Targeted Sequencing in Gastric Cancer: Association with Tumor Molecular Characteristics and FLOT Therapy Effectiveness
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Efficacy/Effectiveness in GC Patients and Association with Genetic Markers
3.2. Genetic Markers in GC Patients Depending on HER2 and PD-L1 Status
3.3. Expression of Molecular Markers in Cancers and Association with the Genetic Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Yang, X.; Liu, C.; Hu, J.; Yan, M.; Ding, C.; Fu, Y. Identification of key genes associated with poor prognosis and neoplasm staging in gastric cancer. Medicine 2023, 102, e35111. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Jing, C.; Chang, X.; Ding, D.; Han, T.; Yang, J.; Lu, Z.; Hu, X.; Liu, Z.; Wang, J.; et al. Mutational landscape of gastric cancer and clinical application of genomic profiling based on target next-generation sequencing. J. Transl. Med. 2019, 17, 189. [Google Scholar] [CrossRef] [PubMed]
- López, M.J.; Carbajal, J.; Alfaro, A.L.; Saravia, L.G.; Zanabria, D.; Araujo, J.M.; Quispe, L.; Zevallos, A.; Buleje, J.L.; Cho, C.E.; et al. Characteristics of gastric cancer around the world. Crit. Rev. Oncol. Hematol. 2023, 181, 103841. [Google Scholar] [CrossRef]
- Röcken, C. Molecular classification of gastric cancer. Expert Rev. Mol. Diagn. 2017, 17, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Ahn, S.; Son, D.S.; Kim, N.K.; Lee, K.W.; Kim, S.; Lee, J.; Park, S.H.; Park, J.O.; Kang, W.K.; et al. Bridging genomics and phenomics of gastric carcinoma. Int. J. Cancer 2019, 145, 2407–2417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Li, Z.; Lin, D.; Liu, Y.; Zhou, L.; Wang, D.; Wu, A.; Li, Z. Clinicopathological features of tumor mutation burden, Epstein-Barr virus infection, microsatellite instability and PD-L1 status in Chinese patients with gastric cancer. Diagn. Pathol. 2021, 16, 38. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, S.; Kudo, T.; Takahari, D.; Hara, H.; Kato, K.; Satoh, T. Practical guidance for the evaluation of disease progression and the decision to change treatment in patients with advanced gastric cancer receiving chemotherapy. Int. J. Clin. Oncol. 2020, 25, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, A.; Nichetti, F.; Peverelli, G.; Di Bartolomeo, M.; De Braud, F.; Pietrantonio, F. Genomic markers of resistance to targeted treatments in gastric cancer: Potential new treatment strategies. Pharmacogenomics 2018, 19, 1047–1068. [Google Scholar] [CrossRef]
- Marrelli, D.; Polom, K.; Neri, A.; Roviello, F. Clinical impact of molecular classifications in gastric cancer. Updates Surg. 2018, 70, 225–232. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, P.; Ma, J.; Xu, J.; Yang, L.; Xu, W.; Que, H.; Chen, M.; Xu, H. Serum biomarker panels for the diagnosis of gastric cancer. Cancer Med. 2019, 8, 1576–1583. [Google Scholar] [CrossRef]
- Wu, Y.X.; Zhou, X.Y.; Wang, J.Q.; Chen, G.M.; Chen, J.X.; Wang, R.C.; Huang, J.Q.; Chen, J.S. Application of immune checkpoint inhibitors in immunotherapy for gastric cancer. Immunotherapy 2023, 15, 101–115. [Google Scholar] [CrossRef]
