Germline Variant Spectrum in Southern Italian High-Risk Hereditary Breast Cancer Patients: Insights from Multi-Gene Panel Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Selection
- (1)
- Individuals with both breast and ovarian cancers;
- (2)
- Individuals with breast cancer ≤40 years;
- (3)
- Individuals with triple-negative breast cancer (any age);
- (4)
- Individuals with bilateral breast cancer ≤50 years;
- (5)
- Individuals with male breast cancer.
2.2. DNA Extraction and NGS
2.3. Sanger Sequencing
2.4. Bioinformatics Analysis
3. Results
3.1. Variants Distribution
3.2. Variants of Uncertain Significance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sokolova, A.; Johnstone, K.J.; McCart Reed, A.E.; Simpson, P.T.; Lakhani, S.R. Hereditary Breast Cancer: Syndromes, Tumour Pathology and Molecular Testing. Histopathology 2023, 82, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Paduano, F.; Colao, E.; Fabiani, F.; Rocca, V.; Dinatolo, F.; Dattola, A.; D’Antona, L.; Amato, R.; Trapasso, F.; Baudi, F.; et al. Germline Testing in a Cohort of Patients at High Risk of Hereditary Cancer Predisposition Syndromes: First Two-Year Results from South Italy. Genes 2022, 13, 1286. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Imoto, I.; Iwata, H. Functions of Breast Cancer Predisposition Genes: Implications for Clinical Management. Int. J. Mol. Sci. 2022, 23, 7481. [Google Scholar] [CrossRef] [PubMed]
- Breast Cancer Association Consortium. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [CrossRef]
- Hu, C.; Hart, S.N.; Gnanaolivu, R.; Huang, H.; Lee, K.Y.; Na, J.; Gao, C.; Lilyquist, J.; Yadav, S.; Boddicker, N.J.; et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021, 384, 440–451. [Google Scholar] [CrossRef]
- Narod, S.A. Which Genes for Hereditary Breast Cancer? N. Engl. J. Med. 2021, 384, 471–473. [Google Scholar] [CrossRef]
- Fountzilas, C.; Kaklamani, V.G. Multi-Gene Panel Testing in Breast Cancer Management. In Optimizing Breast Cancer Management. Cancer Treatment and Research; Gradishar, W., Ed.; Springer: Cham, Switzerland, 2018; Volume 173. [Google Scholar] [CrossRef]
- D’Argenio, V.; Esposito, M.V.; Telese, A.; Precone, V.; Starnone, F.; Nunziato, M.; Cantiello, P.; Iorio, M.; Evangelista, E.; D’Aiuto, M.; et al. The Molecular Analysis of BRCA1 and BRCA2: Next-Generation Sequencing Supersedes Conventional Approaches. Clin. Chim. Acta 2015, 446, 221–225. [Google Scholar] [CrossRef]
- Concolino, P.; Rizza, R.; Mignone, F.; Costella, A.; Guarino, D.; Carboni, I.; Capoluongo, E.; Santonocito, C.; Urbani, A.; Minucci, A. A Comprehensive BRCA1/2 NGS Pipeline for an Immediate Copy Number Variation (CNV) Detection in Breast and Ovarian Cancer Molecular Diagnosis. Clin. Chim. Acta 2018, 480, 173–179. [Google Scholar] [CrossRef]
- Walsh, T.; Lee, M.K.; Casadei, S.; Thornton, A.M.; Stray, S.M.; Pennil, C.; Nord, A.S.; Mandell, J.B.; Swisher, E.M.; King, M.C. Detection of Inherited Mutations for Breast and Ovarian Cancer Using Genomic Capture and Massively Parallel Sequencing. Proc. Natl. Acad. Sci. USA 2010, 107. [Google Scholar] [CrossRef]
- Walsh, T.; Casadei, S.; Lee, M.K.; Pennil, C.C.; Nord, A.S.; Thornton, A.M.; Roeb, W.; Agnew, K.J.; Stray, S.M.; Wickramanayake, A.; et al. Mutations in 12 Genes for Inherited Ovarian, Fallopian Tube, and Peritoneal Carcinoma Identified by Massively Parallel Sequencing. Proc. Natl. Acad. Sci. USA 2011, 108, 12629–12633. [Google Scholar] [CrossRef]
- Le-Petross, H.T.; Whitman, G.J.; Atchley, D.P.; Yuan, Y.; Gutierrez-Barrera, A.; Hortobagyi, G.N.; Litton, J.K.; Arun, B.K. Effectiveness of Alternating Mammography and Magnetic Resonance Imaging for Screening Women with Deleterious BRCA Mutations at High Risk of Breast Cancer. Cancer 2011, 117, 3900–3907. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Sun, J.; Li, Z.; Qu, Z.; Liu, Y.; Wan, Q.; Liu, J.; Ding, X.; Zang, F.; Zhang, J.; et al. Clinical Relevance of Pathogenic Germline Variants in Mismatch Repair Genes in Chinese Breast Cancer Patients. NPJ Breast Cancer 2022, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.M.; Robson, M.E.; Ventz, S.; Santa-Maria, C.A.; Nanda, R.; Marcom, P.K.; Shah, P.D.; Ballinger, T.J.; Yang, E.S.; Vinayak, S.; et al. TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes. J. Clin. Oncol. 2020, 38, 4274–4282. [Google Scholar] [CrossRef] [PubMed]
- FDA. Available online: https://www.fda.gov (accessed on 15 September 2024).
