Microbial Dynamics in Periodontal Regeneration: Understanding Microbiome Shifts and the Role of Antifouling and Bactericidal Materials: A Narrative Review
Abstract
:1. Introduction
2. Microbial Dynamics in Periodontal Regeneration
3. Exploring the Impact of Regenerative Therapies on the Oral Microbial Ecosystem
4. General Microbiome Changes After GTR
5. General Microbiome Changes After Bone Grafting
6. Autografts (Autogenous Bone Grafts)
7. Allografts (Donor Bone Grafts)
8. Xenografts (Animal-Derived Bone Grafts)
9. Alloplasts (Synthetic Bone Grafts)
10. General Microbiome Changes After Soft Tissue Grafting
11. The Role of Biologics, Antimicrobials, and Microbiome Modulation in Periodontal Regeneration
12. Advanced Therapeutic Strategies in Periodontal Regeneration
13. Antifouling and Bactericidal Materials for Oral Microbiome Stability in Periodontal Regeneration
13.1. Antifouling Materials
- Biomolecules: Certain biomolecules, such as antimicrobial peptides and enzymes, have antifouling properties. These molecules can disrupt bacterial communication and biofilm formation, maintaining a stable and healthy oral microbiome [92].
13.2. Bactericidal Materials
- Chlorhexidine: This antiseptic agent is widely used in dental applications for its effective bactericidal properties. Chlorhexidine can be incorporated into barrier membranes or bone graft materials to reduce bacterial contamination and support healing [96].
- Quaternary Ammonium Compounds (QACs): QACs are potent antimicrobial agents that can be integrated into dental materials. They disrupt bacterial cell walls and membranes, preventing bacterial growth and biofilm formation [97].
13.3. Application in Periodontal Regeneration
14. Conclusions
15. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Santacroce, L.; Passarelli, P.C.; Azzolino, D.; Bottalico, L.; Charitos, I.A.; Cazzolla, A.P.; Colella, M.; Topi, S.; Godoy, F.G.; D’addona, A. Oral microbiota in human health and disease: A perspective. Exp. Biol. Med. 2023, 248, 1288–1301. [Google Scholar] [CrossRef] [PubMed]
- Marsh, P.D. In Sickness and in Health-What Does the Oral Microbiome Mean to Us? An Ecological Perspective. Adv. Dent. Res. 2018, 29, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Sbordone, L.; Bortolaia, C. Oral microbial biofilms and plaque-related diseases: Microbial communities and their role in the shift from oral health to disease. Clin. Oral Investig. 2003, 7, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Marcotte, H.; Lavoie, M.C. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol. Mol. Biol. Rev. 1998, 62, 71–109. [Google Scholar] [CrossRef] [PubMed]
- Akimbekov, N.S.; Digel, I.; Yerezhepov, A.Y.; Shardarbek, R.S.; Wu, X.; Zha, J. Nutritional factors influencing microbiota-mediated colonization resistance of the oral cavity: A literature review. Front. Nutr. 2022, 9, 1029324. [Google Scholar] [CrossRef]
- Pérez-Portilla, T.; Ortíz-Benitez, D.; Lucas-Rincón, S.; Canseco-Prado, G.; Delgado Pérez, V.; Scougall-Vilchis, R.; Robles-Bermeo, N.L.; Alonso-Sánchez, C.C.; Veras-Hernández, M.A.; Medina-Solís, C.E. The Importance of Toothbrushing and Oral Hygiene in Maintaining Oral Health. J. Int. Soc. Prev. Community Dent. 2023, 10, 511–519. [Google Scholar]
- Nagakubo, D.; Kaibori, Y. Oral Microbiota: The Influences and Interactions of Saliva, IgA, and Dietary Factors in Health and Disease. Microorganisms 2023, 11, 2307. [Google Scholar] [CrossRef]
