Gut–Liver Axis as a Therapeutic Target for Drug-Induced Liver Injury
Abstract
:1. Introduction
2. The Gut–Liver Axis in DILI
2.1. Gut Microbiota
2.2. Intestinal Barrier Function
2.3. Bacterial Products and Metabolites
2.4. BAs
3. Gut–Liver Axis-Based Therapeutic Approaches for DILI
3.1. Herbs and Phytochemicals
3.2. Probiotics
3.3. FMT
3.4. Postbiotics
3.5. BA and FXR Agonists
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Andrade, R.J.; Chalasani, N.; Björnsson, E.S.; Suzuki, A.; Kullak-Ublick, G.A.; Watkins, P.B.; Devarbhavi, H.; Merz, M.; Lucena, M.I.; Kaplowitz, N.; et al. Drug-induced liver injury. Nat. Rev. Dis. Primers 2019, 5, 58. [Google Scholar] [CrossRef]
- Garcia-Cortes, M.; Robles-Diaz, M.; Stephens, C.; Ortega-Alonso, A.; Lucena, M.I.; Andrade, R.J. Drug induced liver injury: An update. Arch. Toxicol. 2020, 94, 3381–3407. [Google Scholar] [CrossRef]
- Shen, T.; Liu, Y.; Shang, J.; Xie, Q.; Li, J.; Yan, M.; Xu, J.; Niu, J.; Liu, J.; Watkins, P.B.; et al. Incidence and etiology of drug-induced liver injury in mainland China. Gastroenterology 2019, 156, 2230–2241. [Google Scholar] [CrossRef]
- Li, X.; Tang, J.; Mao, Y. Incidence and risk factors of drug-induced liver injury. Liver Int. 2022, 42, 1999–2014. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.C.; Vaidya, V.S.; Wang, Z.; Federspiel, J.D.; Virgen-Slane, R.; Everley, R.A.; Grove, J.I.; Stephens, C.; Ocana, M.F.; Robles-Díaz, M.; et al. Tandem mass tag-based quantitative proteomic profiling identifies candidate serum biomarkers of drug-induced liver injury in humans. Nat. Commun. 2023, 14, 1215. [Google Scholar] [CrossRef] [PubMed]
- Björnsson, E.S. Clinical management of patients with drug-induced liver injury (DILI). United Eur. Gastroenterol. J. 2021, 9, 781–786. [Google Scholar] [CrossRef]
- Björnsson, E.S.; Andrade, R.J. Long-term sequelae of drug-induced liver injury. J. Hepatol. 2022, 76, 435–445. [Google Scholar] [CrossRef]
- Hayashi, P.H.; Rockey, D.C.; Fontana, R.J.; Tillmann, H.L.; Kaplowitz, N.; Barnhart, H.X.; Gu, J.; Chalasani, N.P.; Reddy, K.R.; Sherker, A.H.; et al. Death and liver transplantation within 2 years of onset of drug-induced liver injury. Hepatology 2017, 66, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Babai, S.; Auclert, L.; Le-Louët, H. Safety data and withdrawal of hepatotoxic drugs. Therapie 2021, 76, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Hoofnagle, J.H.; Björnsson, E.S. Drug-induced liver injury—Types and phenotypes. N. Engl. J. Med. 2019, 381, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Suzuki, A.; Borlak, J.; Andrade, R.J.; Lucena, M.I. Drug-induced liver injury: Interactions between drug properties and host factors. J. Hepatol. 2015, 63, 503–514. [Google Scholar] [CrossRef]
- Gerussi, A.; Natalini, A.; Antonangeli, F.; Mancuso, C.; Agostinetto, E.; Barisani, D.; Di Rosa, F.; Andrade, R.; Invernizzi, P. Immune-mediated drug-induced liver injury: Immunogenetics and experimental models. Int. J. Mol. Sci. 2021, 22, 4557. [Google Scholar] [CrossRef]
- Björnsson, H.K.; Björnsson, E.S. Drug-induced liver injury: Pathogenesis, epidemiology, clinical features, and practical management. Eur. J. Intern. Med. 2022, 97, 26–31. [Google Scholar] [CrossRef]
- Miller, E.D.; Abu-Sbeih, H.; Styskel, B.; Nogueras Gonzalez, G.M.; Blechacz, B.; Naing, A.; Chalasani, N. Clinical characteristics and adverse impact of hepatotoxicity due to immune checkpoint inhibitors. Am. J. Gastroenterol. 2020, 115, 251–261. [Google Scholar] [CrossRef]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 72, 558–577. [Google Scholar] [CrossRef] [PubMed]
- Balmer, M.L.; Slack, E.; de Gottardi, A.; Lawson, M.A.; Hapfelmeier, S.; Miele, L.; Grieco, A.; Van Vlierberghe, H.; Fahrner, R.; Patuto, N.; et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci. Transl. Med. 2014, 6, 237ra266. [Google Scholar] [CrossRef] [PubMed]
- Wahlström, A.; Sayin, S.I.; Marschall, H.U.; Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016, 24, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Van Best, N.; Rolle-Kampczyk, U.; Schaap, F.G.; Basic, M.; Olde Damink, S.W.M.; Bleich, A.; Savelkoul, P.H.M.; von Bergen, M.; Penders, J.; Hornef, M.W. Bile acids drive the newborn’s gut microbiota maturation. Nat. Commun. 2020, 11, 3692. [Google Scholar] [CrossRef] [PubMed]
- Blesl, A.; Stadlbauer, V. The gut-liver axis in cholestatic liver diseases. Nutrients 2021, 13, 1018. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, R.; Chen, P. Gut microbiota and chemical-induced acute liver injury. Front. Physiol. 2021, 12, 688780. [Google Scholar] [CrossRef]