- Robson, M.; Im, S.-A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.-H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef]
- Foglietta, J.; Ludovini, V.; Bianconi, F.; Pistola, L.; Reda, M.S.; Al-Refaie, A.; Tofanetti, F.R.; Mosconi, A.; Minenza, E.; Anastasi, P.; et al. Prevalence and Spectrum of Brca Germline Variants in Central Italian High Risk or Familial Breast/Ovarian Cancer Patients: A Monocentric Study. Genes 2020, 11, 925. [Google Scholar] [CrossRef]
- Turk, A.A.; Wisinski, K.B. PARP Inhibition in BRCA-Mutant Breast Cancer. Cancer 2018, 124, 2498. [Google Scholar] [CrossRef]
- Baudi, F.; Quaresima, B.; Grandinetti, C.; Cuda, G.; Faniello, C.; Tassone, P.; Barbieri, V.; Bisegna, R.; Ricevuto, E.; Conforti, S.; et al. Evidence of a Founder Mutation of BRCA1 in a Highly Homogeneous Population from Southern Italy with Breast/Ovarian Cancer. Hum. Mutat. 2001, 18, 163–164. [Google Scholar] [CrossRef]
- Incorvaia, L.; Fanale, D.; Bono, M.; Calò, V.; Fiorino, A.; Brando, C.; Corsini, L.R.; Cutaia, S.; Cancelliere, D.; Pivetti, A.; et al. BRCA1/2 Pathogenic Variants in Triple-Negative versus Luminal-like Breast Cancers: Genotype-Phenotype Correlation in a Cohort of 531 Patients. Ther. Adv. Med. Oncol. 2020, 12, 1758835920975326. [Google Scholar] [CrossRef]
- Casak, S.J.; Marcus, L.; Fashoyin-Aje, L.; Mushti, S.L.; Cheng, J.; Shen, Y.-L.; Pierce, W.F.; Her, L.; Goldberg, K.B.; Theoret, M.R.; et al. FDA Approval Summary: Pembrolizumab for the First-Line Treatment of Patients with MSI-H/DMMR Advanced Unresectable or Metastatic Colorectal Carcinoma. Clin. Cancer Res. 2021, 27, 4680–4684. [Google Scholar] [CrossRef]
- Linee Guida Aiom 2023 Carcinoma Mammario in Stadio Precoce. Available online: https://www.aiom.it/linee-guida-aiom-2023-carcinoma-mammario-in-stadio-precoce/ (accessed on 10 November 2024).
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Mavaddat, N.; Cunningham, A.; Carver, T.; Ficorella, L.; Archer, S.; Walter, F.M.; Tischkowitz, M.; Roberts, J.; Usher-Smith, J.; et al. Enhancing the BOADICEA Cancer Risk Prediction Model to Incorporate New Data on RAD51C, RAD51D, BARD1 Updates to Tumour Pathology and Cancer Incidence. J. Med. Genet. 2022, 59, 1206–1218. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Fan, T.; Lin, B.; Zhang, J.; Xie, Y. Prevalence and Characterization of ATM Germline Mutations in Chinese BRCA1/2-Negative Breast Cancer Patients. Breast Cancer Res. Treat. 2019, 174, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Tavera-Tapia, A.; Pérez-Cabornero, L.; Macías, J.A.; Ceballos, M.I.; Roncador, G.; de la Hoya, M.; Barroso, A.; Felipe-Ponce, V.; Serrano-Blanch, R.; Hinojo, C.; et al. Almost 2% of Spanish Breast Cancer Families Are Associated to Germline Pathogenic Mutations in the ATM Gene. Breast Cancer Res. Treat. 2017, 161, 597–604. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, L.; Wang, J.; Yang, F.; Xiao, Y.; Xia, R.; Yuan, X.; Yan, M. Twelve Novel Atm Mutations Identified in Chinese Ataxia Telangiectasia Patients. Neuromolecular Med. 2013, 15, 536–540. [Google Scholar] [CrossRef]
- Caminsky, N.G.; Mucaki, E.J.; Perri, A.M.; Lu, R.; Knoll, J.H.M.; Rogan, P.K. Prioritizing Variants in Complete Hereditary Breast and Ovarian Cancer Genes in Patients Lacking Known BRCA Mutations. Hum. Mutat. 2016, 37, 640–652. [Google Scholar] [CrossRef]
- Santonocito, C.; Rizza, R.; Paris, I.; De Marchis, L.; Paolillo, C.; Tiberi, G.; Scambia, G.; Capoluongo, E. Spectrum of Germline BRCA1 and BRCA2 Variants Identified in 2351 Ovarian and Breast Cancer Patients Referring to a Reference Cancer Hospital of Rome. Cancers 2020, 12, 1286. [Google Scholar] [CrossRef]
- Van der Merwe, N.C.; Combrink, H.M.; Ntaita, K.S.; Oosthuizen, J. Prevalence of Clinically Relevant Germline BRCA Variants in a Large Unselected South African Breast and Ovarian Cancer Cohort: A Public Sector Experience. Front. Genet. 2022, 13, 834265. [Google Scholar] [CrossRef]
- Lyra, P.C.M.; Nepomuceno, T.C.; de Souza, M.L.M.; Machado, G.F.; Veloso, M.F.; Henriques, T.B.; Dos Santos, D.Z.; Ribeiro, I.G.; Ribeiro, R.S.; Rangel, L.B.A.; et al. Integration of Functional Assay Data Results Provides Strong Evidence for Classification of Hundreds of BRCA1 Variants of Uncertain Significance. Genet. Med. 2021, 23, 306–315. [Google Scholar] [CrossRef]
- Sanz, D.J.; Acedo, A.; Infante, M.; Durán, M.; Pérez-Cabornero, L.; Esteban-Cardeñosa, E.; Lastra, E.; Pagani, F.; Miner, C.; Velasco, E.A. A High Proportion of DNA Variants of BRCA1 and BRCA2 Is Associated with Aberrant Splicing in Breast/Ovarian Cancer Patients. Clin. Cancer Res. 2010, 16, 1957–1967. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Wang, Y.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Fan, T.; Lin, B.; Xie, Y. Prevalence of BRCA1 Mutations and Responses to Neoadjuvant Chemotherapy among BRCA1 Carriers and Non-Carriers with Triple-Negative Breast Cancer. Ann. Oncol. 2015, 26, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Laitman, Y.; Friebel, T.M.; Yannoukakos, D.; Fostira, F.; Konstantopoulou, I.; Figlioli, G.; Bonanni, B.; Manoukian, S.; Zuradelli, M.; Tondini, C.; et al. The Spectrum of BRCA1 and BRCA2 Pathogenic Sequence Variants in Middle Eastern, North African, and South European Countries. Hum. Mutat. 2019, 40, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Matta, B.P.; Gomes, R.; Mattos, D.; Olicio, R.; Nascimento, C.M.; Ferreira, G.M.; Brant, A.C.; Boroni, M.; Furtado, C.; Lima, V.; et al. Familial History and Prevalence of BRCA1, BRCA2 and TP53 Pathogenic Variants in HBOC Brazilian Patients from a Public Healthcare Service. Sci. Rep. 2022, 12, 18629. [Google Scholar] [CrossRef] [PubMed]