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. [Google Scholar] [CrossRef]
- Singh, S.; Datta, S.; Narayanan, K.B.; Rajnish, K.N. Bacterial exo-polysaccharides in biofilms: Role in antimicrobial resistance and treatments. J. Genet. Eng. Biotechnol. 2021, 19, 140. [Google Scholar] [CrossRef]
- Jia, L.; Han, N.; Du, J.; Guo, L.; Luo, Z.; Liu, Y. Pathogenesis of Important Virulence Factors of Porphyromonas gingivalis via Toll-Like Receptors. Front. Cell. Infect. Microbiol. 2019, 9, 262. [Google Scholar] [CrossRef]
- Franco, C.; Patricia, H.R.; Timo, S.; Claudia, B.; Marcela, H. Matrix Metalloproteinases as Regulators of Periodontal Inflammation. Int. J. Mol. Sci. 2017, 18, 440. [Google Scholar] [CrossRef] [PubMed]
- Iniesta, M.; Chamorro, C.; Ambrosio, N.; Marín, M.J.; Sanz, M.; Herrera, D. Subgingival microbiome in periodontal health, gingivitis and different stages of periodontitis. J. Clin. Periodontol. 2023, 50, 905–920. [Google Scholar] [CrossRef] [PubMed]
- Lafaurie, G.I.; Neuta, Y.; Ríos, R.; Pacheco-Montealegre, M.; Pianeta, R.; Castillo, D.M.; Herrera, D.; Reyes, J.; Diaz, L.; Castillo, Y.; et al. Differences in the subgingival microbiome according to stage of periodontitis: A comparison of two geographic regions. PLoS ONE 2022, 7, e0273523. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Qian, Y.; Jia, S.; Shi, Z.; Zhong, Q. Comparative analysis of subgingival microbiota in patients with mild, moderate, and severe chronic periodontitis. Oral Dis. 2023, 29, 2865–2877. [Google Scholar] [CrossRef]
- Abusleme, L.; Hoare, A.; Hong, B.Y.; Diaz, P.I. Microbial signatures of health, gingivitis, and periodontitis. Periodontology 2000 2021, 86, 57–78. [Google Scholar] [CrossRef]
- Mohan, S.P.; Jaishangar, N.; Devy, S.; Narayanan, A.; Cherian, D.; Madhavan, S.S. Platelet-Rich Plasma and Platelet-Rich Fibrin in Periodontal Regeneration: A Review. J. Pharm. Bioallied Sci. 2019, 11 (Suppl. S2), S126–S130. [Google Scholar] [CrossRef]
- Wang, H.; Cooke, J. Periodontal Regeneration Techniques for Treatment of Periodontal Diseases. Dent. Clin. N. Am. 2005, 49, 637–659. [Google Scholar] [CrossRef]
- De Avila, E.D.; Van Oirschot, B.A.; Van Den Beucken, J.J. Biomaterial-Based Possibilities for Managing Peri-Implantitis. J. Periodontal Res. 2020, 55, 165–173. [Google Scholar] [CrossRef]
- De Prijck, K.; De Smet, N.; Coenye, T.; Schacht, E.; Nelis, H.J. Prevention of Candida Albicans Biofilm Formation by Covalently Bound Dimethylaminoethylmethacrylate and Polyethylenimine. Mycopathologia 2010, 170, 213–221. [Google Scholar] [CrossRef]
- Duan, S.; Wu, R.; Xiong, Y.H.; Ren, H.M.; Lei, C.; Zhao, Y.Q.; Zhang, X.-Y.; Xu, F.-J. Multifunctional Antimicrobial Materials: From Rational Design to Biomedical Applications. Prog. Mater. Sci. 2022, 125, 100887. [Google Scholar] [CrossRef]
- Caton, J.G. Overview of Clinical Trials on Periodontal Regeneration. Periodontology 2000 1997, 2, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Bharuka, T.; Reche, A. Advancements in Periodontal Regeneration: A Comprehensive Review of Stem Cell Therapy. Cureus 2024, 16, e54115. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.G.; Gunsolley, J.C. Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Ann. Periodontol. 2003, 8, 266–302. [Google Scholar] [CrossRef] [PubMed]
- Soldatos, N.K.; Stylianou, P.; Koidou, V.P.; Yukna, R.; Romanos, G.E. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration. Quintessence Int. 2017, 48, 131–147. [Google Scholar] [PubMed]
