Genome-Wide Development of InDel-SSRs and Association Analysis of Important Agronomic Traits of Taro (Colocasia esculenta) in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taro Germplasm Resource Cultivation
2.2. DNA Extraction and Genome Resequencing
2.3. InDel-SSR Marker Detection and Polymorphism Analysis
2.4. Genetic Diversity Analysis
2.5. Important Agronomic Trait Measurement
2.6. Association Analysis and Candidate Gene Mining
3. Results
3.1. Development of Genome-Wide InDel-SSR Markers
3.2. InDel-SSR Marker Detection and Polymorphism Analysis
3.3. Genetic Diversity Analysis of Taro
3.4. Statistical Analysis of Important Agronomic Traits
3.5. Association Analysis and Candidate Gene Mining
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angami, T.; Jha, A.K.; Buragohain, J.; Deka, B.; Verma, V.; Nath, A. Evaluation of taro (Colocasia esculenta L.) cultivars for growth, yield and quality attributes. J. Hortic. Sci. 2019, 10, 183–189. [Google Scholar] [CrossRef]
- Jia, X.; Pan, R.; Xiao, Y.; Luo, S.; Shan, N.; Sun, J.; Wang, S.; Zhou, Q.; Huang, Y.; Zhu, Q. Comparative Analysis and Sequencing of Chloroplast Genome of Colocasia esculenta var. Redbud and Colocasia esculenta var. Lipu. Chin. J. Trop. Crops 2023, 44, 880–893. [Google Scholar]
- Loy, T.H.; Spriggs, M.; Wickler, S. Direct evidence for human use of plants 28,000 years ago: Starch residues on stone artefacts from the northern Solomon Islands. Antiquity 1992, 66, 898–912. [Google Scholar] [CrossRef]
- Pan, R.; Zeng, R.; Li, H.; Xie, J.; Wu, F.; Huang, J.; Zhou, Q.; Huang, Y.; Zhu, Q. Effects of drought stress on leave physiological characteristics and corm yield and quality at tuber formation stage of taro. Acta Agric. Univ. Jiangxiensis 2023, 45, 1183–1195. [Google Scholar]
- Fufa, T.W.; Oselebe, H.O.; Abtew, W.G.; Amadi, C. Physicochemical analysis of taro (Colocasia esculenta (L.) Schott) accessions. Asian J. Res. Agric. For. 2023, 9, 29–41. [Google Scholar] [CrossRef]
- Ejoh, A.R.; Mbiapo, F.T.; Fokou, E. Nutrient composition of the leaves and flowers of Colocasia esculenta and the fruits of Solanum melongena. Plant Foods Hum. Nutr. 1996, 49, 107–112. [Google Scholar] [CrossRef]
- Wang, L.; Liao, T.; Luo, X. Research overview on the petiole of taro. Biol. Chem. Eng. 2018, 4, 145–147. [Google Scholar]
- Ferdaus, M.J.; Chukwu-Munsen, E.; Foguel, A.; da Silva, R.C. Taro Roots: An Underexploited Root Crop. Nutrients 2023, 15, 3337. [Google Scholar] [CrossRef]