- Toss, A.; Venturelli, M.; Molinaro, E.; Pipitone, S.; Barbieri, E.; Marchi, I.; Tenedini, E.; Artuso, L.; Castellano, S.; Marino, M.; et al. Hereditary Pancreatic Cancer: A Retrospective Single-Center Study of 5143 Italian Families with History of BRCA-Related Malignancies. Cancers 2019, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Gabaldó Barrios, X.; Sarabia Meseguer, M.D.; Marín Vera, M.; Sánchez Bermúdez, A.I.; Macías Cerrolaza, J.A.; Sánchez Henarejos, P.; Zafra Poves, M.; García Hernández, M.R.; Cuevas Tortosa, E.; Aliaga Baño, Á.; et al. Molecular Characterization and Clinical Interpretation of BRCA1/BRCA2 Variants in Families from Murcia (South-Eastern Spain) with Hereditary Breast and Ovarian Cancer: Clinical-Pathological Features in BRCA Carriers and Non-Carriers. Fam. Cancer 2017, 16, 477–489. [Google Scholar] [CrossRef]
- Ren, M.; Orozco, A.; Shao, K.; Albanez, A.; Ortiz, J.; Cao, B.; Wang, L.; Barreda, L.; Alvarez, C.S.; Garland, L.; et al. Germline Variants in Hereditary Breast Cancer Genes Are Associated with Early Age at Diagnosis and Family History in Guatemalan Breast Cancer. Breast Cancer Res. Treat. 2021, 189, 533–539. [Google Scholar] [CrossRef]
- De Brakeleer, S.; Bogdani, M.; De Grève, J.; Decock, J.; Sermijn, E.; Bonduelle, M.; Goelen, G.; Teugels, E. Loss of Nuclear BRCA1 Protein Staining in Normal Tissue Cells Derived from BRCA1 and BRCA2 Mutation Carriers. Mutat. Res. 2007, 619, 104–112. [Google Scholar] [CrossRef]
- Borg, Å.; Haile, R.W.; Malone, K.E.; Capanu, M.; Diep, A.; Törngren, T.; Teraoka, S.; Begg, C.B.; Thomas, D.C.; Concannon, P.; et al. Characterization of BRCA1 and BRCA2 Deleterious Mutations and Variants of Unknown Clinical Significance in Unilateral and Bilateral Breast Cancer: The WECARE Study. Hum. Mutat. 2010, 31, E1200–E1240. [Google Scholar] [CrossRef]
- Nicolussi, A.; Belardinilli, F.; Mahdavian, Y.; Colicchia, V.; D’Inzeo, S.; Petroni, M.; Zani, M.; Ferraro, S.; Valentini, V.; Ottini, L.; et al. Next-Generation Sequencing of BRCA1 and BRCA2 Genes for Rapid Detection of Germline Mutations in Hereditary Breast/Ovarian Cancer. PeerJ 2019, 7, e6661. [Google Scholar] [CrossRef]
- Vietri, M.T.; Molinari, A.M.; De Paola, M.L.; Cantile, F.; Fasano, M.; Cioffi, M. Identification of a Novel In-Frame Deletion in BRCA2 and Analysis of Variants of BRCA1/2 in Italian Patients Affected with Hereditary Breast and Ovarian Cancer. Clin. Chem. Lab. Med. (CCLM) 2012, 50, 2171–2180. [Google Scholar] [CrossRef]
- Wong-Brown, M.W.; Meldrum, C.J.; Carpenter, J.E.; Clarke, C.L.; Narod, S.A.; Jakubowska, A.; Rudnicka, H.; Lubinski, J.; Scott, R.J. Prevalence of BRCA1 and BRCA2 Germline Mutations in Patients with Triple-Negative Breast Cancer. Breast Cancer Res. Treat. 2015, 150, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Nones, K.; Johnson, J.; Newell, F.; Patch, A.M.; Thorne, H.; Kazakoff, S.H.; de Luca, X.M.; Parsons, M.T.; Ferguson, K.; Reid, L.E.; et al. Whole-Genome Sequencing Reveals Clinically Relevant Insights into the Aetiology of Familial Breast Cancers. Ann. Oncol. 2019, 30, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Chen, S.-Y.; Ren, J.-X.; Pei, Y.-C.; Jiang, C.-W.; Zhao, S.; Xiao, Y.; Xu, X.-E.; Liu, G.-Y.; Hu, X.; et al. Molecular Features and Functional Implications of Germline Variants in Triple-Negative Breast Cancer. J. Natl. Cancer Inst. 2021, 113, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Peng, J.; Fu, J.; Khan, M.A.; Tan, P.; Wei, C.; Deng, X.; Chen, H.; Fu, J. Identification of a Novel Germline BRCA2 Variant in a Chinese Breast Cancer Family. J. Cell Mol. Med. 2020, 24, 1676–1683. [Google Scholar] [CrossRef]
- Siraj, A.K.; Bu, R.; Iqbal, K.; Siraj, N.; Al-Haqawi, W.; Al-Badawi, I.A.; Parvathareddy, S.K.; Masoodi, T.; Tulbah, A.; Al-Dayel, F.; et al. Prevalence, Spectrum, and Founder Effect of BRCA1 and BRCA2 Mutations in Epithelial Ovarian Cancer from the Middle East. Hum. Mutat. 2019, 40, 729–733. [Google Scholar] [CrossRef]
- Mesman, R.L.S.; Calléja, F.M.G.R.; de la Hoya, M.; Devilee, P.; van Asperen, C.J.; Vrieling, H.; Vreeswijk, M.P.G. Alternative MRNA Splicing Can Attenuate the Pathogenicity of Presumed Loss-of-Function Variants in BRCA2. Genet. Med. 2020, 22, 1355–1365. [Google Scholar] [CrossRef]