- Sasaki, J.I.; Abe, G.L.; Li, A.; Thongthai, P.; Tsuboi, R.; Kohno, T.; Imazato, S. Barrier membranes for tissue regeneration in dentistry. Biomater. Investig. Dent. 2021, 8, 54–63. [Google Scholar] [CrossRef]
- Ferraz, M.P. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. Materials 2023, 16, 4117. [Google Scholar] [CrossRef]
- Tsuchida, S.; Nakayama, T. Recent Clinical Treatment and Basic Research on the Alveolar Bone. Biomedicines 2023, 11, 843. [Google Scholar] [CrossRef]
- Fatani, B.; Alshalawi, H.; Fatani, A.; Almuqrin, R.; Aburaisi, M.S.; Awartani, F. Modifications in the Free Gingival Graft Technique: A Systematic Review. Cureus 2024, 16, e58932. [Google Scholar] [CrossRef]
- Alghamdi, H.; Babay, N.; Sukumaran, A. Surgical management of gingival recession: A clinical update. Saudi Dent. J. 2009, 21, 83–94. [Google Scholar] [CrossRef]
- Liang, Y.; Luan, X.; Liu, X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact. Mater. 2020, 5, 297–308. [Google Scholar] [CrossRef]
- Siddiqui, R.; Badran, Z.; Boghossian, A.; Alharbi, A.M.; Alfahemi, H.; Khan, N.A. The increasing importance of the oral microbiome in periodontal health and disease. Future Sci. OA 2023, 9, FSO856. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Díaz, L.M.; Rodríguez-Villafañe, A.; García-Arrarás, J.E. The Role of the Microbiota in Regeneration-Associated Processes. Front. Cell Dev. Biol. 2022, 9, 768783. [Google Scholar] [CrossRef] [PubMed]
- Schäffer, C.; Andrukhov, O. The intriguing strategies of Tannerella forsythia’s host interaction. Front. Oral Health 2024, 5, 1434217. [Google Scholar] [CrossRef] [PubMed]
- Naginyte, M.; Do, T.; Meade, J.; Devine, D.A.; Marsh, P.D. Enrichment of periodontal pathogens from the biofilms of healthy adults. Sci. Rep. 2019, 9, 5491. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, A.; Liedloff, P.; Eliezer, M.; Brincat, A.; Ostermann, T.; Diehl, D. Reconstructive Approach in Residual Periodontal Pockets with Biofunctionalized Heterografts—A Retrospective Comparison of 12-Month Data from Three Centers. J. Funct. Biomater. 2024, 15, 39. [Google Scholar] [CrossRef]
- Cho, Y.-D.; Kim, K.-H.; Lee, Y.-M.; Ku, Y.; Seol, Y.-J. Periodontal Wound Healing and Tissue Regeneration: A Narrative Review. Pharmaceuticals 2021, 14, 456. [Google Scholar] [CrossRef]
- Zhu, B.; Macleod, L.C.; Kitten, T.; Xu, P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol. 2018, 13, 915–932. [Google Scholar]
- Simons, A.; Alhanout, K.; Duval, R.E. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020, 8, 639. [Google Scholar] [CrossRef]
- de Oliveira, R.V.D.; Bonafé, F.S.S.; Spolidorio, D.M.P.; Koga-Ito, C.Y.; Farias, A.L.; Kirker, K.R.; James, G.A.; Brighenti, F.L. Streptococcus mutans and Actinomyces naeslundii Interaction in Dual-Species Biofilm. Microorganisms 2020, 8, 194. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Zhang, S.; Zhou, W.; Zhang, L.; Huang, X. PH-activated antibiofilm strategies for controlling dental caries. Front. Cell. Infect. Microbiol. 2023, 13, 1130506. [Google Scholar] [CrossRef]
- Zhou, P.; Manoil, D.; Belibasakis, G.N.; Kotsakis, G.A. Veillonellae: Beyond Bridging Species in Oral Biofilm Ecology. Front. Oral Health. 2021, 2, 774115. [Google Scholar] [CrossRef] [PubMed]
- De Lauretis, A.; Øvrebø, Ø.; Romandini, M.; Lyngstadaas, S.P.; Rossi, F.; Haugen, H.J. From Basic Science to Clinical Practice: A Review of Current Periodontal/Mucogingival Regenerative Biomaterials. Adv. Sci. 2024, 11, e2308848. [Google Scholar] [CrossRef] [PubMed]