- Chu, H.K.; Ai, Y.; Cheng, Z.L.; Yang, L.; Hou, X.H. Contribution of gut microbiota to drug-induced liver injury. Hepatobiliary Pancreat. Dis. Int. 2023, 22, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Chopyk, D.M.; Grakoui, A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders. Gastroenterology 2020, 159, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, J.; Wang, L. Role and mechanism of gut microbiota in human disease. Front. Cell. Infect. Microbiol. 2021, 11, 625913. [Google Scholar] [CrossRef]
- Zhao, S.; Fu, H.; Zhou, T.; Cai, M.; Huang, Y.; Gan, Q.; Zhang, C.; Qian, C.; Wang, J.; Zhang, Z.; et al. Alteration of bile acids and omega-6 PUFAs are correlated with the progression and prognosis of drug-induced liver injury. Front. Immunol. 2022, 13, 772368. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Diaz, C.; Taminiau, B.; García-García, A.; Cueto, A.; Robles-Díaz, M.; Ortega-Alonso, A.; Martín-Reyes, F.; Daube, G.; Sanabria-Cabrera, J.; Jimenez-Perez, M.; et al. Microbiota diversity in nonalcoholic fatty liver disease and in drug-induced liver injury. Pharmacol. Res. 2022, 182, 106348. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhao, F.; Lin, B.; Feng, J.; Wu, X.; Liu, Y.; Zhao, L.; Zhu, B.; Wei, Y. Gut microbiota participates in antithyroid drug induced liver injury through the lipopolysaccharide related signaling pathway. Front. Pharmacol. 2020, 11, 598170. [Google Scholar] [CrossRef]
- Xia, J.; Lv, L.; Liu, B.; Wang, S.; Zhang, S.; Wu, Z.; Yang, L.; Bian, X.; Wang, Q.; Wang, K.; et al. Akkermansia muciniphila ameliorates acetaminophen-induced liver injury by regulating gut microbial composition and metabolism. Microbiol. Spectr. 2022, 10, e0159621. [Google Scholar] [CrossRef]
- Xu, B.; Hao, K.; Chen, X.; Wu, E.; Nie, D.; Zhang, G.; Si, H. Broussonetia papyrifera polysaccharide alleviated acetaminophen-induced liver injury by regulating the intestinal flora. Nutrients 2022, 14, 2636. [Google Scholar] [CrossRef]
- Li, Z.M.; Kong, C.Y.; Mao, Y.Q.; Huang, J.T.; Chen, H.L.; Han, B.; Wang, L.S. Ampicillin exacerbates acetaminophen-induced acute liver injury by inducing intestinal microbiota imbalance and butyrate reduction. Liver Int. 2023, 43, 865–877. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, S.; Xu, Y.; Sun, W.; Feng, Y.; Liang, D.; Guan, Y. Integrated microbiome and metabolome analysis reveals correlations between gut microbiota components and metabolic profiles in mice with methotrexate-induced hepatoxicity. Drug Des. Devel. Ther. 2022, 16, 3877–3891. [Google Scholar] [CrossRef]
- Yip, L.Y.; Aw, C.C.; Lee, S.H.; Hong, Y.S.; Ku, H.C.; Xu, W.H.; Chan, J.M.X.; Cheong, E.J.Y.; Chng, K.R.; Ng, A.H.Q.; et al. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat. Hepatology 2018, 67, 282–295. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, L.; Duan, Y.; Gao, Y.; Gao, H.; Mao, D.; Luo, Y. Gut microbiota exaggerates triclosan-induced liver injury via gut-liver axis. J. Hazard. Mater. 2022, 421, 126707. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.M.; Elfers, C.; Ghallab, A.; Schneider, C.V.; Galvez, E.J.C.; Mohs, A.; Gui, W.; Candels, L.S.; Wirtz, T.H.; Zuehlke, S.; et al. Intestinal dysbiosis amplifies acetaminophen-induced acute liver injury. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 909–933. [Google Scholar] [CrossRef]
- Kakan, X.; Chen, P.; Zhang, J. Clock gene mPer2 functions in diurnal variation of acetaminophen induced hepatotoxicity in mice. Exp. Toxicol. Pathol. 2011, 63, 581–585. [Google Scholar] [CrossRef]
- Gong, S.; Lan, T.; Zeng, L.; Luo, H.; Yang, X.; Li, N.; Chen, X.; Liu, Z.; Li, R.; Win, S.; et al. Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J. Hepatol. 2018, 69, 51–59. [Google Scholar] [CrossRef]
- Salvo Romero, E.; Alonso Cotoner, C.; Pardo Camacho, C.; Casado Bedmar, M.; Vicario, M. The intestinal barrier function and its involvement in digestive disease. Rev. Esp. Enferm. Dig. 2015, 107, 686–696. [Google Scholar] [CrossRef]
- Paradis, T.; Bègue, H.; Basmaciyan, L.; Dalle, F.; Bon, F. Tight junctions as a key for pathogens invasion in intestinal epithelial cells. Int. J. Mol. Sci. 2021, 22, 2506. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J.K.; Johansson, M.E.V. The role of goblet cells and mucus in intestinal homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 785–803. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, Z.; Zhu, L.; Ma, S.; Luo, Y.; Liang, H.; Liu, Q.; Chen, J.; Guli, S.; Chen, X. Orchestration of MUC2—The key regulatory target of gut barrier and homeostasis: A review. Int. J. Biol. Macromol. 2023, 236, 123862. [Google Scholar] [CrossRef]
- Okumura, R.; Takeda, K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp. Mol. Med. 2017, 49, e338. [Google Scholar] [CrossRef]