- Bhaskaran, S.P.; Chandratre, K.; Gupta, H.; Zhang, L.; Wang, X.; Cui, J.; Kim, Y.C.; Sinha, S.; Jiang, L.; Lu, B.; et al. Germline Variation in BRCA1/2 Is Highly Ethnic-specific: Evidence from over 30,000 Chinese Hereditary Breast and Ovarian Cancer Patients. Int. J. Cancer 2019, 145, 962–973. [Google Scholar] [CrossRef]
- Boonen, R.A.C.M.; Wiegant, W.W.; Celosse, N.; Vroling, B.; Heijl, S.; Kote-Jarai, Z.; Mijuskovic, M.; Cristea, S.; Solleveld-Westerink, N.; van Wezel, T.; et al. Functional Analysis Identifies Damaging CHEK2 Missense Variants Associated with Increased Cancer Risk. Cancer Res. 2022, 82, 615–631. [Google Scholar] [CrossRef]
- Kleiblová, P.; Stolařová, L.; Křížová, K.; Lhota, F.; Jan, H.; Zemánková, P.; Havránek, O.; Vočka, M.; Černá, M.; Lhotová, K.; et al. Germline CHEK2 Gene Mutations in Hereditary Breast Cancer Predisposition—Mutation Types and Their Biological and Clinical Relevance. Klin. Onkol. 2019, 32, 36–50. [Google Scholar] [CrossRef]
- Solano, A.R.; Mele, P.G.; Jalil, F.S.; Liria, N.C.; Podesta, E.J.; Gutiérrez, L.G. Study of the Genetic Variants in BRCA1/2 and Non-BRCA Genes in a Population-Based Cohort of 2155 Breast/Ovary Cancer Patients, Including 443 Triple-Negative Breast Cancer Patients, in Argentina. Cancers 2021, 13, 2711. [Google Scholar] [CrossRef]
- Urbina-Jara, L.K.; Rojas-Martinez, A.; Martinez-Ledesma, E.; Aguilar, D.; Villarreal-Garza, C.; Ortiz-Lopez, R. Landscape of Germline Mutations in DNA Repair Genes for Breast Cancer in Latin America: Opportunities for PARP-Like Inhibitors and Immunotherapy. Genes 2019, 10, 786. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.G.; Burghel, G.J.; Schlecht, H.; Harkness, E.F.; Gandhi, A.; Howell, S.J.; Howell, A.; Forde, C.; Lalloo, F.; Newman, W.G.; et al. Detection of Pathogenic Variants in Breast Cancer Susceptibility Genes in Bilateral Breast Cancer. J. Med. Genet. 2023, 60, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, E.G.; Stettner, A.R.; Miller, S.A.; Solomon, S.R.; Marshall, M.L.; Roberts, M.E.; Susswein, L.R.; Arvai, K.J.; Klein, R.T.; Murphy, P.D.; et al. Differences in Cancer Prevalence among CHEK2 Carriers Identified via Multi-Gene Panel Testing. Cancer Genet. 2020, 246–247, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, H.; Fu, F.; Li, Z.; Feng, Q.; Wu, W.; Liu, Y.; Wang, C.; Chen, Y. Spectrum of PALB2 Germline Mutations and Characteristics of PALB2-Related Breast Cancer: Screening of 16,501 Unselected Patients with Breast Cancer and 5890 Controls by next-Generation Sequencing. Cancer 2020, 126, 3202–3208. [Google Scholar] [CrossRef] [PubMed]
- Boonen, R.A.C.M.; Rodrigue, A.; Stoepker, C.; Wiegant, W.W.; Vroling, B.; Sharma, M.; Rother, M.B.; Celosse, N.; Vreeswijk, M.P.G.; Couch, F.; et al. Functional Analysis of Genetic Variants in the High-Risk Breast Cancer Susceptibility Gene PALB2. Nat. Commun. 2019, 10, 5296. [Google Scholar] [CrossRef] [PubMed]
- Tsaousis, G.N.; Papadopoulou, E.; Apessos, A.; Agiannitopoulos, K.; Pepe, G.; Kampouri, S.; Diamantopoulos, N.; Floros, T.; Iosifidou, R.; Katopodi, O.; et al. Analysis of Hereditary Cancer Syndromes by Using a Panel of Genes: Novel and Multiple Pathogenic Mutations. BMC Cancer 2019, 19, 535. [Google Scholar] [CrossRef]
- Lerner-Ellis, J.; Donenberg, T.; Ahmed, H.; George, S.; Wharfe, G.; Chin, S.; Lowe, D.; Royer, R.; Zhang, S.; Narod, S.; et al. A High Frequency of PALB2 Mutations in Jamaican Patients with Breast Cancer. Breast Cancer Res. Treat. 2017, 162, 591–596. [Google Scholar] [CrossRef]
- Thompson, E.R.; Gorringe, K.L.; Rowley, S.M.; Wong-Brown, M.W.; McInerny, S.; Li, N.; Trainer, A.H.; Devereux, L.; Doyle, M.A.; Li, J.; et al. Prevalence of PALB2 Mutations in Australian Familial Breast Cancer Cases and Controls. Breast Cancer Res. 2015, 17, 111. [Google Scholar] [CrossRef]
- Kaneyasu, T.; Mori, S.; Yamauchi, H.; Ohsumi, S.; Ohno, S.; Aoki, D.; Baba, S.; Kawano, J.; Miki, Y.; Matsumoto, N.; et al. Prevalence of Disease-Causing Genes in Japanese Patients with BRCA1/2-Wildtype Hereditary Breast and Ovarian Cancer Syndrome. NPJ Breast Cancer 2020, 6, 25. [Google Scholar] [CrossRef]
- Decker, B.; Allen, J.; Luccarini, C.; Pooley, K.A.; Shah, M.; Bolla, M.K.; Wang, Q.; Ahmed, S.; Baynes, C.; Conroy, D.M.; et al. Rare, Protein-Truncating Variants in ATM, CHEK2 and PALB2, but Not XRCC2, Are Associated with Increased Breast Cancer Risks. J. Med. Genet. 2017, 54, 732–741. [Google Scholar] [CrossRef]
- Janatova, M.; Kleibl, Z.; Stribrna, J.; Panczak, A.; Vesela, K.; Zimovjanova, M.; Kleiblova, P.; Dundr, P.; Soukupova, J.; Pohlreich, P. The PALB2 Gene Is a Strong Candidate for Clinical Testing in BRCA1- and BRCA2-Negative Hereditary Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2323–2332. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.; Seal, S.; Thompson, D.; Kelly, P.; Renwick, A.; Elliott, A.; Reid, S.; Spanova, K.; Barfoot, R.; Chagtai, T.; et al. PALB2, Which Encodes a BRCA2-Interacting Protein, Is a Breast Cancer Susceptibility Gene. Nat. Genet. 2007, 39, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; McInerny, S.; Zethoven, M.; Cheasley, D.; Lim, B.W.X.; Rowley, S.M.; Devereux, L.; Grewal, N.; Ahmadloo, S.; Byrne, D.; et al. Combined Tumor Sequencing and Case-Control Analyses of RAD51C in Breast Cancer. J. Natl. Cancer Inst. 2019, 111, 1332–1338. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.; Lin, N.U.; Kidd, J.; Allen, B.A.; Singh, N.; Wenstrup, R.J.; Hartman, A.-R.; Winer, E.P.; Garber, J.E. Frequency of Germline Mutations in 25 Cancer Susceptibility Genes in a Sequential Series of Patients With Breast Cancer. J. Clin. Oncol. 2016, 34, 1460–1468. [Google Scholar] [CrossRef]
