Anarthe, S.J.; Raghavendra, N.M. In Vitro Antioxidant and Antidiabetic Activity of Asystasia Gangetica (Chinese violet) Linn. (Acanthaceae). Int. J. Res. Pharm. Biomed. Sci. 2010, 1, 72–75. [Google Scholar]
- Picariello, G.; Sciammaro, L.; Siano, F.; Volpe, M.G.; Puppo, M.C.; Mamone, G. Comparative Analysis of C-Glycosidic Flavonoids from Prosopis Spp. and Ceratonia siliqua Seed Germ Flour. Food Res. Int. 2017, 99, 730–738. [Google Scholar] [CrossRef]
- Qasem, M.A.; Noordin, M.I.; Arya, A.; Alsalahi, A.; Jayash, S.N. Evaluation of the Glycemic Effect of Ceratonia siliqua Pods (Carob) on a Streptozotocin-Nicotinamide Induced Diabetic Rat Model. PeerJ 2018, 6, e4788. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tian, J.; Yang, W.; Chen, S.; Liu, D.; Fang, H.; Zhang, H.; Ye, X. Inhibition Mechanism of Ferulic Acid against α-Amylase and α-Glucosidase. Food Chem. 2020, 317, 126346. [Google Scholar] [CrossRef]
- Singh, A.; Singh, K.; Sharma, A.; Kaur, K.; Kaur, K.; Chadha, R.; Bedi, P.M.S. Recent Developments in Synthetic α-Glucosidase Inhibitors: A Comprehensive Review with Structural and Molecular Insight. J. Mol. Struct. 2023, 1281, 135115. [Google Scholar] [CrossRef]
- Ferreira, L.L.G.; Andricopulo, A.D. ADMET Modeling Approaches in Drug Discovery. Drug Discov. Today 2019, 24, 1157–1165. [Google Scholar] [CrossRef]
- Farihi, A.; Bouhrim, M.; Chigr, F.; Elbouzidi, A.; Bencheikh, N.; Zrouri, H.; Nasr, F.A.; Parvez, M.K.; Alahdab, A.; Ahami, A.O.T. Exploring Medicinal Herbs’ Therapeutic Potential and Molecular Docking Analysis for Compounds as Potential Inhibitors of Human Acetylcholinesterase in Alzheimer’s Disease Treatment. Medicina 2023, 59, 1812. [Google Scholar] [CrossRef]
- Purushothaman, K.; Sivasankar, E.; Krishnamoorthy, M.; Karunakaran, K.; Muniyan, R. Computational Identification of Potential Tau Tubulin Kinase 1 (TTBK1) Inhibitors: A Structural Analog Approach. In Silico Pharmacol. 2024, 12, 66. [Google Scholar] [CrossRef]
- Stillhart, C.; Vučićević, K.; Augustijns, P.; Basit, A.W.; Batchelor, H.; Flanagan, T.R.; Gesquiere, I.; Greupink, R.; Keszthelyi, D.; Koskinen, M.; et al. Impact of Gastrointestinal Physiology on Drug Absorption in Special Populations––An UNGAP Review. Eur. J. Pharm. Sci. 2020, 147, 105280. [Google Scholar] [CrossRef]
- Taşçıoğlu, N.; Saatçi, Ç.; Emekli, R.; Tuncel, G.; Eşel, E.; Dundar, M. Investigation of Cytochrome P450 CYP1A2, CYP2D6, CYP2E1 and CYP3A4 Gene Expressions and Polymorphisms in Alcohol Withdrawal. Klin. Psikiyatr. Derg. 2021, 24, 298–306. [Google Scholar] [CrossRef]
Total Sugar mg GE/100 g FM | |||
---|---|---|---|
TG | TM | AW | |
M1 | 1720 ± 76 dA | 1709 ± 73 cA | 1889 ± 125 bA |
M2 | 1814 ± 84 cdA | 1721 ± 92 bcA | 1636 ± 37 cA |
M3 | 1880 ± 7 bcB | 1987 ± 72 aA | 1982 ± 55 abA |
M4 | 2032 ± 22 bA | 1880 ± 25 abA | 1940 ± 28 abA |
M5 | 2134 ± 56 aA | 1904 ± 21 aA | 2098 ± 34 aA |
TPC mg GAE/100 g FM | TFC mg QE/100 g FM | TCT mg CE/100 g FM | |||||||
---|---|---|---|---|---|---|---|---|---|
TG | TN | AW | TG | TN | AW | TG | TN | AW | |