- Wang, L.; Llorente, C.; Hartmann, P.; Yang, A.M.; Chen, P.; Schnabl, B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J. Immunol. Methods 2015, 421, 44–53. [Google Scholar] [CrossRef]
- Xia, Y.; Shi, H.; Qian, C.; Han, H.; Lu, K.; Tao, R.; Gu, R.; Zhao, Y.; Wei, Z.; Lu, Y. Modulation of gut microbiota by magnesium isoglycyrrhizinate mediates enhancement of intestinal barrier function and amelioration of methotrexate-induced liver injury. Front. Immunol. 2022, 13, 874878. [Google Scholar] [CrossRef]
- Wang, X.; Quinn, P.J. Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog. Lipid Res. 2010, 49, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Kim, H.M. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Rep. 2017, 50, 55–57. [Google Scholar] [CrossRef]
- Du, H.J.; Zhao, S.X.; Zhao, W.; Fu, N.; Li, W.C.; Qin, X.J.; Zhang, Y.G.; Nan, Y.M.; Zhao, J.M. Hepatic macrophage activation and the LPS pathway in patients with different degrees of severity and histopathological patterns of drug induced liver injury. Histol. Histopathol. 2021, 36, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, X.; Zhang, W.; Yang, Q.; You, W.; Wen, J.; Zhou, T. Compatibility with Semen Sojae Praeparatum attenuates hepatotoxicity of Gardeniae Fructus by regulating the microbiota, promoting butyrate production and activating antioxidant response. Phytomedicine 2021, 90, 153656. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Van der Hee, B.; Wells, J.M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 2021, 29, 700–712. [Google Scholar] [CrossRef]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Pirozzi, C.; Lama, A.; Annunziata, C.; Cavaliere, G.; De Caro, C.; Citraro, R.; Russo, E.; Tallarico, M.; Iannone, M.; Ferrante, M.C.; et al. Butyrate prevents valproate-induced liver injury: In vitro and in vivo evidence. FASEB J. 2020, 34, 676–690. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.D.; Trauner, M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 432–450. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dawson, P.A. Animal models to study bile acid metabolism. Biochim. Biophy. Acta Mol. Basis Dis. 2019, 1865, 895–911. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y. Bile acids: Regulation of synthesis. J. Lipid Res. 2009, 50, 1955–1966. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Garruti, G.; Lunardi Baccetto, R.; Molina-Molina, E.; Bonfrate, L.; Wang, D.Q.; Portincasa, P. Bile acid physiology. Ann. Hepatol. 2017, 16, s4–s14. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.F. The enterohepatic circulation of bile acids in mammals: Form and functions. Front. Biosci. 2009, 14, 2584–2598. [Google Scholar] [CrossRef]
- Jia, W.; Xie, G.; Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 111–128. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006, 47, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Schadt, H.S.; Wolf, A.; Pognan, F.; Chibout, S.D.; Merz, M.; Kullak-Ublick, G.A. Bile acids in drug induced liver injury: Key players and surrogate markers. Clin. Res. Hepatol. Gastroenterol. 2016, 40, 257–266. [Google Scholar] [CrossRef]
- Mosedale, M.; Watkins, P.B. Drug-induced liver injury: Advances in mechanistic understanding that will inform risk management. Clin. Pharmacol. Ther. 2017, 101, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Woolbright, B.L.; McGill, M.R.; Staggs, V.S.; Winefield, R.D.; Gholami, P.; Olyaee, M.; Sharpe, M.R.; Curry, S.C.; Lee, W.M.; Jaeschke, H. Glycodeoxycholic acid levels as prognostic biomarker in acetaminophen-induced acute liver failure patients. Toxicol. Sci. 2014, 142, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wang, X.; Yin, P.; Wu, R.; Zhou, L.; Xu, G.; Niu, J. Serum metabolome and targeted bile acid profiling reveals potential novel biomarkers for drug-induced liver injury. Medicine 2019, 98, e16717. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Yang, R.; Wang, Y.; Liu, J.; Wee, A.; Saxena, R.; Wang, L.; Li, M.; Liu, L.; Shan, S.; et al. A high serum level of taurocholic acid is correlated with the severity and resolution of drug-induced liver injury. Clin. Gastroenterol. Hepatol. 2021, 19, 1009–1019.e1011. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhang, L.; Chen, E.; Lu, J.; Xiao, L.; Liu, Q.; Zhu, D.; Zhang, F.; Xu, X.; Li, L. Targeted metabolomics analysis of bile acids in patients with idiosyncratic drug-induced liver injury. Metabolites 2021, 11, 852. [Google Scholar] [CrossRef]
- Chiang, J.Y.L.; Ferrell, J.M. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol. Cell. Endocrinol. 2022, 548, 111618. [Google Scholar] [CrossRef]
- Yan, T.; Yan, N.; Wang, H.; Yagai, T.; Luo, Y.; Takahashi, S.; Zhao, M.; Krausz, K.W.; Wang, G.; Hao, H.; et al. FXR-deoxycholic acid-TNF-α axis modulates acetaminophen-induced hepatotoxicity. Toxicol. Sci. 2021, 181, 273–284. [Google Scholar] [CrossRef]