- Ribeiro Pereira, P.; Bertozzi de Aquino Mattos, E.; Nitzsche Teixeira Fernandes Correa, A.C.; Afonso Vericimo, M.; Margaret Flosi Paschoalin, V. Anticancer and immunomodulatory benefits of taro (Colocasia esculenta) corms, an underexploited tuber crop. Int. J. Mol. Sci. 2021, 22, 265. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.W.; Imran, A.; Islam, F.; Afzaal, M.; Saeed, F.; Zahra, S.M.; Akhtar, M.N.; Noman, M.; Ateeq, H.; Aslam, M.A.; et al. Functional profile and encapsulating properties of Colocasia esculenta (Taro). Food Sci. Nutr. 2023, 11, 2440–2449. [Google Scholar] [CrossRef]
- Huang, B. Preliminary study on yield and main characters of red bud taro in Yanshan, Jiangxi Province. Chin. Hortic. Abstr. 2016, 32, 9–12. [Google Scholar]
- Sheng, J.; CUI, W.; Zhang, E.; Yu, X.; Xiong, F. Morphological structure observation and photosynthetic characteristics analysis of taro leaf. J. Biol. 2020, 37, 61–64. [Google Scholar]
- Amadi, C.O.; Onyeka, J.; Chukwu, G.O.; Okoye, B.C. Hybridization and seed germination of taro (Colocasia esculenta) in Nigeria. J. Crop Improv. 2015, 29, 106–116. [Google Scholar] [CrossRef]
- Yin, J.; Jiang, L.; Wang, L.; Han, X.; Guo, W.; Li, C.; Zhou, Y.; Denton, M.; Zhang, P. A high-quality genome of taro (Colocasia esculenta (L.) Schott), one of the world’s oldest crops. Mol. Ecol. Resour. 2020, 21, 68–77. [Google Scholar] [CrossRef]
- Würschum, T.; Langer, S.; Longin, F.; Korzun, V.; Akhunov, E.; Ebmeyer, E.; Schachschneider, R.; Schacht, J.; Kazman, E.; Reif, J. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor. Appl. Genet. 2013, 126, 1477–1486. [Google Scholar] [CrossRef]
- Chaïr, H.; Traore, R.E.; Duval, M.F.; Rivallan, R.; Mukherjee, A.; Aboagye, L.M.; Van Rensburg, W.J.; Andrianavalona, V.; Pinheiro de Carvalho, M.A.A.; Saborio, F.; et al. Genetic diversification and dispersal of taro (Colocasia esculenta (L.) Schott). PLoS ONE 2016, 11, e0157712. [Google Scholar] [CrossRef] [PubMed]
- Kreike, C.M.; Van Eck, H.J.; Lebot, V. Genetic diversity of taro, Colocasia esculenta (L.) Schott, in Southeast Asia and the Pacific. Theor. Appl. Genet. 2004, 109, 761–768. [Google Scholar] [CrossRef]
- Oktavianingsih, L.; Suharyanto, E.; Daryono, B. Genetic diversity of taro (Colocasia spp.) from Kalimantan Island, Borneo, Indonesia, based on RAPD markers. SABRAO J. Breed. Genet. 2021, 53, 447–458. [Google Scholar]
- You, Y.; Liu, D.; Liu, H.; Zheng, X.; Diao, Y.; Huang, X.; Hu, Z. Development and characterisation of EST-SSR markers by transcriptome sequencing in taro (Colocasia esculenta (L.) Schoot). Mol. Breed. 2015, 35, 134. [Google Scholar] [CrossRef]
- Kim, S.; Ramos, J.; Ashikari, M.; Virk, P.S.; Torres, E.A.; Nissila, E.; Hechanova, S.L.; Mauleon, R.; Jena, K.K. Development and validation of allele-specific SNP/Indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L. Rice 2016, 9, 12. [Google Scholar] [CrossRef]
- Lv, H.; Yang, L.; Kang, J.; Wang, Q.; Wang, X.; Fang, Z.; Liu, Y.; Zhuang, M.; Zhang, Y.; Lin, Y.; et al. Development of InDel markers linked to Fusarium wilt resistance in cabbage. Mol. Breed. 2013, 32, 961–967. [Google Scholar] [CrossRef]
