Genome-Wide Identification and Expression Analysis of the REF Genes in 17 Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Public Data Acquisition and Organization
2.2. Identification of REF Genes and Modification of Genome Annotation Files
2.3. Analysis of REF Protein Domains, Motifs, Gene Structure, Physicochemical Properties, Pathways, and Subcellular Localization
2.4. Conserved Motif Analysis of the REF Protein Sequences
2.5. Construction of REF Gene Phylogenetic Tree
2.6. Prediction of REF Proteins’ Tertiary Structure
2.7. Chromosomal Localization of the REF Genes
2.8. Collinearity Analysis of the REF Genes
2.9. Analysis of REF Gene Expression Patterns Based on Transcriptome Data
3. Results
3.1. Identification of REF Genes in 17 Plant Species
3.2. Conservation Analysis of REF Protein Conserved Amino Acid Sequences
3.3. Physicochemical Properties Analysis of REF Proteins
3.4. Phylogenetic Relationship of REF Proteins in Different Species
3.5. Prediction of REF Protein Tertiary Structures
3.6. Chromosomal Localization
3.7. Cross-Species Collinearity Analysis of REF Genes
3.8. Expression Analysis of REF Genes
4. Discussion
4.1. Distribution of REF Genes in Plants
4.2. Structure and Evolutionary Relationships of REF Protein in Plants
4.3. Phylogenetic Relationships of REF Genes in Different Plants
4.4. Tertiary Structure of REF Proteins
4.5. Transcriptomic Analysis of REF Gene Expression Profiles in Different Plants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venkatachalam, P.; Geetha, N.; Sangeetha, P.; Thulaseedharan, A. Natural rubber producing plants: An overview. Afr. J. Biotechnol. 2013, 12, 1297–1310. [Google Scholar]
- Pareed, A.O.; Kumaran, M.P. Price volatility and its impact on rubber cultivation in India–An analysis of recent trends. J. Acad. Res. Econ. 2017, 9, 293–312. [Google Scholar]
- Nicod, T.; Bathfield, B.; Bosc, P.-M.; Promkhambut, A.; Duangta, K.; Chambon, B. Households’ livelihood strategies facing market uncertainties: How did Thai farmers adapt to a rubber price drop? Agric. Syst. 2020, 182, 102846. [Google Scholar] [CrossRef]
- Neadkhun, P.; Borisutdhi, Y.; Simarak, S.; Panpakdee, C. Coping strategies of rubber farmers in Bueng Kan, Thailand during a period of price fluctuations. J. Arts Soc. Sci. Stud. 2023, 23, 273–283. [Google Scholar]
- Cornish, K. Similarities and differences in rubber biochemistry among plant species. Phytochemistry 2001, 57, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Baboo, M.; Dixit, M.; Sharma, K.; Saxena, N. Activation energy and thermo-mechanical properties of trans-polyisoprene and liquid cis-polyisoprene blends. Thermochim. Acta 2010, 502, 47–50. [Google Scholar] [CrossRef]
- Boochathum, P.; Prajudtake, W. Vulcanization of cis-and trans-polyisoprene and their blends: Cure characteristics and crosslink distribution. Eur. Polym. J. 2001, 37, 417–427. [Google Scholar] [CrossRef]
- Bushman, B.S.; Scholte, A.A.; Cornish, K.; Scott, D.J.; Brichta, J.L.; Vederas, J.C.; Ochoa, O.; Michelmore, R.W.; Shintani, D.K.; Knapp, S.J. Identification and comparison of natural rubber from two Lactuca species. Phytochemistry 2006, 67, 2590–2596. [Google Scholar] [CrossRef]
- Lloyd, F.E. Guayule (Parthenium Argentatum Gray): A Rubber-Plant of the Chihuahuan Desert; Carnegie Institution of Washington: Washington, DC, USA, 1911; Volume 139. [Google Scholar]
- Azahar, N.; Hassan, N.; Jaya, R.P.; Kadir, M.; Yunus, N.; Mahmud, M.Z.H. An overview on natural rubber application for asphalt modification. Int. J. Agric. 2016, 2, 212–218. [Google Scholar]