- Katafuchi, T.; Makishima, M. Molecular basis of bile acid-FXR-FGF15/19 signaling axis. Int. J. Mol. Sci. 2022, 23, 6046. [Google Scholar] [CrossRef]
- Wang, Y.D.; Chen, W.D.; Yu, D.; Forman, B.M.; Huang, W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology 2011, 54, 1421–1432. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Xu, S.; Zeng, Z. “Liver-gut” axis: A target of traditional Chinese medicine for the treatment of non-alcoholic fatty liver disease. Front. Endocrinol. 2022, 13, 1050709. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.R.; Li, S.S.; Zheng, W.Q.; Ni, W.J.; Cai, M.; Liu, H.P. Targeted modulation of gut microbiota by traditional Chinese medicine and natural products for liver disease therapy. Front. Immunol. 2023, 14, 1086078. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xue, Y.; Zhang, Z.; Ji, J.; Li, C.; Zheng, K.; Lu, J.; Gao, Y.; Gong, Y.; Zhang, Y.; et al. Wolfberry enhanced the abundance of Akkermansia muciniphila by YAP1 in mice with acetaminophen-induced liver injury. FASEB J. 2023, 37, e22689. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.K.; Liu, H.H.; Chen, G.H.; Zhu, J.Q.; Zheng, S.Y.; Zhao, D.; Diao, J.; Jia, H.; Zhang, D.D.; Chen, S.X.; et al. Oridonin alters hepatic urea cycle via gut microbiota and protects against acetaminophen-induced liver injury. Oxid. Med. Cell. Longev. 2021, 2021, 3259238. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.Y.; Ren, H.; Chen, H.Q.; Xing, K.; Xiao, C.L.; Luo, J.Q. Magnesium isoglycyrrhizinate attenuates anti-tuberculosis drug-induced liver injury by enhancing intestinal barrier function and inhibiting the LPS/TLRs/NF-κB signaling pathway in mice. Pharmaceuticals 2022, 15, 1130. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Sun, J.; Sullivan, M.A.; Huang, X.; Wang, H.; Zhang, Y.; Wang, N.; Wang, K. Angelica sinensis polysaccharide protects against acetaminophen-induced acute liver injury and cell death by suppressing oxidative stress and hepatic apoptosis in vivo and in vitro. Int. J. Biol. Macromol. 2018, 111, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Wei, J.G.; Tu, M.J.; Gu, J.G.; Zhang, W. Fucoidan alleviates acetaminophen-induced hepatotoxicity via oxidative stress inhibition and Nrf2 translocation. Int. J. Mol. Sci. 2018, 19, 4050. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Gao, X.; Wang, Z.Y.; Yi, J.J. Comparative study on hepatoprotection of pine nut (Pinus koraiensis Sieb. et Zucc.) polysaccharide against different types of chemical-induced liver injury models in vivo. Int. J. Biol. Macromol. 2020, 155, 1050–1059. [Google Scholar] [CrossRef]
- Wang, J.; Luo, W.; Li, B.; Lv, J.; Ke, X.; Ge, D.; Dong, R.; Wang, C.; Han, Y.; Zhang, C.; et al. Sagittaria sagittifolia polysaccharide protects against isoniazid- and rifampicin-induced hepatic injury via activation of nuclear factor E2-related factor 2 signaling in mice. J. Ethnopharmacol. 2018, 227, 237–245. [Google Scholar] [CrossRef]
- Che, J.; Yang, S.; Qiao, Z.; Li, H.; Sun, J.; Zhuang, W.; Chen, J.; Wang, C. Schisandra chinensis acidic polysaccharide partialy reverses acetaminophen-induced liver injury in mice. J. Pharmacol. Sci. 2019, 140, 248–254. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhang, X.; Zhao, S.; Zou, K.; Xie, J.; Wang, X.; Liu, C.; Wang, J.; Wang, Y. Seabuckthorn berry polysaccharide extracts protect against acetaminophen induced hepatotoxicity in mice via activating the Nrf-2/HO-1-SOD-2 signaling pathway. Phytomedicine 2018, 38, 90–97. [Google Scholar] [CrossRef]
- Zhou, S.F.; Zhou, Z.W.; Li, C.G.; Chen, X.; Yu, X.; Xue, C.C.; Herington, A. Identification of drugs that interact with herbs in drug development. Drug Discov. Today 2007, 12, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Zmora, N.; Segal, E.; Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019, 25, 716–729. [Google Scholar] [CrossRef]
- Belzer, C.; de Vos, W.M. Microbes inside--from diversity to function: The case of Akkermansia. ISME J. 2012, 6, 1449–1458. [Google Scholar] [CrossRef]
- Cani, P.D.; Depommier, C.; Derrien, M.; Everard, A.; de Vos, W.M. Akkermansia muciniphila: Paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Yao, C.; Yan, R.; Jiang, H.; Wang, Q.; Wang, K.; Ren, S.; Jiang, S.; Xia, J.; Li, S.; et al. Lactobacillus acidophilus LA14 Alleviates Liver Injury. mSystems 2021, 6, e0038421. [Google Scholar] [CrossRef]
- Saeedi, B.J.; Liu, K.H.; Owens, J.A.; Hunter-Chang, S.; Camacho, M.C.; Eboka, R.U.; Chandrasekharan, B.; Baker, N.F.; Darby, T.M.; Robinson, B.S.; et al. Gut-resident lactobacilli activate hepatic Nrf2 and protect against oxidative liver injury. Cell Metab. 2020, 31, 956–968.e955. [Google Scholar] [CrossRef]
