Effective Use of Euphorbia milii DCM Root Extract Encapsulated by Thermosensitive Immunoliposomes for Targeted Drug Delivery in Prostate Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Extraction
2.3. Phytochemical Analysis
2.3.1. Determination of Phytosterols
2.3.2. Determination of Pentose
2.3.3. Determination of Tannins
2.3.4. Determination of Glycosides
2.3.5. Determination of Triterpenoids
2.3.6. Determination of Anthraquinones
2.3.7. Determination of Saponins
2.3.8. Determination of Flavonoids
2.3.9. Determination of Alkaloids
2.4. Cell Culture
2.5. Synthesis of Heat-Sensitive Liposomes
2.6. Cytotoxic Activity of Docetaxel-Loaded Liposomes and EME Liposomes
2.7. Liposome Conjugation
2.8. Weighing of Liposomes
2.9. Protein Analysis
2.10. Characterization of Liposomes
2.10.1. Transmission Electron Microscopy (TEM)
2.10.2. Scanning Electron Microscopy (SEM)
2.10.3. Determination of Encapsulation Efficiency
2.11. Statistical Analysis
3. Results
3.1. Phytochemical Composition of E. milii
3.2. Growth Inhibition of DU145 Cell Anti-Proliferation Assay
3.3. Characterization of Heat-Sensitive Liposomes
3.4. Protein Conjugation
3.5. HPLC/LCMS for Drug Encapsulation
3.6. Cytotoxic Activities of EME- and Docetaxel-Loaded Immunoliposomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DCM | Dichloromethane |
MeOH | Methanol |
PSMA | Prostate–specific membrane antigen |
TSL | Thermosensitive liposomes |
DMSO4 | Dimethyl sulfoxide |
DMEM | Dulbecco’s modified Eagle’s medium |
FBS | Fetal bovine serum |
TC | Transition temperature |
HSCP | L-α-phosphatidylcholine, hydrogenated (soybean) |
Appendix A
References
- Barbieri, C.E.; Bangma, C.H.; Bjartell, A.; Catto, J.W.; Culig, Z.; Grönberg, H.; Luo, J.; Visakorpi, T.; Rubin, M.A. The mutational landscape of prostate cancer. Eur. Urol. 2013, 64, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Haas, G.P.; Delongchamps, N.; Brawley, O.W.; Wang, C.Y.; de la Roza, G. The worldwide epidemiology of prostate cancer: Perspectives from autopsy studies. Can. J. Urol. 2008, 15, 3866. [Google Scholar] [PubMed]
- Abbas, Z.; Rehman, S. An overview of cancer treatment modalities. Neoplasm 2018, 1, 139–157. [Google Scholar]
- Lakshmanan, V.-K. Therapeutic efficacy of nanomedicines for prostate cancer: An update. Investig. Clin. Urol. 2016, 57, 21. [Google Scholar] [CrossRef] [PubMed]
- García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials 2019, 9, 638. [Google Scholar] [CrossRef]
- Pande, S. Liposomes for drug delivery: Review of vesicular composition, factors affecting drug release and drug loading in liposomes. Artif. Cells Nanomed. Biotechnol. 2023, 51, 428–440. [Google Scholar] [CrossRef]
- Rich, G.T.; Buchweitz, M.; Winterbone, M.S.; Kroon, P.A.; Wilde, P.J. Towards an understanding of the low bioavailability of quercetin: A study of its interaction with intestinal lipids. Nutrients 2017, 9, 111. [Google Scholar] [CrossRef]
- Giordani, S.; Marassi, V.; Zattoni, A.; Roda, B.; Reschiglian, P. Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols. J. Pharm. Biomed. Anal. 2023, 236, 115751. [Google Scholar] [CrossRef]
- Rommasi, F.; Esfandiari, N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res. Lett. 2021, 16, 95. [Google Scholar] [CrossRef]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef]
- Bi, H.; Xue, J.; Jiang, H.; Gao, S.; Yang, D.; Fang, Y.; Shi, K. Current developments in drug delivery with thermosensitive liposomes. Asian J. Pharm. Sci. 2019, 14, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Huang, W.; Seynhaeve, A.L.; Ten Hagen, T.L. Hyperthermia and temperature–sensitive nanomaterials for spatiotemporal drug delivery to solid tumors. Pharmaceutics 2020, 12, 1007. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett. 2017, 190, 64–83. [Google Scholar] [CrossRef]
- Tiwari, P.; Yadav, K.; Shukla, R.P.; Gautam, S.; Marwaha, D.; Sharma, M.; Mishra, P.R. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J. Control Release 2023, 363, 290–348. [Google Scholar] [CrossRef]
- Eroğlu, İ.; İbrahim, M. Liposome–ligand conjugates: A review on the current state of art. J. Drug Target. 2020, 28, 225–244. [Google Scholar] [CrossRef]
- Shaik, B.B.; Katari, N.K.; Jonnalagadda, S.B. Role of natural products in developing novel anticancer agents: A perspective. Chem. Biodivers. 2022, 19, e202200535. [Google Scholar] [CrossRef]
- Rahman, A.; Akter, M. Taxonomy and medicinal uses of Euphorbiaceae (Spurge) family of Rajshahi, Bangladesh. Res. Plant Sci. 2013, 1, 74–80. [Google Scholar]
- Kaur, R.; Kumar, J. Phytochemical screening, antioxidant activity and metal binding studies on floral extracts of Euphorbia milii. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Razanajatovo, H. Euphorbia milii. IUCN Red List of Threatened Species. 2020. Available online: https://doi.org/10.2305/IUCN.UK.2020-1.RLTS.T44389A153299391.en (accessed on 23 June 2021).
