Oxysophocarpine Prevents the Glutamate-Induced Apoptosis of HT–22 Cells via the Nrf2/HO–1 Signaling Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Cell Culture
2.3. Assay of the Appropriate Concentrations of OSC
2.4. Cell Viability Assay
2.5. Assay of Intracellular ROS Production
2.6. MMP Determination
2.7. Apoptosis Detection
2.8. Western Blot Analysis
2.9. Fluorescence Staining Analysis
2.10. Transfection of siRNA Targeting HO–1
2.11. Statistical Analysis
3. Results
3.1. Determining the Appropriate Concentrations of OSC
3.2. The Influence of OSC on Glutamate-Induced Cytotoxicity and ROS Production in HT–22 Cells Was Assessed
3.3. Effects of OSC on Glutamate-Induced Mitochondrial Function in HT–22 Cells
3.4. Impact of OSC on Apoptosis in HT–22 Cells Induced by Glutamate
3.5. Effects of OSC on Nrf2 Translocation in HT–22 Cells
3.6. Effects of OSC on Expression of HO–1 in HT–22 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prasansuklab, A.; Sukjamnong, S.; Theerasri, A.; Hu, V.W.; Sarachana, T.; Tencomnao, T. Transcriptomic Analysis of Glutamate-Induced HT22 Neurotoxicity as a Model for Screening Anti-Alzheimer’s Drugs. Sci. Rep. 2023, 13, 7225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, S.; Fan, F.; Xu, N.; Meng, X.-L.; Zhang, Y.; Lin, J.-M. Neurotoxicity Mechanism of Aconitine in HT22 Cells Studied by Microfluidic Chip-Mass Spectrometry. J. Pharm. Anal. 2023, 13, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, W.; Ge, P.; Yu, M.; Meng, H. Parthanatos Participates in Glutamate-Mediated HT22 Cell Injury and Hippocampal Neuronal Death in Kainic Acid-Induced Status Epilepticus Rats. CNS Neurosci. Ther. 2022, 28, 2032–2043. [Google Scholar] [CrossRef] [PubMed]
- Iovino, L.; Tremblay, M.E.; Civiero, L. Glutamate-Induced Excitotoxicity in Parkinson’s Disease: The Role of Glial Cells. J. Pharmacol. Sci. 2020, 144, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.H.; Oh, Y.-C.; Kim, T.I.; Bae, J.-S.; Yeul, M.J. The Neuroprotective Effects of Arecae Pericarpium against Glutamate-Induced HT22 Cell Cytotoxicity. Curr. Issues Mol. Biol. 2022, 44, 5902–5914. [Google Scholar] [CrossRef]
- Gao, L.; Wang, T.; Zhuoma, D.; Yuan, R.; Huang, S.; Li, B. Farrerol Attenuates Glutamate-Induced Apoptosis in HT22 Cells via the Nrf2/Heme Oxygenase-1 Pathway. Biosci. Biotechnol. Biochem. 2023, 87, 1009–1016. [Google Scholar] [CrossRef]
- Lee, P.J.; Pham, C.H.; Thuy, N.T.T.; Park, H.-J.; Lee, S.H.; Yoo, H.M.; Cho, N. 1-Methoxylespeflorin G11 Protects HT22 Cells from Glutamate-Induced Cell Death through Inhibition of ROS Production and Apoptosis. J. Microbiol. Biotechnol. 2021, 31, 217–225. [Google Scholar] [CrossRef]
- Park, D.H.; Park, J.Y.; Kang, K.S.; Hwang, G.S. Neuroprotective Effect of Gallocatechin Gallate on Glutamate-Induced Oxidative Stress in Hippocampal HT22 Cells. Molecules 2021, 26, 1387. [Google Scholar] [CrossRef]
- Yao, X.; Xu, X.; Hu, K.; Yang, Z.; Deng, S. BANF1 Promotes Glutamate-Induced Apoptosis of HT22 Hippocampal Neurons. Mol. Biol. Rep. 2023, 50, 9441–9452. [Google Scholar] [CrossRef]