- Mandal, A.; Paul, T.; Roy, S.; Mandal, S.; Pradhan, S.; Mondal, K.; Nandi, D.K. Effect of newly isolated Lactobacillus ingluviei ADK10, from chicken intestinal tract on acetaminophen induced oxidative stress in Wistar rats. Indian J. Exp. Biol. 2013, 51, 174–180. [Google Scholar]
- Zeng, Y.; Wu, R.; Wang, F.; Li, S.; Li, L.; Li, Y.; Qin, P.; Wei, M.; Yang, J.; Wu, J.; et al. Liberation of daidzein by gut microbial β-galactosidase suppresses acetaminophen-induced hepatotoxicity in mice. Cell Host Microbe 2023, 31, 766–780.e767. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Sun, C.; Yang, J.; Zhang, X.; Dou, S.; Hua, Q.; Ma, A. Regulation of gut microflora by Lactobacillus casei Zhang attenuates liver injury in mice caused by anti-tuberculosis drugs. Int. J. Mol. Sci. 2023, 24, 9444. [Google Scholar] [CrossRef]
- Neag, M.A.; Catinean, A.; Muntean, D.M.; Pop, M.R.; Bocsan, C.I.; Botan, E.C.; Buzoianu, A.D. Probiotic bacillus spores protect against acetaminophen induced acute liver injury in rats. Nutrients 2020, 12, 632. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhuge, A.; Xia, J.; Wang, S.; Lv, L.; Wang, K.; Jiang, H.; Yan, R.; Yang, L.; Bian, X.; et al. Bifidobacterium longum R0175 protects mice against APAP-induced liver injury by modulating the Nrf2 pathway. Free Radic. Biol. Med. 2023, 203, 11–23. [Google Scholar] [CrossRef]
- Sharma, S.; Chaturvedi, J.; Chaudhari, B.P.; Singh, R.L.; Kakkar, P. Probiotic Enterococcus lactis IITRHR1 protects against acetaminophen-induced hepatotoxicity. Nutrition 2012, 28, 173–181. [Google Scholar] [CrossRef]
- Riane, K.; Ouled-Haddar, H.; Alyane, M.; Sifour, M.; Espinosa, C.; Angeles Esteban, M. Assessment of Streptococcus salivarius sp thermophiles antioxidant efficiency and its role in reducing paracetamol hepatotoxicity. Iran. J. Biotechnol. 2019, 17, e2061. [Google Scholar] [CrossRef]
- Riane, K.; Sifour, M.; Ouled-Haddar, H.; Espinosa, C.; Esteban, M.A.; Lahouel, M. Effect of probiotic supplementation on oxidative stress markers in rats with diclofenac-induced hepatotoxicity. Braz. J. Microbiol. 2020, 51, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Kao, D.; Roach, B.; Silva, M.; Beck, P.; Rioux, K.; Kaplan, G.G.; Chang, H.J.; Coward, S.; Goodman, K.J.; Xu, H.; et al. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: A randomized clinical trial. JAMA 2017, 318, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- Weingarden, A.R.; Vaughn, B.P. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes 2017, 8, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, N.M.J.; de Vos, W.M.; Nieuwdorp, M. Fecal microbiota transplantation in human metabolic diseases: From a murky past to a bright future? Cell Metab. 2021, 33, 1098–1110. [Google Scholar] [CrossRef] [PubMed]
- Vendrik, K.E.W.; Ooijevaar, R.E.; de Jong, P.R.C.; Laman, J.D.; van Oosten, B.W.; van Hilten, J.J.; Ducarmon, Q.R.; Keller, J.J.; Kuijper, E.J.; Contarino, M.F. Fecal Microbiota transplantation in neurological disorders. Front. Cell. Infect. Microbiol. 2020, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Khoruts, A. Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis. J. Hepatol. 2020, 72, 1003–1027. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, W.; Feng, C.; Kwok, L.Y.; He, Q.; Sun, Z. Stronger gut microbiome modulatory effects by postbiotics than probiotics in a mouse colitis model. NPJ Sci. Food 2022, 6, 53. [Google Scholar] [CrossRef]
- Vera-Santander, V.E.; Hernández-Figueroa, R.H. Health benefits of consuming foods with bacterial probiotics, postbiotics, and their metabolites: A review. Molecules 2023, 28, 1230. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, R.L.; Kakkar, P. Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. Food Chem. Toxicol. 2011, 49, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Dinić, M.; Lukić, J.; Djokić, J.; Milenković, M.; Strahinić, I.; Golić, N.; Begović, J. Lactobacillus fermentum postbiotic-induced autophagy as potential approach for treatment of acetaminophen hepatotoxicity. Front. Microbiol. 2017, 8, 594. [Google Scholar] [CrossRef] [PubMed]
