Neuroprotective Effect of Ixeris dentata Extract on Trimethyltin-Induced Memory Impairment in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regents
2.2. Animals
2.3. Experimental Groups
2.4. Morris Water Maze
2.5. Immunohistochemistry
2.6. Statistical Analysis
3. Results
3.1. Effect of ID Extracts on TMT-Induced Memory Deficits in the Morris Water Maze Test
3.2. Effects of IXD Extracts on TMT-Induced Immunohistochemical Alterations of ChAT, CREB in the Hippocampus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar]
- Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s Disease: Treatment Strategies and Their Limitations. Int. J. Mol. Sci. 2022, 23, 13954. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A.; Gupta, S.M.; Dwivedi, S.; Kumar, D.; Shaikh, M.F.; Negi, A. Preclinical Models for Alzheimer’s Disease: Past, Present, and Future Approaches. Acs Omega 2022, 7, 47504–47517. [Google Scholar] [CrossRef] [PubMed]
- Koda, T.; Kuroda, Y.; Imai, H. Protective effect of rutin against spatial memory impairment induced by trimethyltin in rats. Nutr. Res. 2008, 28, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.W.; Dyer, R.S. A time-course study of trimethyltin induced neuropathology in rats. Neurobehav. Toxicol. Teratol. 1983, 5, 443–459. [Google Scholar]
- Robertson, D.G.; Gray, R.H.; de la Iglesia, F.A. Quantitative assessment of trimethyltin induced pathology of the hippocampus. Toxicol. Pathol. 1987, 15, 7–17. [Google Scholar] [CrossRef]
- Vitale, P.; Librizzi, F.; Vaiana, A.C.; Capuana, E.; Pezzoli, M.; Shi, Y.; Romani, A.; Migliore, M.; Migliore, R. Different responses of mice and rats hippocampus CA1 pyramidal neurons to and -like inputs. Front. Cell Neurosci. 2023, 17, 1281932. [Google Scholar]
- Pham, H.T.N.; Phan, S.V.; Tran, H.N.; Phi, X.T.; Le, X.T.; Nguyen, K.M.; Fujiwara, H.; Yoneyama, M.; Ogita, K.; Yamaguchi, T.; et al. Bacopa monnieri (L.) Ameliorates Cognitive Deficits Caused in a Trimethyltin-Induced Neurotoxicity Model Mice. Biol. Pharm. Bull. 2019, 42, 1384–1393. [Google Scholar] [CrossRef]
- Jeong, E.S.; Bajgai, J.; You, I.S.; Rahman, M.H.; Fadriquela, A.; Sharma, S.; Kwon, H.U.; Lee, S.Y.; Kim, C.S.; Lee, K.J. Therapeutic Effects of Hydrogen Gas Inhalation on Trimethyltin-Induced Neurotoxicity and Cognitive Impairment in the C57BL/6 Mice Model. Int. J. Mol. Sci. 2021, 22, 13313. [Google Scholar] [CrossRef]
- Shin, S.A.; Lee, H.N.; Choo, G.S.; Kim, H.J.; Che, J.H.; Jung, J.Y. (Thunb. Ex Thunb.) Nakai Extract Inhibits Proliferation and Induces Apoptosis in Breast Cancer Cells through Akt/NF-B Pathways. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef]
- Jeon, Y.D.; Kee, J.Y.; Kim, D.S.; Han, Y.H.; Kim, S.H.; Kim, S.J.; Um, J.Y.; Hong, S.H. Effects of Ixeris dentata water extract and caffeic acid on allergic inflammation in vivo and in vitro. Bmc Complem. Altern. M. 2015, 15, 196. [Google Scholar] [CrossRef]
- Karki, S.; Park, H.J.; Nugroho, A.; Kim, E.J.; Jung, H.A.; Choi, J.S. Quantification of Major Compounds from Var. and Their Comparative Anti-Inflammatory Activity in Lipopolysaccharide-Stimulated RAW 264.7 Cells. J. Med. Food 2015, 18, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Kumpulainen, J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem. 2002, 50, 3660–3667. [Google Scholar] [CrossRef] [PubMed]
- Kivilompolo, M.; Oburka, V.; Hyotylainen, T. Comparison of GC-MS and LC-MS methods for the analysis of antioxidant phenolic acids in herbs. Anal. Bioanal. Chem. 2007, 388, 881–887. [Google Scholar] [CrossRef]
- Khan, K.A.; Kumar, N.; Nayak, P.G.; Nampoothiri, M.; Shenoy, R.R.; Krishnadas, N.; Rao, C.M.; Mudgal, J. Impact of caffeic acid on aluminium chloride-induced dementia in rats. J. Pharm. Pharmacol. 2013, 65, 1745–1752. [Google Scholar] [CrossRef]
- Oboh, G.; Agunloye, O.M.; Akinyemi, A.J.; Ademiluyi, A.O.; Adefegha, S.A. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem. Res. 2013, 38, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Wang, Q.; Choi, J.M.; Lee, S.; Cho, E.J. Protective role of caffeic acid in an Abeta25-35-induced Alzheimer’s disease model. Nutr. Res. Pract. 2015, 9, 480–488. [Google Scholar] [CrossRef]