- Ashfaq, R.; Kovács, A.; Berkó, S.; Budai-Szűcs, M. Developments in Alloplastic Bone Grafts and Barrier Membrane Biomaterials for Periodontal Guided Tissue and Bone Regeneration Therapy. Int. J. Mol. Sci. 2024, 25, 7746. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Dang, G.-P.; Ren, Z.-Y.; Wan, M.-C.; Wang, C.-Y.; Li, H.-B.; Zhang, T.; Tay, F.R.; Niu, L.-N. Recent advances in the pathogenesis and prevention strategies of dental calculus. npj Biofilms Microbiomes 2024, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Lamont, R.J. Polymicrobial communities in periodontal disease: Their quasi-organismal nature and dialogue with the host. Periodontology 2000 2021, 86, 210–230. [Google Scholar] [CrossRef]
- Dzobo, K.; Thomford, N.E.; Senthebane, D.A.; Shipanga, H.; Rowe, A.; Dandara, C.; Pillay, M.; Motaung, K.S.C.M. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells Int. 2018, 2018, 2495848. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Patano, A.; Di Pede, C.; Inchingolo, A.D.; Palmieri, G.; de Ruvo, E.; Campanelli, M.; Buongiorno, S.; Carpentiere, V.; Piras, F.; et al. Autologous Tooth Graft: Innovative Biomaterial for Bone Regeneration. Tooth Transformer® and the Role of Microbiota in Regenerative Dentistry. A Systematic Review. J. Funct. Biomater. 2023, 14, 132. [Google Scholar] [CrossRef]
- Srivastava, P.; Sondak, T.; Sivashanmugam, K.; Kim, K.S. A Review of Immunomodulatory Reprogramming by Probiotics in Combating Chronic and Acute Diabetic Foot Ulcers (DFUs). Pharmaceutics 2022, 14, 2436. [Google Scholar] [CrossRef]
- Oryan, A.; Alidadi, S.; Moshiri, A.; Maffulli, N. Bone regenerative medicine: Classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014, 9, 18. [Google Scholar] [CrossRef]
- Ketonis, C.; Barr, S.; Adams, C.S.; Hickok, N.J.; Parvizi, J. Bacterial colonization of bone allografts: Establishment and effects of antibiotics. Clin. Orthop. Relat. Res. 2010, 468, 2113–2121. [Google Scholar] [CrossRef]
- Nowzari, H.; Teoh, C.; Rodriguez, A.E. The migration of the bovine-derived xenograft particles: A case series. J. Indian Soc. Periodontol. 2022, 26, 178–185. [Google Scholar] [PubMed]
- Hwang, S.-H.; Moon, K.; Du, W.; Cho, W.-T.; Huh, J.-B.; Bae, E.-B. Effect of Porcine- and Bovine-Derived Xenografts with Hydroxypropyl Methylcellulose for Bone Formation in Rabbit Calvaria Defects. Materials 2023, 16, 1850. [Google Scholar] [CrossRef] [PubMed]
- de Azambuja Carvalho, P.H.; de Oliveira Ciaramicolo, N.; Júnior, O.F.; Pereira-Filho, V.A. Clinical and laboratorial outcomes of xenogeneic biomaterials: Literature review. Front. Oral Maxillofac. Med. 2023, 5, 8. [Google Scholar] [CrossRef]
- LaRosa, D.F.; Rahman, A.H.; Turka, L.A. The innate immune system in allograft rejection and tolerance. J. Immunol. 2007, 178, 7503–7509. [Google Scholar] [CrossRef] [PubMed]
- Georgeanu, V.A.; Gingu, O.; Antoniac, I.V.; Manolea, H.O. Current Options and Future Perspectives on Bone Graft and Biomaterials Substitutes for Bone Repair, from Clinical Needs to Advanced Biomaterials Research. Appl. Sci. 2023, 13, 8471. [Google Scholar] [CrossRef]
- Rondone, E.M.; Leitão-Almeida, B.; Pereira, M.S.; Fernandes, G.V.O.; Borges, T. The Use of Tissue Grafts Associated with Immediate Implant Placement to Achieve Better Peri-Implant Stability and Efficacy: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 821. [Google Scholar] [CrossRef]