- Mao, X.; Wang, Z.; Zhou, H.; Liu, Z.; Zhou, Y. Osthole ameliorates glutamate-induced toxicity in HT22 cells via activating PI3K/Akt signaling pathway. J. Cent. South Univ. 2022, 40, 955–959. [Google Scholar]
- Kritis, A.A.; Stamoula, E.G.; Paniskaki, K.A.; Vavilis, T.D. Researching Glutamate—Induced Cytotoxicity in Different Cell Lines: A Comparative/Collective Analysis/Study. Front. Cell. Neurosci. 2015, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef] [PubMed]
- Jaganjac, M.; Milkovic, L.; Zarkovic, N.; Zarkovic, K. Oxidative Stress and Regeneration. Free Radic. Biol. Med. 2022, 181, 154–165. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, H.; Fang, S.; Xu, C. Roles of Endoplasmic Reticulum Stress and Autophagy on H2O2-induced Oxidative Stress Injury in HepG2 Cells. Mol. Med. Rep. 2018, 18, 4163–4174. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
- Villalpando-Rodriguez, G.E.; Gibson, S.B. Reactive Oxygen Species (ROS) Regulates Different Types of Cell Death by Acting as a Rheostat. Oxid. Med. Cell. Longev. 2021, 2021, e9912436. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Liu, M.; Du, A.; Qiu, M.; Shu, H.; Li, L.; Kong, X.; Sun, W. ROS Inhibition Increases KDM6A-Mediated NOX2 Transcription and Promotes Macrophages Oxidative Stress and M1 Polarization. Cell Stress Chaperones 2023, 28, 375–384. [Google Scholar] [CrossRef]
- Chenna, S.; Koopman, W.J.H.; Prehn, J.H.M.; Connolly, N.M.C. Mechanisms and Mathematical Modeling of ROS Production by the Mitochondrial Electron Transport Chain. Am. J. Physiol.-Cell Physiol. 2022, 323, C69–C83. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Duan, H.; Li, R.; Peng, W.; Wu, C. Activation of Nrf2/HO–1 Signaling: An Important Molecular Mechanism of Herbal Medicine in the Treatment of Atherosclerosis via the Protection of Vascular Endothelial Cells from Oxidative Stress. J. Adv. Res. 2021, 34, 43–63. [Google Scholar] [CrossRef]
- Li, J.; Lu, K.; Sun, F.; Tan, S.; Zhang, X.; Sheng, W.; Hao, W.; Liu, M.; Lv, W.; Han, W. Panaxydol Attenuates Ferroptosis against LPS-Induced Acute Lung Injury in Mice by Keap1-Nrf2/HO–1 Pathway. J. Transl. Med. 2021, 19, 96. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Jin, G.; Gao, K.; Wang, S.; Zhang, X.; Zhou, K.; Cai, Y.; Zhou, X.; Zhao, Z. Network Pharmacology-Based Study on the Mechanism of ShenKang Injection in Diabetic Kidney Disease through Keap1/Nrf2/Ho-1 Signaling Pathway. Phytomedicine 2023, 118, 154915. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Hu, Y.; Chen, Z.; Dai, Y.; Hu, Y.; Qi, M. Magnolol Attenuates Depressive-like Behaviors by Polarizing Microglia towards the M2 Phenotype through the Regulation of Nrf2/HO–1/NLRP3 Signaling Pathway. Phytomedicine 2021, 91, 153692. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-Y.; Zhu, H.-J.; Zhao, R.-Y.; Zhou, S.-Y.; Wang, M.-Q.; Yang, Y.; Guo, Z.-N. Remote Ischemic Conditioning Attenuates Oxidative Stress and Inflammation via the Nrf2/HO–1 Pathway in MCAO Mice. Redox Biol. 2023, 66, 102852. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, L.; Chen, J.; Li, Q.; Huo, L.; Wang, Y.; Wang, H.; Du, J. Pharmacological Modulation of Nrf2/HO–1 Signaling Pathway as a Therapeutic Target of Parkinson’s Disease. Front. Pharmacol. 2021, 12, 757161. [Google Scholar] [CrossRef]