- Oh, S.; Nam, S.K.; Lee, K.W.; Lee, H.S.; Park, Y.; Kwak, Y.; Lee, K.S.; Kim, J.W.; Kim, J.W.; Kang, M.; et al. Genomic and Transcriptomic Characterization of Gastric Cancer with Bone Metastasis. Cancer Res. Treat 2023, 56, 219–237. [Google Scholar] [CrossRef]
- Bispo, I.M.C.; Granger, H.P.; Almeida, P.P.; Nishiyama, P.B.; de Freitas, L.M. Systems biology and OMIC data integration to understand gastrointestinal cancers. World J. Clin. Oncol. 2022, 13, 762–778. [Google Scholar] [CrossRef]
- Li, M.; Gao, X.; Wang, X. Identification of tumor mutation burden-associated molecular and clinical features in cancer by analyzing multi-omics data. Front. Immunol. 2023, 14, 1090838. [Google Scholar] [CrossRef]
- Koh, V.; Chakrabarti, J.; Torvund, M.; Steele, N.; Hawkins, J.A.; Ito, Y.; Wang, J.; Helmrath, M.A.; Merchant, J.L.; Ahmed, S.A.; et al. Hedgehog transcriptional effector GLI mediates mTOR-Induced PD-L1 expression in gastric cancer organoids. Cancer Lett. 2021, 518, 59–71. [Google Scholar] [CrossRef]
- Cheng, Y.; Bu, D.; Zhang, Q.; Sun, R.; Lyle, S.; Zhao, G.; Dong, L.; Li, H.; Zhao, Y.; Yu, J.; et al. Genomic and transcriptomic profiling indicates the prognosis significance of mutational signature for TMB-high subtype in Chinese patients with gastric cancer. J. Adv. Res. 2023, 51, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, X.; Chen, H.; Guo, J.; Xiong, Z.; Yin, S.; Jin, L.; Chen, X.; Luo, D.; Tang, H.; et al. Mutation of MUC16 Is Associated With Tumor Mutational Burden and Lymph Node Metastasis in Patients With Gastric Cancer. Front. Med. 2022, 9, 836892. [Google Scholar] [CrossRef]
- Pužar Dominkuš, P.; Hudler, P. Mutational Signatures in Gastric Cancer and Their Clinical Implications. Cancers 2023, 15, 3788. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Kawazoe, A.; Lordick, F.; Janjigian, Y.Y.; Shitara, K. Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: An emerging paradigm. Nat. Rev. Clin. Oncol. 2021, 18, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Hess, T.; Maj, C.; Gehlen, J.; Borisov, O.; Haas, S.L.; Gockel, I.; Vieth, M.; Piessen, G.; Alakus, H.; Vashist, Y.; et al. Dissecting the genetic heterogeneity of gastric cancer. EBioMedicine 2023, 92, 104616. [Google Scholar] [CrossRef]
- Yu, R.; Sun, T.; Zhang, X.; Li, Z.; Xu, Y.; Liu, K.; Shi, Y.; Wu, X.; Shao, Y.; Kong, L. TP53 Co-Mutational Features and NGS-Calibrated Immunohistochemistry Threshold in Gastric Cancer. Onco Targets Ther. 2021, 14, 4967–4978. [Google Scholar] [CrossRef]
- Tahara, T.; Shibata, T.; Okamoto, Y.; Yamazaki, J.; Kawamura, T.; Horiguchi, N.; Okubo, M.; Nakano, N.; Ishizuka, T.; Nagasaka, M.; et al. Mutation spectrum of TP53 gene predicts clinicopathological features and survival of gastric cancer. Oncotarget 2016, 7, 42252–42260. [Google Scholar] [CrossRef]
- Fang, W.L.; Huang, K.H.; Lan, Y.T.; Lin, C.H.; Chang, S.C.; Chen, M.H.; Chao, Y.; Lin, W.C.; Lo, S.S.; Li, A.F.; et al. Mutations in PI3K/AKT pathway genes and amplifications of PIK3CA are associated with patterns of recurrence in gastric cancers. Oncotarget 2016, 7, 6201–6220. [Google Scholar] [CrossRef]