- Nakazawa, Y.; Bamba, T.; Takeda, T.; Uefuji, H.; Harada, Y.; Li, X.; Chen, R.; Inoue, S.; Tutumi, M.; Shimizu, T. Production of Eucommia-rubber from Eucommia ulmoides Oliv. (hardy rubber tree). J. Plant Biol. 2009, 26, 71–79. [Google Scholar] [CrossRef]
- Cornish, K. Alternative natural rubber crops: Why should we care? Technol. Innov. 2017, 18, 244–255. [Google Scholar] [CrossRef]
- Hagel, J.M.; Yeung, E.C.; Facchini, P.J. Got milk? The secret life of laticifers. Trends Plant Sci. 2008, 13, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Rivano, F.; Vera, J.; Cevallos, V.; Lacote, R.; Gohet, E. Productivity evaluation of 10 Hevea brasiliensis clones in Ecuador under escape conditions for South American leaf blight. Sci. Rep. 2024, 27, 517–528. [Google Scholar] [CrossRef]
- Tian, M.; Li, W.; Luo, P.; He, J.; Zhang, H.; Yan, Q.; Ye, Y.J.S.R. Genetic diversity analysis and core germplasm bank construction in cold resistant germplasm of rubber trees (Hevea brasiliensis). Sci. Rep. 2024, 14, 14533. [Google Scholar] [CrossRef] [PubMed]
- Jara, F.M.; García-Martínez, M.d.l.M.; López-Córcoles, H.; Carrión, M.E.; Zalacain, A.; Carmona, M.J.P. Evaluating Guayule (Parthenium argentatum A. Gray) Germplasm Grown in Spain: Rubber and Resin along Three Production Cycles. J. Plant Res. 2024, 13, 1092. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Han, D.; Tian, X.; Ma, D.; Jie, X.; Zhang, J. Extraction process and characterization of Taraxacum kok-saghyz (TKS) latex. Heliyon 2024, 10, e25351. [Google Scholar] [CrossRef]
- Ning, Y.; Yang, D.-D.; Yu, X.-C.; Cao, X. Multi-omics-driven development of alternative crops for natural rubber production. J. Integr. Agric. 2023, 22, 959–971. [Google Scholar]
- Chen, Z.; Dong, Q.; Wang, X.; Hu, S.; Yin, D.; Liu, L.; Zhang, J.; Zhao, X. Bio-based Eucommia ulmoides gum composites for high-performance engineering tire applications. Ind. Crops Prod. 2024, 208, 117911. [Google Scholar] [CrossRef]
- Dai, L.; Yang, H.; Zhao, X.; Wang, L. Identification of cis conformation natural rubber and proteins in Ficus altissima Blume latex. Plant Physiol. Biochem. 2021, 167, 376–384. [Google Scholar] [CrossRef]
- Van Beilen, J.B.; Poirier, Y. Guayule and Russian dandelion as alternative sources of natural rubber. Crit. Rev. Biotechnol. 2007, 27, 217–231. [Google Scholar] [CrossRef]
- Mooibroek, H.; Cornish, K. Alternative sources of natural rubber. Appl. Microbiol. Biotechnol. 2000, 53, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Lau, N.-S.; Makita, Y.; Kawashima, M.; Taylor, T.D.; Kondo, S.; Othman, A.S.; Shu-Chien, A.C.; Matsui, M. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis. Sci. Rep. 2016, 6, 28594. [Google Scholar] [CrossRef] [PubMed]
- Uthup, T.K.; Rajamani, A.; Ravindran, M.; Saha, T. Distinguishing CPT gene family members and vetting the sequence structure of a putative rubber synthesizing variant in Hevea brasiliensis. Gene 2019, 689, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Asawatreratanakul, K.; Zhang, Y.W.; Wititsuwannakul, D.; Wititsuwannakul, R.; Takahashi, S.; Rattanapittayaporn, A.; Koyama, T. Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis: A key factor participating in natural rubber biosynthesis. Eur. J. Biochem. 2003, 270, 4671–4680. [Google Scholar] [CrossRef]
- Yokota, S.; Suzuki, Y.; Saitoh, K.; Kitajima, S.; Ohya, N.; Gotoh, T. Cloning and Aggregation Characterization of Rubber Elongation Factor and Small Rubber Particle Protein from Ficus carica. Mol. Biotechnol. 2018, 60, 83–91. [Google Scholar] [CrossRef]