- Salehi, B.; Iriti, M.; Vitalini, S.; Antolak, H.; Pawlikowska, E.; Kręgiel, D.; Sharifi-Rad, J.; Oyeleye, S.I.; Ademiluyi, A.O.; Czopek, K. Euphorbia-derived natural products with potential for use in health maintenance. Biomolecules 2019, 9, 337. [Google Scholar] [CrossRef]
- Haleshappa, R.; Keshamma, E.; Girija, C.R.; Thanmayi, M.; Nagesh, C.G.; Lubna Fahmeen, G.H.; Lavanya, M.; Patil, S.J. Phytochemical Study and Antioxidant Properties of Ethanolic Extracts of Euphorbia milii. Asian J. Biol. Sci. 2020, 13, 77–82. [Google Scholar] [CrossRef]
- Negm, W.A.; Elekhnawy, E.; Mokhtar, F.A.; Binsuwaidan, R.; Attallah, N.G.; Mostafa, S.A.; Moglad, E.; Ibrahim, S.; Al-Fakhrany, O.M.; Eliwa, D. Phytochemical inspection and anti-inflammatory potential of Euphorbia milii Des Moul. integrated with network pharmacology approach. Arab. J. Chem. 2024, 17, 105568. [Google Scholar] [CrossRef]
- Bhandary, S.K.; Bhat, V.S.; Sharmila, K.P.; Bekal, M.P. Preliminary phytochemical screening of various extracts of Punica granatum peel, whole fruit and seeds. J. Health Allied Sci. NU 2012, 2, 34–38. [Google Scholar] [CrossRef]
- Yusuf, A.; Zakir, A.; Shemau, Z.; Abdullahi, M.; Halima, S.A. Phytochemical analysis of the methanol leaves extract of Paullinia pinnata linn. J. Pharmacogn. Phytother. 2014, 6, 10–16. [Google Scholar] [CrossRef]
- Inayat, N.; Zahir Muhammad, R.; Majeed, A. Phytochemical screening and allelopathic evaluation of aqueous and methanolic leaf extracts of Populus nigra L. Pure Appl. Biol. (PAB) 2020, 9, 956–962. [Google Scholar]
- Lodie, T.A.; Blickarz, C.E.; Devarakonda, T.J.; He, C.; Dash, A.B.; Clarke, J.; Gleneck, K.; Shihabuddin, L.; Tubo, R. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Eng. 2002, 8, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Malik, P.; Mukherjee, T.K. Common Reagents and Medium for Mammalian Cell Culture. In Practical Approach to Mammalian Cell and Organ Culture; Springer: Berlin/Heidelberg, Germany, 2023; pp. 137–185. [Google Scholar]
- Lu, L.; Ding, Y.; Zhang, Y.; Ho, R.J.; Zhao, Y.; Zhang, T.; Guo, C. Antibody-modified liposomes for tumor-targeting delivery of timosaponin AIII. Int. J. Nanomed. 2018, 13, 1927–1944. [Google Scholar] [CrossRef]
- Kurmi, B.D.; Paliwal, S.R. Development and optimization of TPGS-based stealth liposome of doxorubicin using Box–Behnken design: Characterization, hemocompatibility, and cytotoxicity evaluation in breast cancer cells. J. Liposome Res. 2022, 32, 129–145. [Google Scholar] [CrossRef]
- Shukla, R.S.; Tai, W.; Mahato, R.; Jin, W.; Cheng, K. Development of streptavidin-based nanocomplex for siRNA delivery. Mol. Pharm. 2013, 10, 4534–4545. [Google Scholar] [CrossRef]
- Mofolo, M.J.; Kadhila, P.; Chinsembu, K.C.; Mashele, S.; Sekhoacha, M. Green synthesis of silver nanoparticles from extracts of Pechuel-loeschea leubnitziae: Their anti-proliferative activity against the U87 cell line. Inorg. Nano-Met. Chem. 2020, 50, 949–955. [Google Scholar] [CrossRef]
- Tyagi, T.; Agarwal, M. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J. Pharmacogn. Phytochem. 2017, 6, 195–206. [Google Scholar]
- Elekofehinti, O.O.; Iwaloye, O.; Olawale, F.; Ariyo, E.O. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology 2021, 28, 250–272. [Google Scholar] [CrossRef] [PubMed]