- Wen, Y.G.; Wang, Q.; Zhou, C.Z.; Qiu, G.Q.; Peng, Z.H.; Tang, H.M. Mutation analysis of tumor suppressor gene PTEN in patients with gastric carcinomas and its impact on PI3K/AKT pathway. Oncol. Rep. 2010, 24, 89–95. [Google Scholar] [PubMed]
- Polom, K.; Das, K.; Marrelli, D.; Roviello, G.; Pascale, V.; Voglino, C.; Rho, H.; Tan, P.; Roviello, F. KRAS Mutation in Gastric Cancer and Prognostication Associated with Microsatellite Instability Status. Pathol. Oncol. Res. 2019, 25, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, S.; Aoyagi, K.; Yokozaki, H.; Sasaki, H. Regulation of CTNNB1 signaling in gastric cancer and stem cells. World J. Gastrointest. Oncol. 2016, 8, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Cen, S.; Liu, Z.; Pan, H.; Han, W. Clinicopathologic features and treatment advances in cancers with HER2 alterations. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, J.; Li, Y.; Yan, H.; Xie, J.; Wang, J.; Zhao, B. Global burden, risk factors, clinicopathological characteristics, molecular biomarkers and outcomes of microsatellite instability-high gastric cancer. Aging 2024, 16, 948–963. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; He, X.; Liu, X.; Yu, J.; Zhang, M.; Yu, F.; Wang, Y. RPS15A promotes gastric cancer progression via activation of the Akt/IKK-β/NF-κB signalling pathway. J. Cell Mol. Med. 2019, 23, 2207–2218. [Google Scholar] [CrossRef]
- Zu, L.D.; Peng, X.C.; Zeng, Z.; Wang, J.L.; Meng, L.L.; Shen, W.W.; Hu, C.T.; Yang, Y.; Fu, G.H. Gastrin inhibits gastric cancer progression through activating the ERK-P65-miR23a/27a/24 axis. J. Exp. Clin. Cancer Res. 2018, 37, 115. [Google Scholar] [CrossRef]
Indicator | n (%) |
---|---|
cT | |
cT2 | 2 (9.5%) |
cT3 | 12 (57.2%) |
cT4 | 7 (33.3%) |
cN | |
cN0 | 11 (51.7) |
cN1 | 6 (28.6%) |
cN2 | 4 (19.7%) |
pT | |
pT0 | 6 (28.6%) |
pT1 | 5 (23.8%) |
pT2 | 3 (14.2%) |
pT4 | 7 (33.3%) |
pN | |
pN0 | 17 (81.0%) |
pN1 | 2 (9.5%) |
pN2 | 2 (9.5%) |
Response to treatment | |
Regression | 14 (66.6%) |
Stabilization | 7 (33.4) |
Targeted sequencing | |
No significant genetic markers associated with response to therapy or tumor phenotype | 6 (33.3%) |
2 full regressions (33.3%) | |
4 partial regressions (66.7%) | |
Availability of markers | 15 (66.7%) |
Tumor Regression | n (%) | Stabilization | n (%) |
---|---|---|---|
7 (50.0%)—0 mutations | 8 (53.0%)—0 mutations | ||
7 (50.0%)—9 mutations | 7 (47.0%)—11 mutations | ||
χ2, p > 0.05 | |||
Distribution of mutations associated with treatment response | KRAS mutation (chr12:g.25398284C>T)—0.0% | Distribution of mutations associated with treatment response | KRAS mutation (chr12:g.25398284C>T)—9.0% |
PIK3CA mutation (chr3:g.178952085A>G chr3:g.178936091G>A)—22.2% | PIK3CA mutation (chr3:g.178952085A>G chr3:g.178936091G>A)—18.2% | ||
Distribution of mutations associated with phenotype | TP53 mutation—44.4% | Distribution of mutations associated with phenotype | TP53 mutation—27.3% |
PIK3C mutation—0.0% | PI3K mutation—9.0% | ||
PTEN mutation—11.1% | PTEN mutation—9.0% | ||
ERBB mutation—11.1% | ERBB mutation—0.0% | ||
MAPK mutation—11.1% | MAPK mutation—0.0% | ||
SMAD4 mutation—0.0% | SMAD4 mutation—0.0% | ||
χ2, p < 0.05 |