- Zucchelli, G.; Tavelli, L.; McGuire, M.K.; Rasperini, G.; Feinberg, S.E.; Wang, H.L.; Giannobile, W.V. Autogenous soft tissue grafting for periodontal and peri-implant plastic surgical reconstruction. J. Periodontol. 2020, 91, 9–16. [Google Scholar] [CrossRef]
- Webb, B.C.W.; Glogauer, M.; Santerre, J.P. The Structure and Function of Next-Generation Gingival Graft Substitutes-A Perspective on Multilayer Electrospun Constructs with Consideration of Vascularization. Int. J. Mol. Sci. 2022, 23, 5256. [Google Scholar] [CrossRef]
- Rathva, V.J. Enamel matrix protein derivatives: Role in periodontal regeneration. Clin. Cosmet. Investig. Dent. 2011, 3, 79–92. [Google Scholar] [CrossRef]
- Suárez-López Del Amo, F.; Monje, A.; Padial-Molina, M.; Tang, Z.; Wang, H.L. Biologic Agents for Periodontal Regeneration and Implant Site Development. Biomed. Res. Int. 2015, 2015, 957518. [Google Scholar] [CrossRef]
- Sculean, A.; Schwarz, F.; Becker, J.; Brecx, M. The Application of an Enamel Matrix Protein Derivative (Emdogain®) in Regenerative Periodontal Therapy: A Review. Med. Princ. Pract. 2007, 16, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Sateriale, D.; Imperatore, R.; Colicchio, R.; Pagliuca, C.; Varricchio, E.; Volpe, M.G.; Salvatore, P.; Paolucci, M.; Pagliarulo, C. Phytocompounds vs. Dental Plaque Bacteria: In vitro Effects of Myrtle and Pomegranate Polyphenolic Extracts Against Single-Species and Multispecies Oral Biofilms. Front. Microbiol. 2020, 11, 592265. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.M.; Yerex, K.; Kelekis-Cholakis, A.; Duan, K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022, 22, 492. [Google Scholar] [CrossRef] [PubMed]
- Gränicher, K.A.; Karygianni, L.; Attin, T.; Thurnheer, T. Low Concentrations of Chlorhexidine Inhibit the Formation and Structural Integrity of Enzyme-Treated Multispecies Oral Biofilms. Front. Microbiol. 2021, 12, 741863. [Google Scholar] [CrossRef] [PubMed]
- Siregar, O.; Lelo, A.; Rahyussalim, A.J.; Ilyas, S.; Benny Kurniawati, T.; Augustinus, Y.; Hendra Mandagi, T.; Zufar, M.L.L.; Fathurrahman, I. Doxycycline as a Potential MMP-1 Inhibitor for the Treatment of Spondylitis Tuberculosis: A Study in Rabbit Model. Biomed. Res. Int. 2023, 2023, 7421325. [Google Scholar] [CrossRef]
- Chakraborty, B.; Lee, K.; Robert, A. Burne. Biofilm Battles: Beneficial Commensals vs. Streptococcus Mutans. J. Calif. Dent. Assoc. 2017, 45, 547–556. [Google Scholar]
- Nguyen, T.; Brody, H.; Radaic, A.; Kapila, Y. Probiotics for periodontal health-Current molecular findings. Periodontology 2000 2021, 87, 254–267. [Google Scholar] [CrossRef]
- Hernández-González, J.C.; Martínez-Tapia, A.; Lazcano-Hernández, G.; García-Pérez, B.E.; Castrejón-Jiménez, N.S. Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine. Animals 2021, 11, 979. [Google Scholar] [CrossRef]
- Ji, J.; Jin, W.; Liu, S.J.; Jiao, Z.; Li, X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm 2023, 4, e420. [Google Scholar] [CrossRef]
- Radu, C.M.; Radu, C.C.; Arbănaşi, E.M.; Hogea, T.; Murvai, V.R.; Chiș, I.A.; Zaha, D.C. Exploring the Efficacy of Novel Therapeutic Strategies for Periodontitis: A Literature Review. Life 2024, 14, 468. [Google Scholar] [CrossRef]
- Mba, I.E.; Nweze, E.I. Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria. Yale J. Biol. Med. 2022, 95, 445–463. [Google Scholar] [PubMed]