- Xu, C.; Song, Y.; Wang, Z.; Jiang, J.; Piao, Y.; Li, L.; Jin, S.; Li, L.; Zhu, L.; Yan, G. Pterostilbene Suppresses Oxidative Stress and Allergic Airway Inflammation through AMPK/Sirt1 and Nrf2/HO–1 Pathways. Immun. Inflamm. Dis. 2021, 9, 1406–1417. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, Y.; Qiao, Y.; Zheng, Y.; Yu, X.; Liu, F.; Wang, H.; Zheng, B.; Pan, S.; Ren, K.; et al. Quercetin Ameliorates Diabetic Kidney Injury by Inhibiting Ferroptosis via Activating Nrf2/HO–1 Signaling Pathway. Am. J. Chin. Med. 2023, 51, 997–1018. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Deng, X.-H.; Ma, P.-S.; Li, F.-M.; Peng, X.-D.; Niu, Y.; Sun, T.; Li, Y.-X.; Yu, J.-Q. The Anticonvulsant and Neuroprotective Effects of Oxysophocarpine on Pilocarpine-Induced Convulsions in Adult Male Mice. Cell. Mol. Neurobiol. 2017, 37, 339–349. [Google Scholar] [CrossRef]
- Zhao, P.; Chang, R.-Y.; Liu, N.; Wang, J.; Zhou, R.; Qi, X.; Liu, Y.; Ma, L.; Niu, Y.; Sun, T.; et al. Neuroprotective Effect of Oxysophocarpine by Modulation of MAPK Pathway in Rat Hippocampal Neurons Subject to Oxygen–Glucose Deprivation and Reperfusion. Cell. Mol. Neurobiol. 2018, 38, 529–540. [Google Scholar] [CrossRef]
- Zhu, Q.-L.; Li, Y.-X.; Zhou, R.; Ma, N.-T.; Chang, R.-Y.; Wang, T.-F.; Zhang, Y.; Chen, X.-P.; Hao, Y.-J.; Jin, S.-J.; et al. Neuroprotective Effects of Oxysophocarpine on Neonatal Rat Primary Cultured Hippocampal Neurons Injured by Oxygen-Glucose Deprivation and Reperfusion. Pharm. Biol. 2014, 52, 1052–1059. [Google Scholar] [CrossRef]
- Yang, D.; Chen, F.; Gu, Z.; Lü, L.; Ding, G.; Peng, Z.; Shang, J.; Zhang, T. Oxysophocarpine Reduces Oxidative Stress and Inflammation in Tuberculosis-Infected Neutrophils and Mouse Lungs. Int. J. Clin. Exp. Pathol. 2020, 13, 1506. [Google Scholar] [PubMed]
- Li, L.; Shi, R.; Shi, W.; Zhang, R.; Wu, L. Oxysophocarpine Protects Airway Epithelial Cells against Inflammation and Apoptosis by Inhibiting miR-155 Expression. Future Med. Chem. 2020, 12, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, R.; Jiao, X.; Zhang, J.; Zhang, C.; Wang, Z. Oxysophocarpine suppresses TRAF6 level to ameliorate oxidative stress and inflammatory factors secretion in mice with dextran sulphate sodium (DSS) induced-ulcerative colitis. Microb Pathog. 2023, 182, 106244. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Gao, T.; Yu, C.; Fu, S.; Guo, T.; Xu, W.; Li, X.; Wang, Y.; Zhang, J.; Jia, X.; et al. Oxysophocarpine attenuates inflammatory osteolysis by modulating the NF-κb pathway and the reactive oxygen species-related Nrf2 signaling pathway. Inflammopharmacology 2024, 32, 3461–3474. [Google Scholar] [CrossRef] [PubMed]