- Sando, T.; Hayashi, T.; Takeda, T.; Akiyama, Y.; Nakazawa, Y.; Fukusaki, E.; Kobayashi, A. Histochemical study of detailed laticifer structure and rubber biosynthesis-related protein localization in Hevea brasiliensis using spectral confocal laser scanning microscopy. Planta 2009, 230, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Berthelot, K.; Lecomte, S.; Estevez, Y.; Coulary-Salin, B.; Peruch, F. Homologous Hevea brasiliensis REF (Hevb1) and SRPP (Hevb3) present different auto-assembling. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2014, 1844, 473–485. [Google Scholar] [CrossRef]
- Yamashita, S.; Yamaguchi, H.; Waki, T.; Aoki, Y.; Mizuno, M.; Yanbe, F.; Ishii, T.; Funaki, A.; Tozawa, Y.; Miyagi-Inoue, Y. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis. eLife 2016, 5, e19022. [Google Scholar] [CrossRef]
- Brown, D.; Feeney, M.; Ahmadi, M.; Lonoce, C.; Sajari, R.; Di Cola, A.; Frigerio, L. Subcellular localization and interactions among rubber particle proteins from Hevea brasiliensis. J. Exp. Bot. 2017, 68, 5045–5055. [Google Scholar] [CrossRef]
- Wadeesirisak, K.; Castano, S.; Berthelot, K.; Vaysse, L.; Bonfils, F.; Peruch, F.; Rattanaporn, K.; Liengprayoon, S.; Lecomte, S.; Bottier, C. Rubber particle proteins REF1 and SRPP1 interact differently with native lipids extracted from Hevea brasiliensis latex. Biochim. Biophys. Acta-Biomembr. 2017, 1859, 201–210. [Google Scholar] [CrossRef]
- Fang, Y.; Xiao, X.; Lin, J.; Lin, Q.; Wang, J.; Liu, K.; Li, Z.; Xing, J.; Liu, Z.; Wang, B.J.N.C. Pan-genome and phylogenomic analyses highlight Hevea species delineation and rubber trait evolution. Nat. Commun. 2024, 15, 7232. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Jeffryes, M.; Bateman, A.; Finn, R.D. The HMMER web server for protein sequence similarity search. Curr. Protoc. Bioinform. 2017, 60, 3–15. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Ponting, C. TreeBeST: Tree Building Guided by Species Tree. 2007. Available online: https://github.com/Ensembl/treebest (accessed on 28 September 2023).
- Cramer, P. AlphaFold2 and the future of structural biology. Nat. Struct. Mol. Biol. 2021, 28, 704–705. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Chan, H.S.; Hu, Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip. Rev. 2017, 7, e1298. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar]
- Liao, Y.; Smyth, G.K.; Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019, 47, e47. [Google Scholar]
- Cheng, H.; Song, X.; Hu, Y.; Wu, T.; Yang, Q.; An, Z.; Feng, S.; Deng, Z. Chromosome-level wild Hevea brasiliensis genome provides new tools for genomic-assisted breeding and valuable loci to elevate rubber yield. Plant Biotechnol. J. 2023, 21, 1058–1072. [Google Scholar] [CrossRef]
- Tsitsekian, D.; Daras, G.; Alatzas, A.; Templalexis, D.; Hatzopoulos, P.; Rigas, S. Comprehensive analysis of Lon proteases in plants highlights independent gene duplication events. J. Exp. Bot. 2019, 70, 2185–2197. [Google Scholar] [CrossRef] [PubMed]
- Soltis, D.E.; Ma, H.; Frohlich, M.W.; Soltis, P.S.; Albert, V.A.; Oppenheimer, D.G.; Altman, N.S.; Depamphilis, C.; Leebens-Mack, J. The floral genome: An evolutionary history of gene duplication and shifting patterns of gene expression. Trends Plant Sci. 2007, 12, 358–367. [Google Scholar] [CrossRef]
- Ding, Z.; Fu, L.; Tan, D.; Sun, X.; Zhang, J. An integrative transcriptomic and genomic analysis reveals novel insights into the hub genes and regulatory networks associated with rubber synthesis in H. brasiliensis. Ind. Crops Prod. 2020, 153, 112562. [Google Scholar] [CrossRef]