- Sahoo, J.; Sarkhel, S.; Mukherjee, N.; Jaiswal, A. Nanomaterial-Based Antimicrobial Coating for Biomedical Implants: New Age Solution for Biofilm-Associated Infections. ACS Omega 2022, 7, 45962–45980. [Google Scholar] [CrossRef] [PubMed]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Pöllänen, M.T.; Paino, A.; Ihalin, R. Environmental Stimuli Shape Biofilm Formation and the Virulence of Periodontal Pathogens. Int. J. Mol. Sci. 2013, 14, 17221–17237. [Google Scholar] [CrossRef]
- Kaplan, J.B.; Sukhishvili, S.A.; Sailer, M.; Kridin, K.; Ramasubbu, N. Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens 2024, 13, 668. [Google Scholar] [CrossRef]
- Annisa, Z.U.; Sulijaya, B.; Tadjoedin, E.S.S.; Hutomo, D.I.; Masulili, S.L.C. Effectiveness of chlorhexidine gels and chips in Periodontitis Patients after Scaling and Root Planing: A systematic review and Meta-analysis. BMC Oral Health 2023, 23, 819. [Google Scholar] [CrossRef]
- Elnagdy, S.; Raptopoulos, M.; Kormas, I.; Pedercini, A.; Wolff, L.F. Local Oral Delivery Agents with Anti-Biofilm Properties for the Treatment of Periodontitis and Peri-Implantitis. A Narrative Review. Molecules 2021, 26, 5661. [Google Scholar] [CrossRef]
- Alassy, H.; Pizarek, J.A.; Kormas, I.; Pedercini, A.; Wolff, L.F. Antimicrobial adjuncts in the management of periodontal and peri-implant diseases and conditions: A narrative review. Front. Oral Maxillofac. Med. 2021, 3, 16. [Google Scholar] [CrossRef]
- Jiang, Y.; Geng, M.; Bai, L. Targeting Biofilms Therapy: Current Research Strategies and Development Hurdles. Microorganisms 2020, 8, 1222. [Google Scholar] [CrossRef]
- Campoccia, D.; Montanaro, L.; Arciola, C.R. Extracellular DNA (eDNA). A Major Ubiquitous Element of the Bacterial Biofilm Architecture. Int. J. Mol. Sci. 2021, 22, 9100. [Google Scholar] [CrossRef]
- Zhang, K.; Li, X.; Yu, C.; Wang, Y. Promising Therapeutic Strategies Against Microbial Biofilm Challenges. Front. Cell Infect. Microbiol. 2020, 10, 359. [Google Scholar] [CrossRef] [PubMed]
- Algburi, A.; Comito, N.; Kashtanov, D.; Dicks, L.M.T.; Chikindas, M.L. Control of Biofilm Formation: Antibiotics and Beyond. Appl. Environ. Microbiol. 2017, 83, e02508-16, Erratum in Appl. Environ. Microbiol. 2017, 83, e00165-17. [Google Scholar] [CrossRef] [PubMed]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2020, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, Y.; Breslawec, A.P.; Liang, T.; Deng, Z.; Kuperman, L.L.; Yu, Q. Strategy to combat biofilms: A focus on biofilm dispersal enzymes. Npj Biofilms Microbiomes 2023, 9, 63. [Google Scholar] [CrossRef]
- Zangi, A.R.; Amiri, A.; Borzouee, F.; Bagherifar, R.; Pazooki, P.; Hamishehkar, H.; Javadzadeh, Y. Immobilized nanoparticles-mediated enzyme therapy; promising way into clinical development. Discov. Nano 2023, 18, 55. [Google Scholar] [CrossRef]
- Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C.; et al. Advances in drug delivery systems, challenges, and future directions. Heliyon 2023, 9, e17488. [Google Scholar] [CrossRef]
- Bhaskaran, N.; Quigley, C.; Paw, C.; Butala, S.; Schneider, E.; Pandiyan, P. Role of Short Chain Fatty Acids in Controlling Tregs and Immunopathology During Mucosal Infection. Front. Immunol. 2018, 9, 768. [Google Scholar] [CrossRef]
- Kolenbrander, P.E.; Palmer, R.J., Jr.; Rickard, A.H.; Jakubovics, N.S.; Chalmers, N.I.; Diaz, P.I. Bacterial interactions and successions during plaque development. Periodontology 2000 2006, 42, 47–79. [Google Scholar] [CrossRef]
- Zhu, J.; Chu, W.; Luo, J.; Yang, J.; He, L.; Li, J. Dental Materials for Oral Microbiota Dysbiosis: An Update. Front. Cell. Infect. Microbiol. 2022, 12, 900918. [Google Scholar] [CrossRef]