- Ruera, C.N.; Perez, F.; Iribarren, M.L.; Guzman, L.; Menendez, L.; Garbi, L.; Chirdo, F.G. Coexistence of apoptosis, pyroptosis, and necroptosis pathways in celiac disease. Clin. Exp. Immunol. 2023, 214, 328–340. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, D.; Hong, M.; Liu, J.; Li, Y.; Hao, J.; Lu, L.; Yin, Z.; Wu, Y. Apoptosis, Pyroptosis, and Ferroptosis Conspiringly Induce Immunosuppressive Hepatocellular Carcinoma Microenvironment and γδ T-Cell Imbalance. Frontiers 2022, 13, 845974. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Li, H.; Xu, X. miR-495 Reduces Neuronal Cell Apoptosis and Relieves Acute Spinal Cord Injury through Inhibiting PRDM5. J. Mol. Histol. 2021, 52, 385–396. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Luo, Y.; Cao, J.-B.; Liu, Y.-H.; Song, Y.-X.; Zhang, X.-Y.; Fu, Q.; Mi, W.-D.; Li, H. lncRNA BDNF-AS Attenuates Propofol-Induced Apoptosis in HT22 Cells by Modulating the BDNF/TrkB Pathway. Mol. Neurobiol. 2022, 59, 3504–3511. [Google Scholar] [CrossRef]
- Xu, D.-H.; Du, J.-K.; Liu, S.-Y.; Zhang, H.; Yang, L.; Zhu, X.-Y.; Liu, Y.-J. Upregulation of KLK8 Contributes to CUMS-Induced Hippocampal Neuronal Apoptosis by Cleaving NCAM1. Cell Death Dis. 2023, 14, 1–12. [Google Scholar] [CrossRef]
- Sun, X.; Dai, L.; Zhang, H.; He, X.; Hou, F.; He, W.; Tang, S.; Zhao, D. Neuritin Attenuates Neuronal Apoptosis Mediated by Endoplasmic Reticulum Stress In Vitro. Neurochem. Res. 2018, 43, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Ketelut-Carneiro, N.; Fitzgerald, K.A. Apoptosis, Pyroptosis, and Necroptosis—Oh My! The Many Ways a Cell Can Die. J. Mol. Biol. 2022, 434, 167378. [Google Scholar] [CrossRef] [PubMed]
- Sorice, M. Crosstalk of Autophagy and Apoptosis. Cells 2022, 11, 1479. [Google Scholar] [CrossRef] [PubMed]
- Newton, K.; Strasser, A.; Kayagaki, N.; Dixit, V.M. Cell Death. Cell 2024, 187, 235–256. [Google Scholar] [CrossRef] [PubMed]
- Reactive Oxygen Species-Scavenging Nanosystems in the Treatment of Diabetic Wounds. Available online: https://pubmed.ncbi.nlm.nih.gov/37051860/ (accessed on 17 April 2024).
- Bhatt, S.; Puli, L.; Patil, C.R. Role of Reactive Oxygen Species in the Progression of Alzheimer’s Disease. Drug Discov. Today 2021, 26, 794–803. [Google Scholar] [CrossRef]
- Pablo Chapela, S.; Burgos, I.; Schiel, A.; Alonso, M.; Alberto Stella, C. Serum Reactive Oxygen Species and Apoptosis Markers in Septic Patients. Anaesthesiol. Intensive Ther. 2021, 53, 126–133. [Google Scholar] [CrossRef]
- Zuo, J.; Zhang, Z.; Li, M.; Yang, Y.; Zheng, B.; Wang, P.; Huang, C.; Zhou, S. The crosstalk between reactive oxygen species and noncoding RNAs: From cancer code to drug role. Mol. Cancer 2022, 21, 30. [Google Scholar] [CrossRef]
- Sun, W.; Wang, B.; Qu, X.-L.; Zheng, B.-Q.; Huang, W.-D.; Sun, Z.-W.; Wang, C.-M.; Chen, Y. Metabolism of Reactive Oxygen Species in Osteosarcoma and Potential Treatment Applications. Cells 2019, 9, 87. [Google Scholar] [CrossRef]
- Weng, Y.; Zhang, Y.; Wang, D.; Wang, R.; Xiang, Z.; Shen, S.; Wang, H.; Wu, X.; Wen, Y.; Wang, Y. Exercise-Induced Irisin Improves Follicular Dysfunction by Inhibiting IRE1α-TXNIP/ROS-NLRP3 Pathway in PCOS. J. Ovarian Res. 2023, 16, 151. [Google Scholar] [CrossRef]
- Paradox: Curcumin, a Natural Antioxidant, Suppresses Osteosarcoma Cells via Excessive Reactive Oxygen Species. Available online: https://pubmed.ncbi.nlm.nih.gov/37569346/ (accessed on 17 April 2024).