- Li, J.; Jing, R.; Wei, H.; Wang, M.; Xiaowei, Q.; Liu, H.; Jian, L.; Ou, J.; Jiang, W.; Tian, F.; et al. Germline Mutations in 40 Cancer Susceptibility Genes among Chinese Patients with High Hereditary Risk Breast Cancer. Int. J. Cancer 2019, 144, 281–289. [Google Scholar] [CrossRef]
- Kotler, E.; Shani, O.; Goldfeld, G.; Lotan-Pompan, M.; Tarcic, O.; Gershoni, A.; Hopf, T.A.; Marks, D.S.; Oren, M.; Segal, E. A Systematic P53 Mutation Library Links Differential Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. Mol. Cell 2018, 71, 178–190.e8. [Google Scholar] [CrossRef]
- Giacomelli, A.O.; Yang, X.; Lintner, R.E.; McFarland, J.M.; Duby, M.; Kim, J.; Howard, T.P.; Takeda, D.Y.; Ly, S.H.; Kim, E.; et al. Mutational Processes Shape the Landscape of TP53 Mutations in Human Cancer. Nat. Genet. 2018, 50, 1381–1387. [Google Scholar] [CrossRef]
- Renaux-Petel, M.; Charbonnier, F.; Théry, J.-C.; Fermey, P.; Lienard, G.; Bou, J.; Coutant, S.; Vezain, M.; Kasper, E.; Fourneaux, S.; et al. Contribution of de Novo and Mosaic TP53 Mutations to Li-Fraumeni Syndrome. J. Med. Genet. 2018, 55, 173–180. [Google Scholar] [CrossRef]
- Weischer, M.; Bojesen, S.E.; Ellervik, C.; Tybjærg-Hansen, A.; Nordestgaard, B.G. CHEK2 *1100delC Genotyping for Clinical Assessment of Breast Cancer Risk: Meta-Analyses of 26,000 Patient Cases and 27,000 Controls. J. Clin. Oncol. 2008, 26, 542–548. [Google Scholar] [CrossRef]
- Renwick, A.; Thompson, D.; Seal, S.; Kelly, P.; Chagtai, T.; Ahmed, M.; North, B.; Jayatilake, H.; Barfoot, R.; Spanova, K.; et al. ATM Mutations That Cause Ataxia-Telangiectasia Are Breast Cancer Susceptibility Alleles. Nat. Genet. 2006, 38, 873–875. [Google Scholar] [CrossRef]
- Available online: https://enigmaconsortium.org (accessed on 1 January 2024).
- Rizzolo, P.; Zelli, V.; Silvestri, V.; Valentini, V.; Zanna, I.; Bianchi, S.; Masala, G.; Spinelli, A.M.; Tibiletti, M.G.; Russo, A.; et al. Insight into Genetic Susceptibility to Male Breast Cancer by Multigene Panel Testing: Results from a Multicenter Study in Italy. Int. J. Cancer 2019, 145, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Janavičius, R. Founder BRCA1/2 Mutations in the Europe: Implications for Hereditary Breast-Ovarian Cancer Prevention and Control. EPMA J. 2010, 1, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Patruno, M.; De Summa, S.; Resta, N.; Caputo, M.; Costanzo, S.; Digennaro, M.; Pilato, B.; Bagnulo, R.; Pantaleo, A.; Simone, C.; et al. Spectrum of Germline Pathogenic Variants in BRCA1/2 Genes in the Apulian Southern Italy Population: Geographic Distribution and Evidence for Targeted Genetic Testing. Cancers 2021, 13, 4714. [Google Scholar] [CrossRef] [PubMed]
- Incorvaia, L.; Fanale, D.; Badalamenti, G.; Bono, M.; Calò, V.; Cancelliere, D.; Castiglia, M.; Fiorino, A.; Pivetti, A.; Barraco, N.; et al. Hereditary Breast and Ovarian Cancer in Families from Southern Italy (Sicily)—Prevalence and Geographic Distribution of Pathogenic Variants in BRCA1/2 Genes. Cancers 2020, 12, 1158. [Google Scholar] [CrossRef] [PubMed]
- Nedelcu, R.; Liede, A.; Aubé, J.; Finch, A.; Kwan, E.; Jack, E.; Narod, S.A.; Randall, S.; Hugel, L.; Clark, K. BRCA Mutations in Italian Breast/Ovarian Cancer Families. Eur. J. Hum. Genet. 2002, 10, 150–152. [Google Scholar] [CrossRef]
- Dines, J.N.; Shirts, B.H.; Slavin, T.P.; Walsh, T.; King, M.-C.; Fowler, D.M.; Pritchard, C.C. Systematic Misclassification of Missense Variants in BRCA1 and BRCA2 “Coldspots”. Genet. Med. 2020, 22, 825–830. [Google Scholar] [CrossRef]
- Stolarova, L.; Kleiblova, P.; Zemankova, P.; Stastna, B.; Janatova, M.; Soukupova, J.; Achatz, M.I.; Ambrosone, C.; Apostolou, P.; Arun, B.K.; et al. ENIGMA CHEK2 Gether Project: A Comprehensive Study Identifies Functionally Impaired CHEK2 Germline Missense Variants Associated with Increased Breast Cancer Risk. Clin. Cancer Res. 2023, 29, 3037–3050. [Google Scholar] [CrossRef]
- Paulo, P.; Maia, S.; Pinto, C.; Pinto, P.; Monteiro, A.; Peixoto, A.; Teixeira, M.R. Targeted next Generation Sequencing Identifies Functionally Deleterious Germline Mutations in Novel Genes in Early-Onset/Familial Prostate Cancer. PLoS Genet. 2018, 14, e1007355. [Google Scholar] [CrossRef]
- Hauke, J.; Horvath, J.; Groß, E.; Gehrig, A.; Honisch, E.; Hackmann, K.; Schmidt, G.; Arnold, N.; Faust, U.; Sutter, C.; et al. Gene Panel Testing of 5589 BRCA1/2-Negative Index Patients with Breast Cancer in a Routine Diagnostic Setting: Results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancer Med. 2018, 7, 1349–1358. [Google Scholar] [CrossRef]