- Peng, L.; Chang, L.; Liu, X.; Lin, J.; Liu, H.; Han, B.; et, a.l. Antibacterial Property of a Polyethylene Glycol-Grafted Dental Material. ACS Appl. Mater. Interfaces 2017, 9, 17688–17692. [Google Scholar] [CrossRef]
- Buxadera-Palomero, J.; Albó, K.; Gil, F.J.; Mas-Moruno, C.; Rodríguez, D. Polyethylene Glycol Pulsed Electrodeposition for the Development of Antifouling Coatings on Titanium. Coatings 2020, 10, 456. [Google Scholar] [CrossRef]
- Subbiahdoss, G.; Zeng, G.; Aslan, H.; Ege Friis, J.; Iruthayaraj, J.; Zelikin, A.N.; Meyer, R.L. Antifouling Properties of Layer by Layer DNA Coatings. Biofouling 2019, 35, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and Differences Between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci. 2018, 19, 444. [Google Scholar] [CrossRef] [PubMed]
- Hetrick, E.M.; Shin, J.H.; Stasko, N.A.; Johnson, C.B.; Wespe, D.A.; Holmuhamedov, E.; Schoenfisch, M.H. Bactericidal Efficacy of Nitric Oxide-Releasing Silica Nanoparticles. ACS Nano 2008, 2, 235–246. [Google Scholar] [CrossRef]
- Dutra-Correa, M.; Leite, A.; De Cara, S.; Diniz, I.M.A.; Marques, M.M.; Suffredini, I.B.; Fernandes, M.S.; Toma, S.H.; Araki, K.; Medeiros, I.S. Antibacterial Effects and Cytotoxicity of an Adhesive Containing Low Concentration of Silver Nanoparticles. J. Dent. 2018, 77, 66–71. [Google Scholar] [CrossRef]
- Ramburrun, P.; Pringle, N.A.; Dube, A.; Adam, R.Z.; D’Souza, S.; Aucamp, M. Recent Advances in the Development of Antimicrobial and Antifouling Biocompatible Materials for Dental Applications. Materials 2021, 14, 3167. [Google Scholar] [CrossRef]
- Fanfoni, L.; Marsich, E.; Turco, G.; Breschi, L.; Cadenaro, M. Development of Di-Methacrylate Quaternary Ammonium Monomers With Antibacterial Activity. Acta Biomater. 2021, 129, 138–147. [Google Scholar] [CrossRef]
- Lin, L.; Chi, J.; Yan, Y.; Luo, R.; Feng, X.; Zheng, Y.; Xian, D.; Li, X.; Quan, G.; Liu, D.; et al. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm. Sin. B. 2021, 11, 2609–2644. [Google Scholar] [CrossRef]
- Rani, S.; Santoshi, C.; Reddy, A.; Reddy, B.; Nagarajan, S.; Naveen, A. Evaluation of the Antibacterial Effect of Silver Nanoparticles on Guided Tissue Regeneration Membrane Colonization—An in Vitro Study. J. Int. Acad. Periodontol. 2015, 17, 66–76. [Google Scholar]
- Rudolf, J.L.; Moser, C.; Sculean, A.; Eick, S. In-vitro antibiofilm activity of chlorhexidine digluconate on polylactide-based and collagen-based membranes. BMC Oral Health 2019, 19, 291. [Google Scholar] [CrossRef]
- Dantas, L.R.; Kraft, L.; Gonçalves, G.A.; Ribeiro, V.S.T.; Witt, M.A.; Carneiro, E.; Tuon, F.F. Antimicrobial activity bovine bone scaffolds impregnated with silver nanoparticles on bacterial and fungal biofilm—In vitro study. Authorea 2022, 17. [Google Scholar]
- Hoyos, M.; Velasco, F.; Ginebra, M.P.; Manero, J.; Gil, F.J.; Mas-Moruno, C. Regenerating Bone via Multifunctional Coatings: The Blending of Cell Integration and Bacterial Inhibition Properties on the Surface of Biomaterials. ACS Appl. Mater. Interfaces 2017, 9, 21618–21630. [Google Scholar] [CrossRef] [PubMed]
Condition | Changes in Microbiome | Ecosystem Changes | Suggested Treatment |
---|---|---|---|
Periodontitis | Shift to dysbiotic community with increased pathogenic species (e.g., Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) | Increased inflammation, tissue destruction, deeper periodontal pockets | Use of antimicrobial agents, probiotics, mechanical debridement, and host-modulation therapy |