- Nugraha, A.T.; Ramadani, A.P.; Werdyani, S.; Pratiwi, I.A.; Juniardy, T.; Arfadila, S.; Mahardhika, M.R.P. Cytotoxic activity of flavonoid from local plant Eriocaulon cinereum RB against MCF-7 breast cancer cells. J. Adv. Pharm. Technol. Res. 2021, 12, 425. [Google Scholar] [CrossRef] [PubMed]
- Saleem, H.; Zengin, G.; Locatelli, M.; Mollica, A.; Ahmad, I.; Mahomoodally, F.M.; Abidin, S.A.Z.; Ahemad, N. In vitro biological propensities and chemical profiling of Euphorbia milii Des Moul (Euphorbiaceae): A novel source for bioactive agents. Ind. Crops Prod. 2019, 130, 9–15. [Google Scholar] [CrossRef]
- Shukla, S.; Mehta, A. Anticancer potential of medicinal plants and their phytochemicals: A review. Braz. J. Bot. 2015, 38, 199–210. [Google Scholar] [CrossRef]
- Shaker, K.H.; Zohair, M.M.; Hassan, A.Z.; Sweelam, H.T.M.; Ashour, W.E. LC–MS/MS and GC–MS based phytochemical perspectives and antimicrobial effects of endophytic fungus Chaetomium ovatoascomatis isolated from Euphorbia milii. Arch. Microbiol. 2022, 204, 661. [Google Scholar] [CrossRef] [PubMed]
- Chohan, T.A.; Sarfraz, M.; Rehman, K.; Muhammad, T.; Ghori, M.U.; Khan, K.M.; Afzal, I.; Akash, M.S.H.; Malik, A.; Chohan, T.A. Phytochemical profiling, antioxidant and antiproliferation potential of Euphorbia milii var.: Experimental analysis and in-silico validation. Saudi J. Biol. Sci. 2020, 27, 3025–3034. [Google Scholar] [CrossRef]
- Direko, P.; Mfengwana, H.; Mashele, S.; Sekhoacha, M. Investigating the angiogenic modulating properties of Spirostachys africana in MCF-7 breast cancer cell line. Int. J. Pharmacol. 2019, 15, 970–977. [Google Scholar] [CrossRef]
- Radi, M.H.; El-Shiekh, R.A.; El-Halawany, A.M.; Al-Abd, A.M.; Abdel-Sattar, E. In Vitro Cytotoxic Study of Euphorbia grantii Oliv. Aerial Parts against MCF-7 and MCF-7ADR Breast Cancer Cell Lines: A Bioactivity-Guided Isolation. ACS Omega 2023, 8, 18299–18305. [Google Scholar] [CrossRef]
- Ebrahim, H.Y.; Osman, S.A.; Haffez, H.R.; Hassan, Z.A. In-vitro screening of some plant extracts for their potential anticancer activity. Afr. J. Tradit. Complement. Altern. Med. 2020, 17, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Li, X.; Li, F.; Lee, R.J.; Sun, F.; Li, Y.; Liu, Z.; Teng, L. Trastuzumab-coated nanoparticles loaded with docetaxel for breast cancer therapy. Dose-Response 2019, 17, 1559325819872583. [Google Scholar] [CrossRef]
- Hussain, M.T.; Forbes, N.; Perrie, Y. Comparative analysis of protein quantification methods for the rapid determination of protein loading in liposomal formulations. Pharmaceutics 2019, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Al-Ahmady, Z.S.; Chaloin, O.; Kostarelos, K. Monoclonal antibody-targeted, temperature-sensitive liposomes: In vivo tumor chemotherapeutics in combination with mild hyperthermia. J. Control Release 2014, 196, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, J.; Suri, K.; Yang, Y.; Shen, J.; Celia, C.; Fresta, M.; Zhao, Y.; Shen, H.; Ferrari, M. Shrinkage of pegylated and non-pegylated liposomes in serum. Colloids Surf. B Biointerfaces 2014, 114, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.G.M.; Ming, L.C.; Lee, K.S.; Yuen, K.H. Influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Pharmaceutics 2016, 8, 25. [Google Scholar] [CrossRef]