- Ma, J.F.; Nagao, S.; Huang, C.F.; Nishimura, M. Isolation and characterization of a rice mutant hypersensitive to Al. Plant Cell Physiol. 2005, 46, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Zhang, z.; Xiong, y.; Yuan, l. Identification and purity test of super hybrid rice with SSR molecular markers. Rice Sci. 2005, 19, 95. [Google Scholar]
- Jia, H.; Zhao, Q.; Song, J.; Zhang, X.; Yang, W.; Du, Z.; Zhu, Y.; Wang, H. Large-scale population structure and genetic architecture of agronomic traits of garlic. Hortic. Res. 2023, 10, 34. [Google Scholar] [CrossRef]
- Wang, W.; Guo, W.; Le, L.; Yu, J.; Wu, Y.; Li, D.; Wang, Y.; Wang, H.; Lu, X.; Qiao, H.; et al. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize. Mol. Plant 2023, 16, 354–373. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhu, C.; Xuan, W.; An, H.; Tian, Y.; Wang, B.; Chi, W.; Chen, G.; Ge, Y.; Li, J.; et al. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice. Nat. Commun. 2023, 14, 3550. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, S.; Zhao, S.; Chen, D.; Tian, H.; Li, J.; Zhang, L.; Li, S.; Liu, L.; Shi, C.; et al. Global crotonylatome and GWAS revealed a TaSRT1-TaPGK model regulating wheat cold tolerance through mediating pyruvate. Sci. Adv. 2023, 9, e1012. [Google Scholar] [CrossRef] [PubMed]
- Fufa, T.W.; Menamo, T.M.; Abtew, W.G.; Amadi, C.O.; Oselebe, H.O. Detection of the local adaptive and genome-wide associated loci in southeast Nigerian taro (Colocasia esculenta (L.) Schott) populations. BMC Genom. 2023, 24, 39. [Google Scholar] [CrossRef]
- Xiao, C.; Fang, J.; Xiao, Y.; Yi, Y. Early Cultivation Techniques for Red Bud Taro in YanShan. J. Chang. Veg. 2018, 461, 29–30. [Google Scholar]
- Arseneau, J.R.; Steeves, R.; Laflamme, M. Modified low-salt CTAB extraction of high-quality DNA from contaminant-rich tissues. Mol. Ecol. Resour. 2017, 17, 686–693. [Google Scholar] [CrossRef]
- Meirmans, P.G. Genodive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 2020, 20, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Dunn, D.W.; Ritland, K.; Li, B. Polygene: Population genetics analyses for autopolyploids based on allelic phenotypes. Methods Ecol. Evol. 2020, 11, 448–456. [Google Scholar] [CrossRef]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data Linked loci and correlated allele frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef]
- Breseghello, F.; Sorrells, M.E. Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci. 2006, 46, 1323–1330. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef]
- Hardy, O.J.; Vekemans, X. SPAGeDI: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2002, 2, 618–620. [Google Scholar] [CrossRef]