- Janies, D.; DeSalle, R. Development, evolution, and corroboration. Technol. Innov. 1999, 257, 6–14. [Google Scholar] [CrossRef]
- Takahashi, H.; Buchner, P.; Yoshimoto, N.; Hawkesford, M.J.; Shiu, S.-H. Evolutionary relationships and functional diversity of plant sulfate transporters. Front. Plant Sci. 2012, 2, 119. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Huan, J.; Liu, J.; Prins, J.; Snoeyink, J.; Wang, W.; Tropsha, A. Functional neighbors: Inferring relationships between nonhomologous protein families using family-specific packing motifs. IEEE Trans. 2010, 14, 1137–1143. [Google Scholar] [CrossRef]
- Xu, L.; Feng, G.; Yang, Z.; Xu, X.; Huang, L.; Yang, Q.; Zhang, X. Genome-wide AP2/ERF gene family analysis reveals the classification, structure, expression profiles and potential function in orchardgrass (Dactylis glomerata). Mol. Biol. Rep. 2020, 47, 5225–5241. [Google Scholar] [CrossRef]
- Horn, P.J.; James, C.N.; Gidda, S.K.; Kilaru, A.; Dyer, J.M.; Mullen, R.T.; Ohlrogge, J.B.; Chapman, K.D. Identification of a new class of lipid droplet-associated proteins in plants. Plant Physiol. 2013, 162, 1926–1936. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.-H.; Zhang, H.-B.; Sheng, J.; Li, K.; Zhang, Q.-J.; Kim, C.; Zhang, Y.; Liu, Y.; Zhu, T.; Li, W. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol. Plant 2017, 10, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Harms, M.J.; Thornton, J.W. Analyzing protein structure and function using ancestral gene reconstruction. Curr. Opin. Struct. Biol. 2010, 20, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W. Improved protein structure prediction using potentials from deep learning. Nat. Rev. Genet. 2020, 577, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Priya, P.; Venkatachalam, P.; Thulaseedharan, A. Differential expression pattern of rubber elongation factor (REF) mRNA transcripts from high and low yielding clones of rubber tree (Hevea brasiliensis Muell. Arg.). Plant Cell Rep. 2007, 26, 1833–1838. [Google Scholar] [CrossRef]
- Dennis, M.S.; Light, D. Rubber elongation factor from Hevea brasiliensis: Identification, characterization, and role in rubber biosynthesis. Biol. Chem. 1989, 264, 18608–18617. [Google Scholar] [CrossRef]
- Cherian, S.; Ryu, S.B.; Cornish, K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnol. J. 2019, 17, 2041–2061. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.; Ma, C.; Lin, Y.; Yin, J.; Zhu, L.; Yuan, Z.; Zhang, D. Genome-Wide Identification and Expression Analysis of the REF Genes in 17 Species. Curr. Issues Mol. Biol. 2024, 46, 11797-11816. https://doi.org/10.3390/cimb46110701
Fang J, Ma C, Lin Y, Yin J, Zhu L, Yuan Z, Zhang D. Genome-Wide Identification and Expression Analysis of the REF Genes in 17 Species. Current Issues in Molecular Biology. 2024; 46(11):11797-11816. https://doi.org/10.3390/cimb46110701
Chicago/Turabian StyleFang, Jinkai, Chi Ma, Yu Lin, Junjun Yin, Lijuan Zhu, Zhineng Yuan, and Dan Zhang. 2024. "Genome-Wide Identification and Expression Analysis of the REF Genes in 17 Species" Current Issues in Molecular Biology 46, no. 11: 11797-11816. https://doi.org/10.3390/cimb46110701
APA StyleFang, J., Ma, C., Lin, Y., Yin, J., Zhu, L., Yuan, Z., & Zhang, D. (2024). Genome-Wide Identification and Expression Analysis of the REF Genes in 17 Species. Current Issues in Molecular Biology, 46(11), 11797-11816. https://doi.org/10.3390/cimb46110701