- Kusaczuk, M.; Bartoszewicz, M.; Cechowska-Pasko, M. Phenylbutyric Acid: Simple structure—Multiple effects. Curr. Pharm. Des. 2015, 21, 2147–2166. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, D.; Ishitsuka, Y.; Miyata, K.; Tomishima, Y.; Kondo, Y.; Irikura, M.; Iwawaki, T.; Oike, Y.; Irie, T. Protection afforded by pre- or post-treatment with 4-phenylbutyrate against liver injury induced by acetaminophen overdose in mice. Pharmacol. Res. 2014, 87, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Kusama, H.; Kon, K.; Ikejima, K.; Arai, K.; Aoyama, T.; Uchiyama, A.; Yamashina, S.; Watanabe, S. Sodium 4-phenylbutyric acid prevents murine acetaminophen hepatotoxicity by minimizing endoplasmic reticulum stress. J. Gastroenterol. 2017, 52, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Urano, Y.; Oda, S.; Tsuneyama, K.; Yokoi, T. Comparative hepatic transcriptome analyses revealed possible pathogenic mechanisms of fasiglifam (TAK-875)-induced acute liver injury in mice. Chem. Biol. Interact. 2018, 296, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.L.; Hassan, H.M.; Ding, P.P.; Wang, S.J.; Chen, X.; Wang, T.; Sun, L.X.; Zhang, L.Y.; Jiang, Z.Z. Pyrazinamide-induced hepatotoxicity is alleviated by 4-PBA via inhibition of the PERK-eIF2α-ATF4-CHOP pathway. Toxicology 2017, 378, 65–75. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Shen, Y.; Xu, J. Rifampicin-induced injury in L02 cells is alleviated by 4-PBA via inhibition of the PERK-ATF4-CHOP pathway. Toxicol. Vitr. 2016, 36, 186–196. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Tang, X.; Chen, L. 4-Phenylbutyrate protects against rifampin-induced liver injury via regulating MRP2 ubiquitination through inhibiting endoplasmic reticulum stress. Bioengineered 2022, 13, 2866–2877. [Google Scholar] [CrossRef]
- Cho, S.; Yang, X.; Won, K.J.; Leone, V.A.; Chang, E.B.; Guzman, G.; Ko, Y.; Bae, O.N.; Lee, H.; Jeong, H. Phenylpropionic acid produced by gut microbiota alleviates acetaminophen-induced hepatotoxicity. Gut Microbes 2023, 15, 2231590. [Google Scholar] [CrossRef]
- Gao, Z.; Yi, W.; Tang, J.; Sun, Y.; Huang, J.; Lan, T.; Dai, X.; Xu, S.; Jin, Z.G.; Wu, X. Urolithin A protects against acetaminophen-induced liver injury in mice via sustained activation of Nrf2. Int. J. Biol. Sci. 2022, 18, 2146–2162. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Zhang, C.; Yu, T.; Wang, H.; Zhao, M.; Duan, Z.H.; Zhang, Y.; Xu, J.M.; Xu, D.X. The protective effects of ursodeoxycholic acid on isoniazid plus rifampicin induced liver injury in mice. Eur. J. Pharmacol. 2011, 659, 53–60. [Google Scholar] [CrossRef]
- Alhumaidha, K.A.; El-Awdan, S.A.; El-Iraky, W.I.; El-Denshary, E.-E.-D.S. Protective effects of ursodeoxycholic acid on ceftriaxone-induced hepatic injury in rats. Bull. Fac. Pharm. Cairo Univ. 2014, 52, 45–50. [Google Scholar] [CrossRef]
- Beuers, U.; Trauner, M.; Jansen, P.; Poupon, R. New paradigms in the treatment of hepatic cholestasis: From UDCA to FXR, PXR and beyond. J. Hepatol. 2015, 62, S25–S37. [Google Scholar] [CrossRef] [PubMed]
- Gai, Z.; Krajnc, E.; Samodelov, S.L.; Visentin, M.; Kullak-Ublick, G.A. Obeticholic acid ameliorates valproic acid-induced hepatic steatosis and oxidative stress. Mol. Pharmacol. 2020, 97, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.L.; Hassan, H.M.; Zhang, Y.; Dong, S.Z.; Ding, P.P.; Wang, T.; Sun, L.X.; Zhang, L.Y.; Jiang, Z.Z. Pyrazinamide induced rat cholestatic liver injury through iInhibition of FXR regulatory effect on bile acid synthesis and transport. Toxicol. Sci. 2016, 152, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Dai, M.Y.; Bao, L.J.; Zhu, W.F.; Li, F. FXR activation prevents liver injury induced by Tripterygium wilfordii preparations. Xenobiotica 2021, 51, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.K.; Liu, J.L.; Chen, L.J.; Li, J.H.; Yang, J.Z.; Xu, L.L.; Chen, Y.K.; Zhang, Q.Y.; Li, X.W.; Liu, Y.; et al. Gut microbiota mediates methamphetamine-induced hepatic inflammation via the impairment of bile acid homeostasis. Food Chem. Toxicol. 2022, 166, 113208. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Chen, X.; Ren, Y.; Liu, C.; Yuan, A.; Zheng, L.; Li, B.; Zhang, Y. Identification of a novel farnesoid X receptor agonist, kaempferol-7-O-rhamnoside, a compound ameliorating drug-induced liver injury based on virtual screening and in vitro validation. Toxicol. Appl. Pharmacol. 2022, 454, 116251. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Chen, Y.; Pan, Z.; Tang, K.; Zhong, G.; Guo, J.; Cui, T.; Li, T.; Duan, S.; Yang, X.; et al. Ginsenoside Rc, as an FXR activator, alleviates acetaminophen-induced hepatotoxicity via relieving inflammation and oxidative stress. Front. Pharmacol. 2022, 13, 1027731. [Google Scholar] [CrossRef] [PubMed]
Groups | Drugs | Samples | DILI-Enriched Taxa | DILI-Decreased Taxa | Authors |
---|---|---|---|---|---|
DILI patients vs. healthy controls | Herbs or/and conventional drugs | Feces | Phylum: Proteobacteria, Actinobacteria | Phylum: Firmicutes Class:Clostridia Order: Clostridiales Genus: Bacteroides, Bifidobacterium | Zhao et al. (2022) [25] |
DILI patients vs. healthy controls | Dietary supplements, conventional drugs | Feces | Phylum: Bacteroidetes | Phylum: Firmicutes Genus: Acetobacteroides, Blautia, Caloramator, Coprococcus, Flavobacterium, Lachnospira, Natronincola, Oscillospira, Pseudobutyrivibrio, Shuttleworthia, Themicanus, Turicibacter | Rodriguez-Diaz et al. (2022) [26] |