- Nei, M. Genetic Distance between Populations. Am. Nat. 1972, 106, 283–292. [Google Scholar] [CrossRef]
- Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, Y.; Zhao, H. InDel: A high-throughput and efficient pipeline for genome-wide InDel marker development. BMC Genom. 2016, 17, 290. [Google Scholar] [CrossRef]
- Fufa, T.; Abtew, W.G.; Amadi, C.; Oselebe, H. DArTSeq SNP-based genetic diversity and population structure studies among taro [(Colocasia esculenta (L.) Schott] accessions sourced from Nigeria and Vanuatu. PLoS ONE 2022, 17, e0269302. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Ren, X.; Yang, Y.; Wang, D.; Du, W.; Wang, X.; Li, H.; Han, Y.; Liu, L.; Sun, Z. Genome-wide development of polymorphic microsatellite markers and association analysis of major agronomic traits in core germplasm resources of Tartary Buckwheat. Front. Plant Sci. 2022, 13, 819008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Li, N.; Kong, Q.; Yu, C.; Pan, H.; Zhang, Q.; Luo, L. Development and application of genomic SSR markers in Rosa persica. J. Cent. South Univ. For. Technol. 2024, 44, 186–196. [Google Scholar]
- Mace, E.S.; Godwin, I.D. Development and characterization of polymorphic microsatellite markers in taro (Colocasia esculenta). Genome 2002, 45, 823–832. [Google Scholar] [CrossRef]
- Dong, W.; He, F.; Jiang, H.; Liu, L.; Qiu, Z. Comparative transcriptome sequencing of taro corm development with a focus on the starch and sucrose metabolism pathway. Front. Genet. 2021, 12, 771081. [Google Scholar] [CrossRef]
- Huang, X.; Sun, Y.; Dong, H.; Liu, Y.; Ke, W.; Liu, Y.; Li, S.; Ye, Y.; Peng, J.; Li, F.; et al. Observations on the diversity of colour traits in taro germplasm resources. China Veg. 2016, 3, 31–36. [Google Scholar]
- Wang, Z.; Sun, Y.; Huang, X.; Li, F.; Liu, Y.; Zhu, H.; Liu, Z.; Ke, W. Genetic diversity and population structure of eddoe taro in China using genome-wide SNP markers. PeerJ 2020, 8, e10485. [Google Scholar] [CrossRef]
- Verma, V.K.; Kumar, A.; Rymbai, H.; Talang, H.; Chaudhuri, P.; Devi, M.B.; Singh, N.U.; Hazarika, S.; Mishra, V.K. Assessment of ethnobotanical uses, household, and regional genetic diversity of aroid species grown in northeastern India. Front. Nutr. 2023, 10, 1065745. [Google Scholar] [CrossRef]
- Xu, J.; Yang, Y.; Pu, Y.; Ayad, W.G.; Eyzaguirre, P.B. Genetic diversity in Taro (Colocasia esculenta Schott, Araceae) in China: An ethnobotanical and genetic approach. Econ. Bot. 2001, 55, 14–31. [Google Scholar]
- Li, J.; Seng, S.; Li, D.; Zhang, F.; Liu, Y.; Yao, T.; Liang, J.; Yi, M.; Wu, J. Antagonism between abscisic acid and gibberellin regulates starch synthesis and corm development in Gladiolus hybridus. Hortic. Res. 2021, 8, 155. [Google Scholar] [CrossRef]