- Rehfeldt, S.C.H.; Laufer, S.; Goettert, M.I. A Highly Selective In Vitro JNK3 Inhibitor, FMU200, Restores Mitochondrial Membrane Potential and Reduces Oxidative Stress and Apoptosis in SH-SY5Y Cells. Int. J. Mol. Sci. 2021, 22, 3701. [Google Scholar] [CrossRef]
- Gorospe, C.M.; Carvalho, G.; Herrera Curbelo, A.; Marchhart, L.; Mendes, I.C.; Niedźwiecka, K.; Wanrooij, P.H. Mitochondrial Membrane Potential Acts as a Retrograde Signal to Regulate Cell Cycle Progression. Life Sci. Alliance 2023, 6, e202302091. [Google Scholar] [CrossRef] [PubMed]
- Zaib, S.; Hayyat, A.; Ali, N.; Gul, A.; Naveed, M.; Khan, I. Role of Mitochondrial Membrane Potential and Lactate Dehydrogenase A in Apoptosis. Anticancer. Agents Med. Chem. 2022, 22, 2048–2062. [Google Scholar] [CrossRef] [PubMed]
- Babaei, Z.; Panjehpour, M.; Parsian, H.; Aghaei, M. SAR131675 Receptor Tyrosine Kinase Inhibitor Induces Apoptosis through Bcl- 2/Bax/Cyto c Mitochondrial Pathway in Human Umbilical Vein Endothelial Cells. Anticancer. Agents Med. Chem. 2022, 22, 943–950. [Google Scholar] [PubMed]
- Li, Y.-N.; Ning, N.; Song, L.; Geng, Y.; Fan, J.-T.; Ma, C.-Y.; Jiang, H.-Z. Derivatives of Deoxypodophyllotoxin Induce Apoptosis through Bcl-2/Bax Proteins Expression. Anticancer. Agents Med. Chem. 2021, 21, 611–620. [Google Scholar]
- Huang, Y.-K.; Chang, K.-C.; Li, C.-Y.; Lieu, A.-S.; Lin, C.-L. AKR1B1 Represses Glioma Cell Proliferation through P38 MAPK-Mediated Bcl-2/BAX/Caspase-3 Apoptotic Signaling Pathways. Curr. Issues Mol. Biol. 2023, 45, 3391–3405. [Google Scholar] [CrossRef]
- Wang, R.; Song, F.; Li, S.; Wu, B.; Gu, Y.; Yuan, Y. Salvianolic Acid A Attenuates CCl4-Induced Liver Fibrosis by Regulating the PI3K/AKT/mTOR, Bcl-2/Bax and Caspase-3/Cleaved Caspase-3 Signaling Pathways. Drug Des. Devel. Ther. 2019, 13, 1889–1900. [Google Scholar] [CrossRef]
- Yan, H.; Huang, W.; Rao, J.; Yuan, J. miR-21 Regulates Ischemic Neuronal Injury via the P53/Bcl-2/Bax Signaling Pathway. Aging 2021, 13, 22242–22255. [Google Scholar] [CrossRef]
- Jiao, C.; Chen, W.; Tan, X.; Liang, H.; Li, J.; Yun, H.; He, C.; Chen, J.; Ma, X.; Xie, Y.; et al. Ganoderma Lucidum Spore Oil Induces Apoptosis of Breast Cancer Cells in Vitro and in Vivo by Activating Caspase-3 and Caspase-9. J. Ethnopharmacol. 2020, 247, 112256. [Google Scholar] [CrossRef]
- Araya, L.E.; Soni, I.V.; Hardy, J.A.; Julien, O. Deorphanizing Caspase-3 and Caspase-9 Substrates In and Out of Apoptosis with Deep Substrate Profiling. ACS Chem. Biol. 2021, 16, 2280–2296. [Google Scholar] [CrossRef]
- Unnisa, A.; Greig, N.H.; Kamal, M.A. Inhibition of Caspase 3 and Caspase 9 Mediated Apoptosis: A Multimodal Therapeutic Target in Traumatic Brain Injury. Curr. Neuropharmacol. 2023, 21, 1001–1012. [Google Scholar] [CrossRef]
- Batoon, L.; Koh, A.J.; Kannan, R.; McCauley, L.K.; Roca, H. Caspase-9 Driven Murine Model of Selective Cell Apoptosis and Efferocytosis. Cell Death Dis. 2023, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- El-Shitany, N.A.; Eid, B.G. Icariin Modulates Carrageenan-Induced Acute Inflammation through HO–1/Nrf2 and NF-kB Signaling Pathways. Biomed. Pharmacother. 2019, 120, 109567. [Google Scholar] [CrossRef] [PubMed]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO–1 System in Development, Oxidative Stress Response and Diseases: An Evolutionarily Conserved Mechanism. Cell. Mol. Life Sci. CMLS 2016, 73, 3221–3247. [Google Scholar] [CrossRef] [PubMed]