- Alavizadeh, S.H.; Gheybi, F.; Nikpoor, A.R.; Badiee, A.; Golmohammadzadeh, S.; Jaafari, M.R. Therapeutic efficacy of cisplatin thermosensitive liposomes upon mild hyperthermia in C26 tumor bearing BALB/c mice. Mol. Pharm. 2017, 14, 712–721. [Google Scholar] [CrossRef]
- Du, Q.; Ding, X.-Q.; Gao, F.; Cui, B.; Wang, T.-Y.; Chen, F.-Y.; Chen, L.; Chen, H.-Y.; Cui, H.-X.; Wang, Y. Thermo-responsive liposome nano-vesicles for co-delivery of emamectin benzoate and nitenpyram with synergistic pest control. Chem. Eng. J. 2024, 479, 147548. [Google Scholar] [CrossRef]
Phytochemicals | Leaves | Stems | Roots |
---|---|---|---|
Glycosides | + | + | + |
Phytosterols | + | + | + |
Saponins | − | − | + |
Anthraquinones | + | + | + |
Pentose | + | + | + |
Alkaloids | − | − | + |
Tannins | + | + | + |
Triterpenoids | − | + | − |
Flavonoids | − | + | + |
Samples | Concentration (µg/mL) |
---|---|
EME 1.41 | Y = 817.47(1.41) − 162.48 = 990.1527 |
Standard drug 1.774 | Y = 817.47(1.774) − 162.48 = 1287.712 |
Sample Name | Analyte Peak Name | Analyte Peak Area (Counts) | Analyte Peak Height (cps) | Calculated Concentration (µg/mL) |
---|---|---|---|---|
EME | Mass 271 | 1.98 × 107 | 1.23 × 106 | 0 |
EME | Mass 301 | 1.66 × 107 | 6.54 × 105 | 0 |
EME | Mass 318 | 2.62 × 107 | 1.44 × 106 | 0 |
EME | Mass 352 | 4.73 × 106 | 2.12 × 105 | 0 |
EME | Mass 637 | 5.39 × 105 | 1.57 × 104 | 0 |
EME | Mass 678 | 1.28 × 105 | 2.89 × 103 | 0 |
EME | Mass 754 | 2.17 × 106 | 1.74 × 105 | 0 |
EME | Mass 796 | 9.67 × 106 | 6.87 × 105 | 0 |
EME | Dox | 6.78 × 106 | 6.66 × 105 | 0.607 |
Table Sample Name | Analyte Peak Name | Analyte Peak Area (Counts) | Analyte Peak Height (cps) | Calculated Concentration |
---|---|---|---|---|
Free EME | Mass 796 | 4.33 × 107 | 2.24 × 106 | 0 |
EME—encapsulating liposomes | Mass 796 | 1.69 × 107 | 1.10 × 106 | 0 |
Free DOC | DOC | 1.75 × 106 | 1.12 × 105 | 9 |
DOC—encapsulating liposomes | DOC | 1.1 × 106 | 7.70 × 104 | 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riet, K.; Adegoke, A.; Mashele, S.; Sekhoacha, M. Effective Use of Euphorbia milii DCM Root Extract Encapsulated by Thermosensitive Immunoliposomes for Targeted Drug Delivery in Prostate Cancer Cells. Curr. Issues Mol. Biol. 2024, 46, 12037-12060. https://doi.org/10.3390/cimb46110714
Riet K, Adegoke A, Mashele S, Sekhoacha M. Effective Use of Euphorbia milii DCM Root Extract Encapsulated by Thermosensitive Immunoliposomes for Targeted Drug Delivery in Prostate Cancer Cells. Current Issues in Molecular Biology. 2024; 46(11):12037-12060. https://doi.org/10.3390/cimb46110714
Chicago/Turabian StyleRiet, Keamogetswe, Ayodeji Adegoke, Samson Mashele, and Mamello Sekhoacha. 2024. "Effective Use of Euphorbia milii DCM Root Extract Encapsulated by Thermosensitive Immunoliposomes for Targeted Drug Delivery in Prostate Cancer Cells" Current Issues in Molecular Biology 46, no. 11: 12037-12060. https://doi.org/10.3390/cimb46110714
APA StyleRiet, K., Adegoke, A., Mashele, S., & Sekhoacha, M. (2024). Effective Use of Euphorbia milii DCM Root Extract Encapsulated by Thermosensitive Immunoliposomes for Targeted Drug Delivery in Prostate Cancer Cells. Current Issues in Molecular Biology, 46(11), 12037-12060. https://doi.org/10.3390/cimb46110714