- Xin, Y.; Chen, X.; Liang, J.; Wang, S.; Pan, W.; Wu, J.; Zhang, M.; Zaccai, M.; Yu, X.; Zhang, X.; et al. Auxin regulates bulbil initiation by mediating sucrose metabolism in Lilium lancifolium. Hortic. Res. 2024, 11, uhae054. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, L.; Bussell, J.D.; Pacurar, D.I.; Schwambach, J.; Pacurar, M.; Bellini, C. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 2009, 21, 3119–3132. [Google Scholar] [CrossRef] [PubMed]
- Liu, y. Fine mapping of rice grain number-regulating gene GNP4 and the mechanism of SK41--IAA10--ARF17 regulating rice grain size. Master’S Thesis, Jiangxi Agricultural University, Nanchang, China, 2023. [Google Scholar]
- Ge, J.; Li, B.; Shen, D.; Xie, J.; Long, J.; Dong, H. Tobacco TTG2 regulates vegetative growth and seed production via the predominant role of ARF8 in cooperation with ARF17 and ARF19. BMC Plant Biol. 2016, 16, 126. [Google Scholar] [CrossRef]
- Zheng, F.; Wang, Y.; Gu, D.; Liu, X. Histone Deacetylase HDA15 Restrains PHYB-Dependent Seed Germination via Directly Repressing GA20ox1/2 Gene Expression. Cells 2022, 11, 3788. [Google Scholar] [CrossRef]
- Park, Y.B.; Cosgrove, D.J. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol 2015, 56, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.K.; Yum, H.; Kim, E.S.; Cho, H.; Gothandam, K.M.; Hyun, J.; Chung, Y.Y. BcXTH1, a Brassica campestris homologue of Arabidopsis XTH9, is associated with cell expansion. Planta 2005, 224, 32–41. [Google Scholar] [CrossRef]
- Park, Y.B.; Cosgrove, D.J. Changes in Cell Wall Biomechanical Properties in the Xyloglucan-Deficient xxt1/xxt2 Mutant of Arabidopsis. Plant Physiol. 2012, 158, 465–475. [Google Scholar] [CrossRef]
- Xiao, C.; Zhang, T.; Zheng, Y.; Cosgrove, D.J.; Anderson, C.T. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis. Plant Physiol. 2016, 170, 234–249. [Google Scholar] [CrossRef]
- Sowinski, E.E.; Westman, B.M.; Redmond, C.R.; Kong, Y.; Olek, A.T.; Olek, J.; McCann, M.C.; Carpita, N.C. Lack of xyloglucan in the cell walls of the Arabidopsis xxt1/xxt2 mutant results in specific increases in homogalacturonan and glucomannan. Plant J. 2022, 110, 212–227. [Google Scholar] [CrossRef]
- Han, Y.; Jiao, Y. APETALA1establishes determinate floral meristem through regulating cytokinins homeostasis inArabidopsis. Plant Signal. Behav. 2015, 10, e989039. [Google Scholar] [CrossRef]
- Kuroha, T.; Tokunaga, H.; Kojima, M.; Ueda, N.; Ishida, T.; Nagawa, S.; Fukuda, H.; Sugimoto, K.; Sakakibara, H. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 2009, 21, 3152–3169. [Google Scholar] [CrossRef] [PubMed]
Accessions | DNA Concentration (ng/μL) | Total (μg) | Clean Reads | Clean Base (Gb) | GC (%) | Q20 (%) | Sequencing Depth (X) |
---|---|---|---|---|---|---|---|