M1 | 2813 ± 58 bA | 3014 ± 59 bA | 2734 ± 99 aA | 826.2 ± 41 bB | 298.7 ± 20 cC | 1423 ± 78 aA | 613.9 ± 74 bA | 231.2 ± 70 cB | 567.9 ± 21 bA |
M2 | 3475 ± 189 aB | 3819 ± 226 aA | 2765 ± 144 aC | 925.4 ± 13 aAB | 1034 ± 57 aA | 830.1 ± 87 bB | 848.1 ± 19 aB | 1472 ± 28 aA | 756.1 ± 92 aC |
M3 | 2750 ± 98 bcA | 2368 ± 43 cB | 2209 ± 87 bC | 900.6 ± 65 abA | 827.5 ± 49 bA | 848.4 ± 52 bA | 628.5 ± 93 bA | 633.7 ± 61 bA | 539.6 ± 35 bB |
M4 | 2532 ± 48 cA | 2120 ± 151 cB | 1947 ± 55 cB | 173.2 ± 11 dA | 196.2 ± 11 dA | 161.2 ± 13 cA | 724.7 ± 22 abA | 706.9 ± 37 bAB | 565.8 ± 18 bB |
M5 | 2744 ± 39 bcA | 2391 ± 76 cC | 2595 ± 91 aB | 294 ± 12 cA | 249.6 ± 16 cdA | 305.6 ± 12 cA | 75.7 ± 5.5 cA | 71.4 ± 3.3 dA | 77.1 ± 6.1 cA |
Compounds | Chemical Formula | RT (min) | % Area | Ref | ||
---|---|---|---|---|---|---|
TM | AW | TG | ||||
3-O-p-coumaroyl-5-O-caffeoylquinic acid | C25H24O11 | 4.28 | 53.40 | 63.62 | 55.84 | N |
Quercetin 3-methyl ether | C16H12O7 | 5.26 | 13.87 | 12.91 | 13.83 | N |
Gallic acid | C7H6O5 | 6.60 | 11.24 | 5.17 | 2.35 | S |
3,4-Dicaffeoylquinic acid | C25H24O12 | 8.43 | 3.04 | 2.85 | 5.06 | N |
Galloylquinic acid | C14H16O10 | 10.95 | 12.55 | n.d. | n.d. | (1) |
Ferulic acid | C10H10O4 | 13.52 | 0.34 | 0.37 | 0.60 | S |
Catechine | C15H14O6 | 17.84 | n.d. | 0.37 | n.d. | S |
Doses | 2 g/kg | 1 g/kg | 0.5 g/kg | |
---|---|---|---|---|
Symptoms | ||||
Locomotion and mobility | Normal | Normal | Normal | |
Hair loss or erection | - | - | - | |
Diarrhea | - | - | - | |
Abnormal agitation | - | - | - | |
Anorexia | - | - | - | |
Spontaneous startle | - | - | - | |
Isolation in the corner | - | - | - | |
Mortality | - | - | - | |
Body weight gain | Normal | Normal | Normal |
Extraits | IC50 µg/mL |
---|---|
TG | 0.591 ± 0.104 a |
TM | 0.450 ± 0.239 ab |
AW | 0.405 ± 0.247 ab |
Acarbose (control) | 0.098 ± 0.004 b |
Extraits | IC50 µg/mL |
---|---|
TG | 0.063 ± 0.002 b |
TM | 0.086 ± 0.014 a |
AW | 0.065 ± 0.004 b |
Acarbose (control) | 0.089 ± 0.004 a |
α-Amylase (PDB: 1B2Y) | α-Glucosidase (PDB: 5NN8) | |||
---|---|---|---|---|
Compound Name | Affinity (kcal/mol) | Interaction Site | Affinity (kcal/mol) | Interaction Site |
Acarbose (standard inhibitor) | −8.2 | Tyr 2, Ser 3, Pro 4, Thr 6, Gln 8, Phe 222, Arg 252, Pro 332, Gly 334, Arg 398. | −7.2 | Asp 356, Val 357, Arg 608, His 584, His 717, Leu 865, Glu 866. |
3-O-p-coumaroyl-5-O-caffeoylquinic acid | −9.2 | Pro 4, Tyr 6, Arg 252, Trp 280, His 331, Pro 332, Arg 398, Arg 421 | −8.2 | Lys 348, His 708, Arg 725, Ala 749, Ile 823 Glu 856 |
Quercetin 3-methyl ether | −8.2 | Arg 267, Arg 303, Thr 314, Arg 346, Asp 356 | −7.1 | Met 363, Arg 585, Arg 594 |
Gallic acid | −5.9 | Val 129, Gly 181, Tyr 182 | −5.8 | His 708, Gln 715, Glu 748, Ala 749, Ile 823, Glu 856. |
3,4-dicaffeoylquinic acid | −8.2 | Pro4, Gln 8, Gly 9, Pro 332, Phe 335, Thy 336, Arg 398, Asp 402, Arg 421 | −7.9 | Met 363, Arg 585, Arg 594, Tyr 609, His 717, Glu 866, |
Galloylquinic acid | −7.2 | Arg 10, Arg 252, Ser 289, Gly 334, Asp 402, Gly 403 | −6.4 | Leu 195, Arg 585, Tyr 609 |