- Ghareghomi, S.; Moosavi-Movahedi, F.; Saso, L.; Habibi-Rezaei, M.; Khatibi, A.; Hong, J.; Moosavi-Movahedi, A.A. Modulation of Nrf2/HO–1 by Natural Compounds in Lung Cancer. Antioxidants 2023, 12, 735. [Google Scholar] [CrossRef]
- Duan, C.; Wang, H.; Jiao, D.; Geng, Y.; Wu, Q.; Yan, H.; Li, C. Curcumin Restrains Oxidative Stress of After Intracerebral Hemorrhage in Rat by Activating the Nrf2/HO–1 Pathway. Front. Pharmacol. 2022, 13, 889226. [Google Scholar] [CrossRef]
Antibodies | Hosts | MW (kDa) | Dilutions | Cat. | Sources |
---|---|---|---|---|---|
β−actin antibody | Rabbit polyclonal antibody | 43 | 1:1000 | #AF7018 | Affinity Biosciences |
Lamin B1 antibody | Rabbit polyclonal antibody | 66 | 1:1000 | #AF5161 | Affinity Biosciences |
BAX antibody | Rabbit polyclonal antibody | 21 | 1:1000 | #AF0120 | Affinity Biosciences |
BCL2 antibody | Rabbit polyclonal antibody | 27 | 1:1000 | #AF6139 | Affinity Biosciences |
Caspase−3 antibody | Rabbit polyclonal antibody | 37 | 1:1000 | #DF6879 | Affinity Biosciences |
Cleaved caspase–3 antibody | Rabbit polyclonal antibody | 17 | 1:1000 | #AF7022 | Affinity Biosciences |
Caspase−9 antibody | Rabbit polyclonal antibody | 46 | 1:1000 | #AF6348 | Affinity Biosciences |
Cleaved caspase–9 antibody | Rabbit polyclonal antibody | 38 | 1:1000 | #AF5244 | Affinity Biosciences |
Nrf2 antibody | Rabbit polyclonal antibody | 100 | 1:1000 | #AF0639 | Affinity Biosciences |
HO–1 antibody | Rabbit polyclonal antibody | 33 | 1:1000 | #AF5393 | Affinity Biosciences |
Goat anti−rabbit IgG (H + L) HRP | _ | _ | 1:5000 | #S0001 | Affinity Biosciences |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, R.; Gao, D.; Yang, G.; Zhuoma, D.; Pu, Z.; Ciren, Y.; Li, B.; Yu, J. Oxysophocarpine Prevents the Glutamate-Induced Apoptosis of HT–22 Cells via the Nrf2/HO–1 Signaling Pathway. Curr. Issues Mol. Biol. 2024, 46, 13035-13049. https://doi.org/10.3390/cimb46110777
Yuan R, Gao D, Yang G, Zhuoma D, Pu Z, Ciren Y, Li B, Yu J. Oxysophocarpine Prevents the Glutamate-Induced Apoptosis of HT–22 Cells via the Nrf2/HO–1 Signaling Pathway. Current Issues in Molecular Biology. 2024; 46(11):13035-13049. https://doi.org/10.3390/cimb46110777
Chicago/Turabian StyleYuan, Ruiying, Dan Gao, Guibing Yang, Dongzhi Zhuoma, Zhen Pu, Yangzhen Ciren, Bin Li, and Jianqing Yu. 2024. "Oxysophocarpine Prevents the Glutamate-Induced Apoptosis of HT–22 Cells via the Nrf2/HO–1 Signaling Pathway" Current Issues in Molecular Biology 46, no. 11: 13035-13049. https://doi.org/10.3390/cimb46110777
APA StyleYuan, R., Gao, D., Yang, G., Zhuoma, D., Pu, Z., Ciren, Y., Li, B., & Yu, J. (2024). Oxysophocarpine Prevents the Glutamate-Induced Apoptosis of HT–22 Cells via the Nrf2/HO–1 Signaling Pathway. Current Issues in Molecular Biology, 46(11), 13035-13049. https://doi.org/10.3390/cimb46110777