- Tavtigian, S.V.; Oefner, P.J.; Babikyan, D.; Hartmann, A.; Healey, S.; Le Calvez-Kelm, F.; Lesueur, F.; Byrnes, G.B.; Chuang, S.-C.; Forey, N.; et al. Rare, Evolutionarily Unlikely Missense Substitutions in ATM Confer Increased Risk of Breast Cancer. Am. J. Hum. Genet. 2009, 85, 427–446. [Google Scholar] [CrossRef]
- Bandeira, G.; Rocha, K.; Lazar, M.; Ezquina, S.; Yamamoto, G.; Varela, M.; Takahashi, V.; Aguena, M.; Gollop, T.; Zatz, M.; et al. Germline Variants of Brazilian Women with Breast Cancer and Detection of a Novel Pathogenic ATM Deletion in Early-Onset Breast Cancer. Breast Cancer 2021, 28, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Thorstenson, Y.R.; Roxas, A.; Kroiss, R.; Jenkins, M.A.; Yu, K.M.; Bachrich, T.; Muhr, D.; Wayne, T.L.; Chu, G.; Davis, R.W.; et al. Contributions of ATM Mutations to Familial Breast and Ovarian Cancer. Cancer Res. 2003, 63, 3325–3333. [Google Scholar] [PubMed]
- Tiao, G.; Improgo, M.R.; Kasar, S.; Poh, W.; Kamburov, A.; Landau, D.-A.; Tausch, E.; Taylor-Weiner, A.; Cibulskis, C.; Bahl, S.; et al. Rare Germline Variants in ATM Are Associated with Chronic Lymphocytic Leukemia. Leukemia 2017, 31, 2244–2247. [Google Scholar] [CrossRef] [PubMed]
- Bucalo, A.; Conti, G.; Valentini, V.; Capalbo, C.; Bruselles, A.; Tartaglia, M.; Bonanni, B.; Calistri, D.; Coppa, A.; Cortesi, L.; et al. Male Breast Cancer Risk Associated with Pathogenic Variants in Genes Other than BRCA1/2: An Italian Case-Control Study. Eur. J. Cancer 2023, 188, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Laraqui, A.; Cavaillé, M.; Uhrhammer, N.; ElBiad, O.; Bidet, Y.; El Rhaffouli, H.; El Anaz, H.; Rahali, D.M.; Kouach, J.; Guelzim, K.; et al. Identification of a Novel Pathogenic Variant in PALB2 and BARD1 Genes by a Multigene Sequencing Panel in Triple Negative Breast Cancer in Morocco. J. Genomics 2021, 9, 43–54. [Google Scholar] [CrossRef]
- Tram, E.; Savas, S.; Ozcelik, H. Missense Variants of Uncertain Significance (VUS) Altering the Phosphorylation Patterns of BRCA1 and BRCA2. PLoS ONE 2013, 8, e62468. [Google Scholar] [CrossRef]
- Fraile-Bethencourt, E.; Valenzuela-Palomo, A.; Díez-Gómez, B.; Goina, E.; Acedo, A.; Buratti, E.; Velasco, E.A. Mis-Splicing in Breast Cancer: Identification of Pathogenic BRCA2 Variants by Systematic Minigene Assays. J. Pathol. 2019, 248, 409–420. [Google Scholar] [CrossRef]
- Parsons, M.T.; Tudini, E.; Li, H.; Hahnen, E.; Wappenschmidt, B.; Feliubadaló, L.; Aalfs, C.M.; Agata, S.; Aittomäki, K.; Alducci, E.; et al. Large Scale Multifactorial Likelihood Quantitative Analysis of BRCA1 and BRCA2 Variants: An ENIGMA Resource to Support Clinical Variant Classification. Hum. Mutat. 2019, 40, 1557–1578. [Google Scholar] [CrossRef]
- Ramus, S.J.; Song, H.; Dicks, E.; Tyrer, J.P.; Rosenthal, A.N.; Intermaggio, M.P.; Fraser, L.; Gentry-Maharaj, A.; Hayward, J.; Philpott, S.; et al. Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. J. Natl. Cancer Inst. 2015, 107, djv214. [Google Scholar] [CrossRef]
- Velázquez, C.; Esteban-Cardeñosa, E.M.; Lastra, E.; Abella, L.E.; de la Cruz, V.; Lobatón, C.D.; Durán, M.; Infante, M. Unraveling the Molecular Effect of a Rare Missense Mutation in BRIP1 Associated with Inherited Breast Cancer. Mol. Carcinog. 2019, 58, 156–160. [Google Scholar] [CrossRef]
- Bono, M.; Fanale, D.; Incorvaia, L.; Cancelliere, D.; Fiorino, A.; Calò, V.; Dimino, A.; Filorizzo, C.; Corsini, L.R.; Brando, C.; et al. Impact of Deleterious Variants in Other Genes beyond BRCA1/2 Detected in Breast/Ovarian and Pancreatic Cancer Patients by NGS-Based Multi-Gene Panel Testing: Looking over the Hedge. ESMO Open 2021, 6, 100235. [Google Scholar] [CrossRef] [PubMed]
- Momozawa, Y.; Iwasaki, Y.; Parsons, M.T.; Kamatani, Y.; Takahashi, A.; Tamura, C.; Katagiri, T.; Yoshida, T.; Nakamura, S.; Sugano, K.; et al. Germline Pathogenic Variants of 11 Breast Cancer Genes in 7,051 Japanese Patients and 11,241 Controls. Nat. Commun. 2018, 9, 4083. [Google Scholar] [CrossRef] [PubMed]
- Delimitsou, A.; Fostira, F.; Kalfakakou, D.; Apostolou, P.; Konstantopoulou, I.; Kroupis, C.; Papavassiliou, A.G.; Kleibl, Z.; Stratikos, E.; Voutsinas, G.E.; et al. Functional Characterization of CHEK2 Variants in a Saccharomyces Cerevisiae System. Hum. Mutat. 2019, 40, 631–648. [Google Scholar] [CrossRef]
- Ciceri, S.; Gamba, B.; Corbetta, P.; Mondini, P.; Terenziani, M.; Catania, S.; Nantron, M.; Bianchi, M.; D’Angelo, P.; Torri, F.; et al. Genetic and Epigenetic Analyses Guided by High Resolution Whole-Genome SNP Array Reveals a Possible Role of CHEK2 in Wilms Tumour Susceptibility. Oncotarget 2018, 9, 34079–34089. [Google Scholar] [CrossRef] [PubMed]
- Le Calvez-Kelm, F.; Lesueur, F.; Damiola, F.; Vallée, M.; Voegele, C.; Babikyan, D.; Durand, G.; Forey, N.; McKay-Chopin, S.; Robinot, N.; et al. Rare, Evolutionarily Unlikely Missense Substitutions in CHEK2 Contribute to Breast Cancer Susceptibility: Results from a Breast Cancer Family Registry Case-Control Mutation-Screening Study. Breast Cancer Res. 2011, 13, R6. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.K.; Lovly, C.M.; Piwnica-Worms, H. Regulation of the Chk2 Protein Kinase by Oligomerization-Mediated Cis- and Trans-Phosphorylation. Mol. Cancer Res. 2003, 1, 598–609. [Google Scholar]