T4 | 50.10 | 3.75 | 184,473,906 | 53.16 | 41.56 | 96.17 | 22.11 |
T21 | 28.30 | 2.29 | 92,251,922 | 27.67 | 41.94 | 97.29 | 11.51 |
T22 | 48.20 | 3.50 | 92,151,900 | 27.00 | 41.73 | 95.92 | 11.23 |
T24 | 66.10 | 4.20 | 184,462,146 | 53.70 | 41.78 | 95.91 | 22.33 |
T27 | 72.00 | 4.32 | 77,587,972 | 23.27 | 42.49 | 97.14 | 9.68 |
T46 | 59.60 | 5.24 | 92,208,281 | 27.66 | 42.18 | 97.48 | 11.50 |
T51 | 29.80 | 1.79 | 92,153,399 | 27.64 | 42.31 | 97.84 | 11.50 |
T54 | 38.20 | 3.25 | 92,287,632 | 27.68 | 41.85 | 97.58 | 11.51 |
T56 | 39.40 | 3.31 | 80,719,197 | 24.21 | 41.93 | 97.02 | 10.07 |
T58 | 62.30 | 5.36 | 921,09,256 | 27.63 | 42.42 | 97.35 | 11.49 |
Chromosome | Chromosome Length | InDel Number | InDel-SSR Number | InDel-SSR Density/Mb | InDel-SSR/InDel |
---|---|---|---|---|---|
Chr1 | 21,2136,754 | 404,254 | 155,570 | 733.35 | 38.48% |
Chr2 | 200,729,444 | 561,289 | 268,909 | 1339.66 | 47.91% |
Chr3 | 187,626,166 | 366,363 | 111,501 | 594.27 | 30.43% |
Chr4 | 159,385,462 | 629,928 | 134,704 | 845.15 | 21.38% |
Chr5 | 17,5351,756 | 357,483 | 120,041 | 684.57 | 33.58% |
Chr6 | 151,421,878 | 546,905 | 139,596 | 921.90 | 25.52% |
Chr7 | 112,675,773 | 251,974 | 99,058 | 879.14 | 39.31% |
Chr8 | 179,232,514 | 397,430 | 124,390 | 694.01 | 31.30% |
Chr9 | 156,137,564 | 378,460 | 121,793 | 780.04 | 32.18% |
Chr10 | 154,668,131 | 386,074 | 137,204 | 887.09 | 35.54% |
Chr11 | 133,294,484 | 373,230 | 133,426 | 1000.99 | 35.75% |
Chr12 | 102,222,464 | 246,607 | 92,893 | 908.73 | 37.67% |
Chr13 | 104,727,164 | 257,022 | 84,127 | 803.30 | 32.73% |
Chr14 | 117,533,969 | 245,723 | 82,422 | 701.26 | 33.54% |
Sum | 2,147,143,523 | 5,402,742 | 1,805,634 | 840.96 | 33.42% |
Average | 153,367,395 | 385,910 | 128,974 | 840.96 | 33.42% |
Chromosome | Marker Mapped | Density (per Mb) | Polymorphic Primer | Na | Ne | Ho | He | PIC | I |
---|---|---|---|---|---|---|---|---|---|
Chr1 | 139,257 | 6.56 | 15 | 3.33 | 1.69 | 0.41 | 0.52 | 0.47 | 0.94 |
Chr2 | 243,778 | 12.14 | 4 | 3.25 | 1.70 | 0.35 | 0.46 | 0.41 | 0.85 |
Chr3 | 99,986 | 5.33 | 20 | 3.90 | 2.21 | 0.52 | 0.52 | 0.47 | 0.98 |
Chr4 | 120,984 | 7.59 | 16 | 3.69 | 1.78 | 0.45 | 0.53 | 0.48 | 0.97 |
Chr5 | 107,452 | 6.13 | 10 | 3.40 | 1.89 | 0.42 | 0.51 | 0.45 | 0.90 |
Chr6 | 125,518 | 8.29 | 11 | 3.91 | 1.73 | 0.39 | 0.53 | 0.45 | 0.92 |
Chr7 | 88,532 | 7.86 | 20 | 3.35 | 1.45 | 0.30 | 0.44 | 0.40 | 0.79 |
Chr8 | 111,333 | 6.21 | 9 | 3.67 | 1.61 | 0.37 | 0.48 | 0.43 | 0.87 |
Chr9 | 109,446 | 7.01 | 31 | 3.61 | 1.83 | 0.45 | 0.52 | 0.46 | 0.92 |
Chr10 | 122,851 | 7.94 | 15 | 2.73 | 1.77 | 0.48 | 0.49 | 0.41 | 0.79 |
Chr11 | 118,657 | 8.90 | 15 | 3.27 | 1.62 | 0.37 | 0.46 | 0.41 | 0.80 |
Chr12 | 82,776 | 8.10 | 27 | 3.11 | 1.48 | 0.30 | 0.40 | 0.35 | 0.70 |
Chr13 | 75,020 | 7.16 | 16 | 2.88 | 1.46 | 0.31 | 0.45 | 0.39 | 0.75 |