Ferulic acid | −6.3 | Arg 552, Ser 289, Pro 332, Phe 335, Arg 424 | −6.6 | His 708, Glu 721, Arg 725, Tyr 822, Gly 855, Glu 856 |
Catechin | −7.8 | Asn 301, Ile 312, Thr 314, Asp 317, Arg 346, Asn 352 | −6.8 | Pro 194, Leu 195, Phe 490, Thr 491, Leu 577, Ile 581, Tyr 609 |
Physicochemical Properties | Lipophilicity | Druglikeness | Pharmacokinetics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | MW g/mol | HBA | HBD | TPSA Ų | ROTB | MlogP | WlogP | Lipinski’s | Verber’s | GI Absorption | BBB Permeation | CYP1A2 Inhibitor |
3-O-p-coumaroyl-5-O-caffeoylquinic acid | 500.4 | 11 | 6 | 191.0 | 9 | 0.1 | 1.1 | 3 | 1 | Low | No | No |
Quercetin 3-methyl ether | 316.2 | 7 | 4 | 120.3 | 2 | −0.3 | 2.2 | 0 | 0 | High | No | No |
Gallic acid | 170.1 | 5 | 4 | 97.9 | 1 | −0.1 | 0.5 | 0 | 0 | High | No | No |
3,4-dicaffeoylquinic acid | 516.4 | 12 | 7 | 211.2 | 9 | −0.3 | 0.8 | 3 | 1 | Low | No | No |
Galloylquinic acid | 344.2 | 10 | 8 | 195.8 | 3 | −2.7 | −2.1 | 1 | 1 | Low | No | No |
Ferulic acid | 194.1 | 4 | 2 | 66.7 | 3 | 1.0 | 1.3 | 0 | 0 | High | Yes | No |
Catechin | 290.2 | 6 | 5 | 110.3 | 1 | 0.2 | 1.2 | 0 | 0 | High | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laaraj, S.; Choubbane, H.; Elrherabi, A.; Tikent, A.; Farihi, A.; Laaroussi, M.; Bouhrim, M.; Shahat, A.A.; Noutfia, Y.; Herqash, R.N.; et al. Influence of Harvesting Stage on Phytochemical Composition, Antioxidant, and Antidiabetic Activity of Immature Ceratonia siliqua L. Pulp from Béni Mellal-Khénifra Region, Morocco: In Silico, In Vitro, and In Vivo Approaches. Curr. Issues Mol. Biol. 2024, 46, 10991-11020. https://doi.org/10.3390/cimb46100653
Laaraj S, Choubbane H, Elrherabi A, Tikent A, Farihi A, Laaroussi M, Bouhrim M, Shahat AA, Noutfia Y, Herqash RN, et al. Influence of Harvesting Stage on Phytochemical Composition, Antioxidant, and Antidiabetic Activity of Immature Ceratonia siliqua L. Pulp from Béni Mellal-Khénifra Region, Morocco: In Silico, In Vitro, and In Vivo Approaches. Current Issues in Molecular Biology. 2024; 46(10):10991-11020. https://doi.org/10.3390/cimb46100653
Chicago/Turabian StyleLaaraj, Salah, Hanane Choubbane, Amal Elrherabi, Aziz Tikent, Ayoub Farihi, Meriem Laaroussi, Mohamed Bouhrim, Abdelaaty A. Shahat, Younes Noutfia, Rashed N. Herqash, and et al. 2024. "Influence of Harvesting Stage on Phytochemical Composition, Antioxidant, and Antidiabetic Activity of Immature Ceratonia siliqua L. Pulp from Béni Mellal-Khénifra Region, Morocco: In Silico, In Vitro, and In Vivo Approaches" Current Issues in Molecular Biology 46, no. 10: 10991-11020. https://doi.org/10.3390/cimb46100653
APA StyleLaaraj, S., Choubbane, H., Elrherabi, A., Tikent, A., Farihi, A., Laaroussi, M., Bouhrim, M., Shahat, A. A., Noutfia, Y., Herqash, R. N., Chigr, F., Salmaoui, S., & Elfazazi, K. (2024). Influence of Harvesting Stage on Phytochemical Composition, Antioxidant, and Antidiabetic Activity of Immature Ceratonia siliqua L. Pulp from Béni Mellal-Khénifra Region, Morocco: In Silico, In Vitro, and In Vivo Approaches. Current Issues in Molecular Biology, 46(10), 10991-11020. https://doi.org/10.3390/cimb46100653