- Lee, C.H.; Chung, J.H. The HCds1 (Chk2)-FHA Domain Is Essential for a Chain of Phosphorylation Events on HCds1 That Is Induced by Ionizing Radiation. J. Biol. Chem. 2001, 276, 30537–30541. [Google Scholar] [CrossRef]
- Kumpula, T.A.; Koivuluoma, S.; Soikkonen, L.; Vorimo, S.; Moilanen, J.; Winqvist, R.; Mantere, T.; Kuismin, O.; Pylkäs, K. Evaluating the Role of CHEK2 p.(Asp438Tyr) Allele in Inherited Breast Cancer Predisposition. Fam. Cancer 2023, 22, 291–294. [Google Scholar] [CrossRef]
- Grasel, R.S.; Felicio, P.S.; de Paula, A.E.; Campacci, N.; Garcia, F.A.D.O.; de Andrade, E.S.; Evangelista, A.F.; Fernandes, G.C.; Sabato, C. da S.; De Marchi, P.; et al. Using Co-Segregation and Loss of Heterozygosity Analysis to Define the Pathogenicity of Unclassified Variants in Hereditary Breast Cancer Patients. Front. Oncol. 2020, 10, 571330. [Google Scholar] [CrossRef]
- Ow, G.S.; Ivshina, A.V.; Fuentes, G.; Kuznetsov, V.A. Identification of Two Poorly Prognosed Ovarian Carcinoma Subtypes Associated with CHEK2 Germ-Line Mutation and Non-CHEK2 Somatic Mutation Gene Signatures. Cell Cycle 2014, 13, 2262–2280. [Google Scholar] [CrossRef]
- Jia, X.; Burugula, B.B.; Chen, V.; Lemons, R.M.; Jayakody, S.; Maksutova, M.; Kitzman, J.O. Massively Parallel Functional Testing of MSH2 Missense Variants Conferring Lynch Syndrome Risk. Am. J. Hum. Genet. 2021, 108, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Drost, M.; Tiersma, Y.; Glubb, D.; Kathe, S.; van Hees, S.; Calléja, F.; Zonneveld, J.B.M.; Boucher, K.M.; Ramlal, R.P.E.; Thompson, B.A.; et al. Two Integrated and Highly Predictive Functional Analysis-Based Procedures for the Classification of MSH6 Variants in Lynch Syndrome. Genet. Med. 2020, 22, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Liccardo, R.; De Rosa, M.; Rossi, G.B.; Carlomagno, N.; Izzo, P.; Duraturo, F. Incomplete Segregation of MSH6 Frameshift Variants with Phenotype of Lynch Syndrome. Int. J. Mol. Sci. 2017, 18, 999. [Google Scholar] [CrossRef] [PubMed]
- Mandelker, D.; Zhang, L.; Kemel, Y.; Stadler, Z.K.; Joseph, V.; Zehir, A.; Pradhan, N.; Arnold, A.; Walsh, M.F.; Li, Y.; et al. Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing. JAMA 2017, 318, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Wiltshire, T.; Ducy, M.; Foo, T.K.; Hu, C.; Lee, K.Y.; Belur Nagaraj, A.; Rodrigue, A.; Gomes, T.T.; Simard, J.; Monteiro, A.N.A.; et al. Functional Characterization of 84 PALB2 Variants of Uncertain Significance. Genet. Med. 2020, 22, 622–632. [Google Scholar] [CrossRef]
- Yehia, L.; Ni, Y.; Sesock, K.; Niazi, F.; Fletcher, B.; Chen, H.J.L.; LaFramboise, T.; Eng, C. Unexpected Cancer-Predisposition Gene Variants in Cowden Syndrome and Bannayan-Riley-Ruvalcaba Syndrome Patients without Underlying Germline PTEN Mutations. PLoS Genet. 2018, 14, e1007352. [Google Scholar] [CrossRef]
- Krivokuca, A.; Mihajlovic, M.; Susnjar, S.; Spasojevic, I.B.; Minic, I.; Popovic, L.; Brankovic-Magic, M. Mutational Profile of Hereditary Breast and Ovarian Cancer-Establishing Genetic Testing Guidelines in a Developing Country. Curr. Probl. Cancer 2022, 46, 100767. [Google Scholar] [CrossRef]
- Kraemer, D.; Azzarello-Burri, S.; Steindl, K.; Boonsawat, P.; Zweier, M.; Dedes, K.J.; Joset, P.; Fink, D.; Rauch, A. Prevalence of Genetic Susceptibility for Breast and Ovarian Cancer in a Non-Cancer Related Study Population: Secondary Germline Findings from a Swiss Single Centre Cohort. Swiss Med. Wkly. 2019, 149, w20092. [Google Scholar] [CrossRef]
- Konstanta, I.; Fostira, F.; Apostolou, P.; Stratikos, E.; Kalfakakou, D.; Pampanos, A.; Kollia, P.; Papadimitriou, C.; Konstantopoulou, I.; Yannoukakos, D. Contribution of RAD51D Germline Mutations in Breast and Ovarian Cancer in Greece. J. Hum. Genet. 2018, 63, 1149–1158. [Google Scholar] [CrossRef]
- Bakhuizen, J.J.; Hogervorst, F.B.; Velthuizen, M.E.; Ruijs, M.W.; van Engelen, K.; van Os, T.A.; Gille, J.J.; Collée, M.; van den Ouweland, A.M.; van Asperen, C.J.; et al. TP53 Germline Mutation Testing in Early-Onset Breast Cancer: Findings from a Nationwide Cohort. Fam. Cancer 2019, 18, 273–280. [Google Scholar] [CrossRef]
- Eldar, A.; Rozenberg, H.; Diskin-Posner, Y.; Rohs, R.; Shakked, Z. Structural Studies of P53 Inactivation by DNA-Contact Mutations and Its Rescue by Suppressor Mutations via Alternative Protein-DNA Interactions. Nucleic Acids Res. 2013, 41, 8748–8759. [Google Scholar] [CrossRef] [PubMed]
Characteristics | No. (%) |
---|---|
Sex assigned at birth Female Male | 242 (95%) 12 (5%) |
Age of Diagnosis, Media (Range) | 51 (25–91) |
Histologic diagnosis Invasive ductal carcinoma Invasive lobular carcinoma In situ ductal carcinoma Others Unknown | 171 (67%) 20 (8%) 6 (4%) 11 (4%) 46 (18%) |
Subtype Triple Negative (TNBC) Others Unknown | 45 (18%) 151 (60%) 58 (22%) |