Chr14 | 73,501 | 6.25 | 10 | 3.80 | 1.75 | 0.41 | 0.51 | 0.45 | 0.88 |
All | 1,619,091 | 105.48 | 219 | 3.42 | 1.71 | 0.40 | 0.49 | 0.43 | 0.86 |
Average | 115,649 | 7.53 | 15.64 | 3.42 | 1.71 | 0.40 | 0.49 | 0.43 | 0.86 |
Trait | Year | Mean ± SD | Range | ANOVA | CV (%) | W | P |
---|---|---|---|---|---|---|---|
Leaf area (LA)/cm2 | 2021 | 780.43 ± 276.72 | 1604.49 | - | 17.25% | 0.982 | 0.25 |
Leaf length (LL)/cm | 2021 | 40.53 ± 7.29 | 34.62 | 0.769 | 21.07% | 0.978 | 0.224 |
2022 | 50.56 ± 5.37 | 24.2 | 22.20% | 0.982 | 0.433 | ||
Leaf width (LW)/cn | 2021 | 29.53 ± 5.67 | 25.31 | 0.617 | 22.39% | 0.972 | 0.101 |
2022 | 36.47 ± 4.05 | 19.17 | 21.15% | 0.992 | 0.957 | ||
Leaf length/width (LL/LW) | 2021 | 1.38 ± 0.1 | 0.55 | 0.329 | 18.67% | 0.984 | 0.484 |
2022 | 1.39 ± 0.09 | 0.48 | 19.08% | 0.976 | 0.216 | ||
Posterior segment length (PST)/cm | 2021 | 17.26 ± 3.39 | 16.48 | 0.439 | 20.54% | 0.974 | 0.122 |
2022 | 20.33 ± 2.33 | 10.17 | 22.90% | 0.987 | 0.709 | ||
Cormel diameter (CSD)/cm | 2021 | 4.19 ± 0.65 | 2.9 | 0.885 | 22.48% | 0.985 | 0.536 |
2022 | 4.1 ± 0.82 | 3.89 | 21.00% | 0.971 | 0.224 | ||
Cormel length (CSL)/cm | 2021 | 9.33 ± 2.46 | 10.42 | 0.125 | 23.62% | 0.979 | 0.266 |
2022 | 6.95 ± 1.41 | 6.11 | 23.05% | 0.958 | 0.061 | ||
Cormel length/diameter (CSD/CSL) | 2021 | 0.48 ± 0.12 | 0.61 | 0.083 | 19.22% | 0.955 | 0.013 |
2022 | 0.61 ± 0.16 | 0.82 | 19.62% | 0.99 | 0.925 | ||
Cormel number (CSN) | 2021 | 5.96 ± 2.13 | 11 | 0.714 | 19.39% | 0.989 | 0.778 |
2022 | 6.48 ± 2.16 | 11.33 | 19.02% | 0.957 | 0.055 | ||
Average cormel weight (ACSW)/g | 2021 | 52.48 ± 21.67 | 94.66 | 0.092 | 22.89% | 0.959 | 0.019 |
2022 | 31.89 ± 11.56 | 49.67 | 23.27% | 0.983 | 0.654 |
Trait | GLM | MLM (K) | MLM (K + Q) | |||
---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
Leaf area | 14 | - | 6 | - | 7 | - |
Leaf length | 47 | 43 | 9 | 20 | 8 | 12 |
Leaf width | 66 | 17 | 9 | 17 | 12 | 18 |
Leaf length/width | 30 | 26 | 10 | 8 | 7 | 0 |
Posterior segment length | 48 | 26 | 5 | 12 | 6 | 12 |
Length/diameter of cormels | 12 | 12 | 11 | 9 | 20 | 9 |
Average cormel weight | 12 | 14 | 7 | 2 | 5 | 11 |
Cormel diameter | 45 | 18 | 7 | 9 | 8 | 10 |
Cormel length | 18 | 16 | 8 | 11 | 9 | 10 |
Cormel number | 9 | 9 | 10 | 4 | 5 | 0 |
SUM | 301 | 181 | 82 | 92 | 87 | 82 |
Trait | InDel-SSR ID | Chromosome | Year | GLM | MLM (K) | MLM (K + Q) | |||
---|---|---|---|---|---|---|---|---|---|
p-Value | R2 | p-Value | R2 | p-Value | R2 | ||||
LA | g7.86 | Chr07 | 2021 | 3.72 × 10−5 | 0.2482 | 9.55 × 10−5 | 0.2433 | 9.55 × 10−5 | 0.2433 |
g12.82 | Chr12 | 2021 | 0.0022 ** | 0.1191 | 0.0098 ** | 0.2433 | 0.0098 ** | 0.2433 | |
g13.52 | Chr13 | 2021 | 0.0496 * | 0.0397 | - | - | 0.0474 * | 0.2433 | |