- Minger, S.L.; Esiri, M.M.; McDonald, B.; Keene, J.; Carter, J.; Hope, T.; Francis, P.T. Cholinergic deficits contribute to behavioral disturbance in patients with dementia. Neurology 2000, 55, 1460–1467. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Zou, Y.; Wang, L.F. Neurotransmitters in Prevention and Treatment of Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 3841. [Google Scholar] [CrossRef]
- Baskin, D.S.; Browning, J.L.; Pirozzolo, F.J.; Korporaal, S.; Baskin, J.A.; Appel, S.H. Brain choline acetyltransferase and mental function in Alzheimer disease. Arch. Neurol. 1999, 56, 1121–1123. [Google Scholar] [CrossRef]
- Serita, T.; Fukushima, H.; Kida, S. Constitutive activation of CREB in mice enhances temporal association learning and increases hippocampal CA1 neuronal spine density and complexity. Sci. Rep.-UK 2017, 7, 42528. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, C.; Huang, Y.Y.; Paletzki, R.F.; Bourtchouladze, R.; Scanlin, H.; Vronskaya, S.; Kandel, E.R. Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 2002, 34, 447–462. [Google Scholar] [CrossRef]
- Saura, C.A.; Valero, J. The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev. Neurosci. 2011, 22, 153–169. [Google Scholar]
- Paxinos, G.; Watson, C.; Pennisi, M.; Topple, A. Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J. Neurosci. Methods 1985, 13, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Cha, K.S.; Han, J.Y.; Kim, H.J.; Kim, J.S. Effect of antioxidant probucol for preventing stent restenosis. Catheter. Cardiovasc. Interv. 2002, 57, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.S.; Jeong, H.J.; Han, M.J.; Park, S.T.; Seong, K.K.; Baek, S.H.; Jeong, D.M.; Kim, M.J.; Kim, H.M. Nitric oxide and tumor necrosis factor-alpha production by Ixeris dentata in mouse peritoneal macrophages. J. Ethnopharmacol. 2002, 82, 217–222. [Google Scholar] [CrossRef]
- Saenno, R.; Dornlakorn, O.; Anosri, T.; Kaewngam, S.; Sirichoat, A.; Aranarochana, A.; Pannangrong, W.; Wigmore, P.; Welbat, J.U. Caffeic Acid Alleviates Memory and Hippocampal Neurogenesis Deficits in Aging Rats Induced by D-Galactose. Nutrients 2022, 14, 2169. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Park, J.S.; Kang, M.H.; Lee, H.J.; Ali, J.; Tahir, M.; Choe, K.; Kim, M.O. Caffeic Acid, a Polyphenolic Micronutrient Rescues Mice Brains against Aβ-Induced Neurodegeneration and Memory Impairment. Antioxidants 2023, 12, 1284. [Google Scholar] [CrossRef]
- Othman, M.Z.; Hassan, Z.; Che Has, A.T. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory. Exp. Anim. Tokyo 2021, 71, 264–280. [Google Scholar] [CrossRef]
- Ye, M.; Han, B.H.; Kim, J.S.; Kim, K.; Shim, I. Neuroprotective Effect of Bean Phosphatidylserine on TMT-Induced Memory Deficits in a Rat Model. Int. J. Mol. Sci. 2020, 21, 4901. [Google Scholar] [CrossRef]
- Wang, H.T.; Xu, J.P.; Lazarovici, P.; Quirion, R.H.; Zheng, W.H. cAMP Response Element-Binding Protein (CREB): A Possible Signaling Molecule Link in the Pathophysiology of Schizophrenia. Front. Mol. Neurosci. 2018, 11, 255. [Google Scholar]
- Amidfar, M.; de Oliveira, J.; Kucharska, E.; Budni, J.; Kim, Y.K. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci. 2020, 257, 118020. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, M.; Jang, D.; Lee, S.-y.; Kim, K.-R.; Rhie, S.J.; Oh, J.K.; Shim, I. Neuroprotective Effect of Ixeris dentata Extract on Trimethyltin-Induced Memory Impairment in Rats. Curr. Issues Mol. Biol. 2024, 46, 11772-11782. https://doi.org/10.3390/cimb46110699
Ye M, Jang D, Lee S-y, Kim K-R, Rhie SJ, Oh JK, Shim I. Neuroprotective Effect of Ixeris dentata Extract on Trimethyltin-Induced Memory Impairment in Rats. Current Issues in Molecular Biology. 2024; 46(11):11772-11782. https://doi.org/10.3390/cimb46110699
Chicago/Turabian StyleYe, Minsook, Daehyuk Jang, Sun-young Lee, Kyu-Ri Kim, Sung Ja Rhie, Jin Kyung Oh, and Insop Shim. 2024. "Neuroprotective Effect of Ixeris dentata Extract on Trimethyltin-Induced Memory Impairment in Rats" Current Issues in Molecular Biology 46, no. 11: 11772-11782. https://doi.org/10.3390/cimb46110699
APA StyleYe, M., Jang, D., Lee, S. -y., Kim, K. -R., Rhie, S. J., Oh, J. K., & Shim, I. (2024). Neuroprotective Effect of Ixeris dentata Extract on Trimethyltin-Induced Memory Impairment in Rats. Current Issues in Molecular Biology, 46(11), 11772-11782. https://doi.org/10.3390/cimb46110699