N. | Gene | Variant (HGVS) GRCh37/hg19 | dbSNP | Type of Variant | ClinVar/ACMG Classification | Ref |
---|---|---|---|---|---|---|
1 | ATM | Chr11:g.108186742C>T c.6100C>T (p.Arg2034Ter) | rs532480170 | non-sense | Pathogenic | [26,27] |
2 | ATM | Chr11:g.108190781-108190782dup c.6450dup (p.Arg2151GlnfsTer10) | rs2136222670 | frame-shift | Pathogenic | [28] |
3 | ATM | Chr11:g.108205837G>T c.8151+1G>T | NR | splice-site | Likely Pathogenic | NR |
4 | ATM | Chr11:g.108235935C>T c.8977C>T (p.Arg2993Ter) | rs770641163 | non-sense | Pathogenic | [29] |
5 | BRCA1 | Chr17:g.41267741A>G c.134+2T>C | rs80358131 | splice-site | Pathogenic | [30] |
6 | BRCA1 | Chr17:g.41267741A>G c.134+2T>G | rs80358131 | splice-site | Pathogenic | NR |
7 | BRCA1 | Chr17:g.41258504T>G c.181T>G (p.Cys61Gly) | rs28897672 | missense | Pathogenic | [31,32] |
8 | BRCA1 | Chr17:g.41258473G>C c.212G>C (p.Arg71Thr) | rs80356913 | missense | Pathogenic | [33,34] |
9 | BRCA1 | Chr17:g.41246187- 41246188del c.1360_1361del (p.Glu453_Ser454insTer) | rs80357969 | frame-shift | Pathogenic | [21,35] |
10 | BRCA1 | Chr17:g.41222949-41222967del c.4964_4982del (p.Ser1655TyrFsTer16) | rs80359876 | frame-shift | Pathogenic | [36,37] |
11 | BRCA1 | Chr17:g.41215920C>A c.5123C>A (p.Ala1708Glu) | rs28897696 | missense | Pathogenic | [38,39] |
12 | BRCA2 | Chr13:g.32907285T>G c.1670T>G (p.Leu557Ter) | rs80358452 | non-sense | Pathogenic | [40,41] |
13 | BRCA2 | Chr13:g.32907526T>A c.1909+2T>A | rs876658577 | splice-site | Likely Pathogenic | [2] |
14 | BRCA2 | Chr13:g.32912623- 32912624insTGAGGA c.4131_4132insTGAGGA (p.Thr1378Ter) | rs80359429 | Non-sense | Pathogenic | [42,43] |
15 | BRCA2 | Chr13:g.32914401C>A c.5909C>A (p.Ser1970Ter) | rs80358824 | non-sense | Pathogenic | [44,45] |
16 | BRCA2 | Chr13:g.32914894-32914898del c.6405_6409del (p.Asn2135LysFsTer3) | rs80359584 | frame-shift | Pathogenic | [46] |
17 | BRCA2 | Chr13:g.32921033G>A c.7007G>A (p.Arg2336His) | rs28897743 | missense | Pathogenic | [47,48] |
18 | BRCA2 | Chr13:g.32944695G>A c.8487+1G>A | rs81002798 | splice-site | Pathogenic | [49,50] |
19 | CHEK2 | Chr22:g.29121087T>C c.470T>C (p.Ile157Thr) | rs17879961 | missense | Likely Pathogenic | [51,52] |
20 | CHEK2 | Chr22:g.29105993C>A c.846+1G>C | rs864622149 | splice-site | Likely Pathogenic | [53,54] |
21 | CHEK2 | Chr22:g.29091857del c.1100del (p.Thr367MetfsTer15) | rs555607708 | frame-shift | Pathogenic | [55,56] |
22 | PALB2 | Chr16:g.23649207-23649210del c.172_175del (p.Gln60ArgFsTer7) | rs180177143 | frame-shift | Pathogenic | [57,58,59] |
23 | PALB2 | Chr16:g.23647108-23647109dup c.758dup (p.Ser254IlefsTer3) | rs515726126 | frame-shift | Pathogenic | [60,61] |
24 | PALB2 | Chr6:g.23646419C>G c.1448C>G (p.Ser483Ter) | rs1057520736 | non-sense | Pathogenic | NR |
25 | PALB2 | Chr16:g.23646416A>T c.1451T>A (p.Leu484Ter) | rs786203714 | non-sense | Pathogenic | [62,63] |
26 | PALB2 | Chr16:g.23641107C>T c.2368C>T (p.Gln790Ter) | rs886039480 | non-sense | Pathogenic | [64,65] |
27 | RAD51C | Chr17:g.56780562C>T c.577C>T (p.Arg193Ter) | rs200293302 | non-sense | Pathogenic | [66,67] |
28 | TP53 | Chr17:g.7578555C>T c.376-1G>A | rs868137297 | splice-site | Pathogenic | [68] |
29 | TP53 | Chr17:g.7578479G>C c.451C>G (p.Pro151Ala) | rs28934874 | missense | Pathogenic | [69,70,71] |
30 | TP53 | Chr17:g.7578467T>C c.463A>C (p.Thr155Pro) | rs772683278 | missense | Likely Pathogenic NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocca, V.; Lo Feudo, E.; Dinatolo, F.; Lavano, S.M.; Bilotta, A.; Amato, R.; D’Antona, L.; Trapasso, F.; Baudi, F.; Colao, E.; et al. Germline Variant Spectrum in Southern Italian High-Risk Hereditary Breast Cancer Patients: Insights from Multi-Gene Panel Testing. Curr. Issues Mol. Biol. 2024, 46, 13003-13020. https://doi.org/10.3390/cimb46110775
Rocca V, Lo Feudo E, Dinatolo F, Lavano SM, Bilotta A, Amato R, D’Antona L, Trapasso F, Baudi F, Colao E, et al. Germline Variant Spectrum in Southern Italian High-Risk Hereditary Breast Cancer Patients: Insights from Multi-Gene Panel Testing. Current Issues in Molecular Biology. 2024; 46(11):13003-13020. https://doi.org/10.3390/cimb46110775
Chicago/Turabian StyleRocca, Valentina, Elisa Lo Feudo, Francesca Dinatolo, Serena Marianna Lavano, Anna Bilotta, Rosario Amato, Lucia D’Antona, Francesco Trapasso, Francesco Baudi, Emma Colao, and et al. 2024. "Germline Variant Spectrum in Southern Italian High-Risk Hereditary Breast Cancer Patients: Insights from Multi-Gene Panel Testing" Current Issues in Molecular Biology 46, no. 11: 13003-13020. https://doi.org/10.3390/cimb46110775
APA StyleRocca, V., Lo Feudo, E., Dinatolo, F., Lavano, S. M., Bilotta, A., Amato, R., D’Antona, L., Trapasso, F., Baudi, F., Colao, E., Perrotti, N., Paduano, F., & Iuliano, R. (2024). Germline Variant Spectrum in Southern Italian High-Risk Hereditary Breast Cancer Patients: Insights from Multi-Gene Panel Testing. Current Issues in Molecular Biology, 46(11), 13003-13020. https://doi.org/10.3390/cimb46110775