LD | g13.52 | Chr13 | 2021 | 2.97 × 10−6 ** | 0.3619 | 0.0084 ** | 0.5981 | 0.0229 * | 0.6644 |
2022 | 0.0067 ** | 0.2503 | 0.001 ** | 0.0478 | 0.0067 ** | 1.00 × 10−5 | |||
LL | g12.82 | Chr12 | 2021 | 1.54 × 10−4 ** | 0.2581 | 0.0128 * | 0.719 | 0.0145 * | 0.7436 |
2022 | 0.031 * | 0.1297 | 0.0464 * | 0.2178 | 0.0425 * | 0.2745 | |||
g13.52 | Chr13 | 2021 | 2.04 × 10−6 ** | 0.2745 | 0.0097 ** | 0.7227 | 0.0106 * | 0.7637 | |
2022 | 0.0058 ** | 0.1293 | 0.0432 * | 0.4017 | 0.0354 * | 0.5156 | |||
LL/W | g7.91 | Chr07 | 2022 | - | - | 0.0121 * | 0.3295 | 0.011 * | 0.321 |
2021 | - | - | 0.0235 * | 0.662 | 0.0179 * | 0.7222 | |||
CSD/L | g1.80 | Chr01 | 2021 | - | - | 0.008 ** | 0.1983 | 0.0377 * | 1.00 × 10−5 |
2022 | - | - | 0.019 * | 1.00 × 10−5 | 0.0245 * | 1.00 × 10−5 | |||
g4.38 | Chr04 | 2021 | 0.036 * | 0.2762 | 0.0395 * | 0.4435 | - | - | |
2022 | 0.0056 ** | 0.2266 | 0.0212 * | 1.00 × 10−5 | - | - | |||
ACSW | g12.82 | Chr12 | 2021 | 0.0045 ** | 0.2212 | 0.0181 * | 0.3887 | - | - |
2022 | 0.0135 * | 0.1906 | 0.0162 * | 1.00 × 10−5 | - | - | |||
CSL | g12.82 | Chr12 | 2021 | 0.0145 * | 0.1984 | 0.0407 * | 0.296 | 0.0191 * | 0.2096 |
2022 | 0.0122 * | 0.2437 | 0.0085 ** | 1.00 × 10−5 | 0.0031 ** | 1.00 × 10−5 | |||
g13.90 | Chr13 | 2021 | 0.0456 * | 0.1997 | 0.0323 * | 0.3646 | 0.0436 * | 0.3451 | |
2022 | 0.0358 * | 0.2178 | 0.0439 * | 0.0028 | 0.0358 * | 1.00 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, R.; Zhu, Q.; Jia, X.; Li, B.; Li, Z.; Xiao, Y.; Luo, S.; Wang, S.; Shan, N.; Sun, J.; et al. Genome-Wide Development of InDel-SSRs and Association Analysis of Important Agronomic Traits of Taro (Colocasia esculenta) in China. Curr. Issues Mol. Biol. 2024, 46, 13347-13363. https://doi.org/10.3390/cimb46120796
Pan R, Zhu Q, Jia X, Li B, Li Z, Xiao Y, Luo S, Wang S, Shan N, Sun J, et al. Genome-Wide Development of InDel-SSRs and Association Analysis of Important Agronomic Traits of Taro (Colocasia esculenta) in China. Current Issues in Molecular Biology. 2024; 46(12):13347-13363. https://doi.org/10.3390/cimb46120796
Chicago/Turabian StylePan, Rao, Qianglong Zhu, Xinbi Jia, Bicong Li, Zihao Li, Yao Xiao, Sha Luo, Shenglin Wang, Nan Shan, Jingyu Sun, and et al. 2024. "Genome-Wide Development of InDel-SSRs and Association Analysis of Important Agronomic Traits of Taro (Colocasia esculenta) in China" Current Issues in Molecular Biology 46, no. 12: 13347-13363. https://doi.org/10.3390/cimb46120796
APA StylePan, R., Zhu, Q., Jia, X., Li, B., Li, Z., Xiao, Y., Luo, S., Wang, S., Shan, N., Sun, J., Zhou, Q., & Huang, Y. (2024). Genome-Wide Development of InDel-SSRs and Association Analysis of Important Agronomic Traits of Taro (Colocasia esculenta) in China. Current Issues in Molecular Biology, 46(12), 13347-13363. https://doi.org/10.3390/cimb46120796