Treat Graves’ Disease patients vs. initial Graves’ Disease patients | The antithyroid drugs | Feces | Genus: Eubacterium_rectale, Romboutsia, Dorea | Genus: Faecalibacterium, Clostridium_sensu_stricto_1 | Sun et al. (2020) [27] |
Sprague Dawley rats, DILI vs. control | The antithyroid drugs | Feces | Phylum: Bacteroidetes, Proteobacteria, and Spirochaetae Genus: Clostridium_sensu_stricto_1, Prevotellaceae_UCG-003, Oscillibacter | Phylum: Firmicutes Genus: Lactobacillus, Romboutsia, Faecalibacterium | Sun et al. (2020) [27] |
C57BL/6 mice, DILI vs. control | APAP | Feces | Phylum: Deferribacteres, Cyanobacteria, Desulfobacterota Genus: Bacteroides, Oscillibacter, Mucispirillum, Colidextribacter | Phylum: Actinobacteria Genus: Dubosiella, Lactobacillus, Bifidobacterium, Prevotellaceae_UCG-001, Candidatus_Saccharimonas | Xia et al. (2022) [28] |
Kunming mice, DILI vs. control | APAP | cecum contents | Phylum: Deferribacterota Genus: Enterococcus, Bacteroides, norank_f_norank_o_ Clostridia_UCG-014, Erysipelatoclostridium, Blautia, Colidextribacter, Gordonibacter, Eubacterium_fissicatena_group, norank_f_Eubacterium_coprostanoligenes_group, Eubacterium _nodatum_group, Family_XIII_AD3011_group, Eubacterium_brachy_ group, Oscillibacter | Phylum: Firmicutes Genus: Lactobacillus, Odoribacter | Xu et al. (2022) [29] |
Kunming mice, DILI vs. control | Methotrexate | Colonic contents | Phylum: Deferribacterota Genus: Staphylococcus, Enterococcus, Collinsella, Streptococcus, Aerococcus | Phylum: Bacteroidota, unclassified_k_norank_d_Bacteria, Fusobacteriota Genus: Lactobacillus, Ruminococcus, norank_f_Muribaculaceae, unclassified_f_Lachnospiraceae, norank_f_Lachnospiraceae, A2, Eubacterium_xylanophilum_group, Phascolarctobacterium, Bifidobacterium, Faecalibaculum | Wang et al. (2022) [31] |
Lister hooded rats, strong responders vs. non-responders | Tacrine | Feces | Genus: Bacteroides, Enterobacteriaceae | Genus: Lactobacillus | Yip et al. (2018) [32] |
C57BL/6 mice, DILI vs. control | Triclosan | Feces | Phylum: Proteobacteria Family: Enterobacteriaceae | Phylum: Firmicutes, Bacteroidetes Genus: Bacteroides, Blautia, Eubacterium, Clostridium, Roseburia | Zhang et al. (2022) [33] |
Therapeutic Intervention | Research Subjects | Major Findings Related to Liver Injury | Changes in Gut–Liver Axis | Authors |
---|---|---|---|---|
Wolfberry | APAP-treated mice | Decreasing hepatic ALT and AST activities, inhibiting hepatic pathological injury and inflammation | Increasing Akkermansia muciniphila, decreasing hepatic LPS content | Liu et al. (2023) [72] |
Zhizichi Decoction | Gardeniae-Fructus-treated rats | Reducing weight loss, decreasing serum ALT, AST, and total bilirubin, inhibiting hepatic pathological injury | Increasing Lactobacillus, Romboutsia, Akkermansia, and Prevotella, decreasing Enterococcus and Parasutterella, restoring caecal butyric acid content | Luo et al. (2021) [47] |
Oridonin | APAP-treated mice | Decreasing serum ALT and AST, inhibiting hepatic centrilobular necrosis, inflammation, and oxidative stress, attenuating the hepatic urea cycle dysregulation, activating Nrf2 pathway | Increasing Bacteroides vulgatus, upregulating ZO-1 and occludin expressions | Hong et al. (2021) [73] |
MgIG | Methotrexate-treated Mice | Reducing weight loss and liver index, decreasing serum ALT and AST, inhibiting hepatic pathological injury and inflammation | Increasing Lactobacillus, decreasing Muribaculaceae, improving colonic pathological injury and inflammation, decreasing FITC-dextran leakage, upregulating ZO-1, claudin-1, and E-cadherin expressions, preventing bacterial migrating to the liver | Xia et al. (2022) [43] |
MgIG | anti-tuberculosis-drug-treated mice | Decreasing serum ALT, AST, and ALP, inhibiting hepatic pathological injury, inflammation, and oxidative stress, inhibiting TLRs/NF-κB pathway | Increasing Lactobacillus, upregulating ZO-1 and occludin expressions, reducing colonic pathological injury, decreasing serum LPS and FITC-dextran | Gong et al. (2022) [74] |
Broussonetia papyrifera polysaccharide | APAP-treated mice | Decreasing serum ALT and AST, inhibiting hepatic pathological injury, inflammation, and oxidative stress, necrosis, and apoptosis, activating Nrf2 pathway, improved hepatic detoxification ability to APAP | Increasing Alloprevotella, Corynebacterium, Jeotgalicoccus, Paenochrobactrum and Prevotellaceae_UCG-001, decreasing Candidatus_Stoquefichus, Enterorhabdus, Erysipelatoclostridium, Eubacterium_brachy_group, Eubacterium_nodatum_group, Family_XIII_AD3011_group, Gordonibacter, norank_f_Eggerthellaceae, norank_f_Eubacterium_coprostanoligenes_group and norank_f_norank_o_Clostridia_UCG-014 | Xu et al. (2022) [29] |