Bone Graft | Potential contamination and shifts in microbial balance; increased pathogenic bacteria if graft material not properly sterilized | Colonization by surrounding microbial communities; potential biofilm formation | Proper sterilization of graft materials; use of antimicrobial strategies, probiotics to manage microbial shifts |
Guided Tissue Regeneration | Transient imbalance with initial increase in pathogenic bacteria; possible biofilm formation on membranes | Disruption of natural barriers; introduction of foreign materials; exposure of deeper tissues | Incorporation of antifouling and bactericidal materials in membranes; antimicrobial mouthwashes; good oral hygiene practices |
Material Type | Example Material | Mechanism of Action | Application in Periodontal Therapy |
---|---|---|---|
Antifouling Agents | Polyethylene glycol (PEG) | Prevents bacterial adhesion by creating a hydrophilic layer, reducing biofilm formation. | Used in coatings for dental implants to prevent biofilm formation and enhance implant longevity. |
Antifouling Agents | Zwitterionic Polymers | Forms a zwitterionic surface that repels proteins and bacteria, reducing fouling and biofilm growth. | Applied in regenerative membranes to reduce bacterial colonization and support tissue healing. |
Bactericidal Agents | Silver Nanoparticles | Disrupts bacterial cell membranes, induces oxidative stress, and kills bacteria upon contact. | Incorporated into dental materials and membranes to provide antimicrobial effects and reduce infection risk. |
Bactericidal Agents | Chlorhexidine | Disrupts bacterial cell walls and interferes with microbial adhesion, leading to cell death and biofilm disruption. | Used as a rinse or in gels for post-surgical care, reducing microbial load and preventing biofilm formation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashim, N.T.; Babiker, R.; Priya, S.P.; Mohammed, R.; Chaitanya, N.C.; Padmanabhan, V.; El Bahra, S.; Rahman, M.M.; Gismalla, B.G. Microbial Dynamics in Periodontal Regeneration: Understanding Microbiome Shifts and the Role of Antifouling and Bactericidal Materials: A Narrative Review. Curr. Issues Mol. Biol. 2024, 46, 12196-12213. https://doi.org/10.3390/cimb46110724
Hashim NT, Babiker R, Priya SP, Mohammed R, Chaitanya NC, Padmanabhan V, El Bahra S, Rahman MM, Gismalla BG. Microbial Dynamics in Periodontal Regeneration: Understanding Microbiome Shifts and the Role of Antifouling and Bactericidal Materials: A Narrative Review. Current Issues in Molecular Biology. 2024; 46(11):12196-12213. https://doi.org/10.3390/cimb46110724
Chicago/Turabian StyleHashim, Nada Tawfig, Rasha Babiker, Sivan Padma Priya, Riham Mohammed, Nallan CSK Chaitanya, Vivek Padmanabhan, Shadi El Bahra, Muhammed Mustahsen Rahman, and Bakri Gobara Gismalla. 2024. "Microbial Dynamics in Periodontal Regeneration: Understanding Microbiome Shifts and the Role of Antifouling and Bactericidal Materials: A Narrative Review" Current Issues in Molecular Biology 46, no. 11: 12196-12213. https://doi.org/10.3390/cimb46110724
APA StyleHashim, N. T., Babiker, R., Priya, S. P., Mohammed, R., Chaitanya, N. C., Padmanabhan, V., El Bahra, S., Rahman, M. M., & Gismalla, B. G. (2024). Microbial Dynamics in Periodontal Regeneration: Understanding Microbiome Shifts and the Role of Antifouling and Bactericidal Materials: A Narrative Review. Current Issues in Molecular Biology, 46(11), 12196-12213. https://doi.org/10.3390/cimb46110724