Therapeutic Intervention | Research Subjects | Major Findings Related to Liver Injury | Changes in Gut–Liver Axis | Authors |
---|---|---|---|---|
Akkermansia muciniphila | APAP-treated mice | Decreasing serum ALT and AST, reducing hepatocyte necrosis, inhibiting hepatic inflammation, oxidative stress, and apoptosis, activating PI3K/Akt pathway | Increasing Lactobacillus, Candidatus_Saccharimonas, and Akkermansia, decreasing Oscillibacter, upregulating occludin, claudin, and MUC2 expressions, reducing serum LPS, increasing fecal SCFAs concentrations | Xia et al. (2022) [28] |
Lactobacillus acidophilus LA14 | APAP-treated mice | Increasing serum total protein, decreasing serum AST, cholinesterase, and total bilirubin, reducing hepatic pathological injury | Decreasing serum total BAs | Lv et al. (2021) [85] |
Lactobacillus rhamnosus GG | APAP-treated mice | Decreasing serum ALT, inhibiting hepatic pathological injury, necrosis, and oxidative stress, activating Nrf2 pathway | Decreasing serum FITC-dextran, upregulating ZO-1 expression | Saeedi et al. (2020) [86] |
Lactobacillus ingluviei ADK10 | APAP-treated rats | Reducing oxidative stress in liver and serum | - | Mandal et al. (2013) [87] |
Lactobacillus vaginalis | APAP-treated mice | Decreasing plasma ALT and AST, reducing systemic inflammation, inhibiting hepatic pathological injury, inflammation, and cell death | - | Zeng et al. (2023) [88] |
Lactobacillus species | Methotrexate-treated mice | Reducing hepatic pathological injury, inhibiting inflammation in liver and serum | Reducing colonic pathological injury, FITC-dextran leakage | Xia et al. (2022) [43] |
Lactobacillus casei | anti-tuberculosis-drug-treated mice | Decreasing serum ALP, recovering hepatic lobule, reducing hepatocyte necrosis, alleviating hepatic inflammation and oxidative stress, inhibiting TLR4/NF-κB/MyD88 pathway | Increasing Lactobacillus and Desulfovibrio, decreasing Bilophila, reducing serum LPS, upregulating ZO-1 and claudin-1 expressions | Li et al. (2023) [89] |
Lactobacillus Rhamnosus JYLR-005 | anti-tuberculosis-drug-treated mice | Decreasing serum ALT and AST, inhibiting hepatic pathological injury, inflammation and oxidative stress, inhibiting TLRs/NF-κB pathway | Decreasing serum LPS and FITC-dextran | Gong et al. (2022) [74] |
Bacillus species spores | APAP-treated rats | Decreasing serum ALT and AST, reducing systemic inflammation and oxidative stress, inhibiting hepatic pathological injury | Reducing serum ZO-1 | Neag et al. (2020) [90] |
Bifidobacterium longum R0175 | APAP-treated mice | Decreasing serum ALT and AST, inhibiting hepatic pathological injury, inflammation, hepatocyte death, and oxidative stress, activating Nrf2 pathway | Increasing Firmicutes, Lactobacillaceae, Lactobacillus and Blautia, decreasing Rikenellaceae, Rikenellaceae RC9, Lachnospiraceae NK4A136, and Alistipes, altering microbiota-derived metabolites, increasing metabolite sedanolide | Li et al. (2023) [91] |
Bacteroides vulgatus | APAP-treated mice | Decreasing serum ALT and AST, inhibiting hepatic centrilobular necrosis, inflammation, and oxidative stress, attenuating the hepatic urea cycle dysregulation, activating Nrf2 pathway | - | Hong et al. (2021) [73] |
Enterococcus lactis IITRHR1 | APAP-treated rats | Decreasing serum ALT, AST, and ALP, inhibiting hepatic pathological injury, hepatic apoptosis, oxidative stress, and DNA damage | - | Sharma et al. (2012) [92] |
Streptococcus salivarius | APAP-treated rats | Decreasing serum ALT, AST, and ALP, inhibiting hepatic oxidative stress | - | Riane et al. (2019) [93] |
Streptococcus salivarius | Diclofenac-treated rats | Decreasing serum ALT, AST, and ALP, inhibiting hepatic pathological injury, hepatic oxidative stress | - | Riane et al. (2020) [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, W.; Fan, Q.; Wei, J. Gut–Liver Axis as a Therapeutic Target for Drug-Induced Liver Injury. Curr. Issues Mol. Biol. 2024, 46, 1219-1236. https://doi.org/10.3390/cimb46020078
Tao W, Fan Q, Wei J. Gut–Liver Axis as a Therapeutic Target for Drug-Induced Liver Injury. Current Issues in Molecular Biology. 2024; 46(2):1219-1236. https://doi.org/10.3390/cimb46020078
Chicago/Turabian StyleTao, Wenjing, Qiwen Fan, and Jintao Wei. 2024. "Gut–Liver Axis as a Therapeutic Target for Drug-Induced Liver Injury" Current Issues in Molecular Biology 46, no. 2: 1219-1236. https://doi.org/10.3390/cimb46020078
APA StyleTao, W., Fan, Q., & Wei, J. (2024). Gut–Liver Axis as a Therapeutic Target for Drug-Induced Liver Injury. Current Issues in Molecular Biology, 46(2), 1219-1236. https://doi.org/10.3390/cimb46020078