HER2 Status | n (%) | PD-L1 Status | n (%) | ||
---|---|---|---|---|---|
17 (81.0%)—negative status | 16 (76.0%)—negative status | ||||
4 (19.0%)—positive status | 5 (24.0%)—positive status | ||||
χ2, p > 0.05 | |||||
Distribution of mutations associated with treatment response | positive status | negative status | Distribution of mutations associated with treatment response | positive status | negative status |
KRAS (chr12:g.25398284C>T)—0 (0%) | KRAS (chr12:g.25398284C>T)—1 (7.2%) | KRAS—1 (20.0%) (chr12:g.25398284C>T) | KRAS (chr12:g.25398284C>T)—0 (0.0%) | ||
PI3KCA mutation (chr3:g.178952085A>G chr3:g.178936091G>A)—0 (0.0%) | mutation PIK3C (chr3:g.178952085A>G chr3:g.178936091G>A)—4 (28.5%) | PI3KCA (chr3:g.178952085A>G chr3:g.178936091G>A)—0 (0%) | PI3KCA (chr3:g.178952085A>G chr3:g.178936091G>A)—3 (23.0%) | ||
Distribution of mutations associated with phenotype | TP53—2 (50.0%) | TP53—5 (35.5%) | Distribution of mutations associated with phenotype | TP53—1 (20%) | TP53—7 (53.9%) |
PIK3CA—0 (0.0%) | PIK3CA—1 (7.2%) | PIK3CA—1 (20%) | PIK3CA—1 (7.7%) | ||
PTEN—0 (0.0%) | PTEN—2 (14.4%) | PTEN—1 (20%) | PTEN—1 (7.7%) | ||
ERBB—0 (0.0%) | ERBB—1 (7.2%) | ERBB—1 (20%) | ERBB—1 (7.7%) | ||
χ2, p < 0.05 | χ2, p < 0.05 |
Mutations Associated with Treatment Response | Mutations Associated with Phenotype | |||||||
---|---|---|---|---|---|---|---|---|
Mutation PIK3CA | Mutation TP53 | Mutation PIK3CA | Mutation PTEN | |||||
Mutation-Free, n = 17 | Have Mutations, n = 4 | Mutation-Free, n = 13 | Has a Mutation, n = 8 | Mutation-Free, n = 18 | Has a Mutation, n = 3 | Mutation-Free, n = 18 | Has a Mutation, n = 3 | |
4EBP1, Relative Unit | 0.5 (0.24; 9.25) | 14.50 (0.27; 18.18) | 0.50 (0.24; 9.25) | 0.86 (0.25; 4.46) | 0.80 (0.27; 4.56) | 0.32 (0.18; 4.00) | 0.80 (0.27; 4.35) | 0.32 (0.18; 14.50) |
AKT, Relative Unit | 0.63 (0.48; 65.08) | 3.10 (0.60; 20.00) | 0.63 (0.48; 65.08) | 1.83 (0.46; 3.51) | 0.99 (0.50; 3.10) | 0.66 (0.18; 128.00) | 0.66 (0.50; 2.64) | 128.00 (0.18; 200.00) |
c-RAF Relative Unit | 0.73 (0.22; 1.30) | 1.00 (0.24; 1.88) | 0.73 (0.22; 1.30) | 1.14 (0.54; 1.78) | 1.00 (0.41; 1.42) | 0.13 (0.12; 1.44) | 0.88 (0.30; 1.27) | 1.44 (0.13; 1.88) |
GSK-3β Relative Unit | 0.69 (0.18; 4.17) | 0.97 (0.13; 16.39) | 0.69 (0.18; 4.17) | 0.86 (0.16; 2.00) | 0.79 (0.18; 1.74) | 0.23 (0.01; 512.00) | 0.75 (0.18; 1.19) | 16.39 (0.01; 512.00) |
70S 6 kinase, Relative Unit | 1.03 (0.48; 1.34) | 0.98 (0.47; 2.40) | 1.03 (0.48; 1.34) | 0.96 (0.33; 2.25) | 1.07 (0.54; 1.87) | 0.27 (0.13; 1.44) | 0.98 (0.47; 1.38) | 1.44 (0.13; 2.40) |
m-TOR, Relative Unit | 1.13 (0.60; 1.92) | 1.32 (0.50; 3.95) | 1.13 (0.60; 1.92) | 1.43 (0.17; 5.12) | 1.11 (0.50; 1.84) | 2.00 (1.15; 47158.39) | 1.11 (0.50; 1.53) | 3.95 (2.00; 47.39) ## |
PDK1, Relative Unit | 0.84 (0.14; 2.42) | 2.20 (0.25; 4.55) | 0.84 (0.14; 2.42) | 1.06 (0.47; 2.10) | 1.24 (0.76; 2.20) | 0.03 (0.01; 0.71) | 0.93 (0.71; 2.01) | 0.03 (0.01; 4.55) |
PTEN, Relative Unit | 0.44 (0.13; 2.82) | 3.97 (0.16; 8.00) | 0.44 (0.13; 2.82) | 0.17 (0.01; 3.21) | 0.54 (0.16; 3.73) | 0.01 (0.01; 0.33) | 0.33 (0.16; 2.69) | 0.01 (0.01; 3.97) |
NF-kB p65, Relative Unit | 0.28 (0.11; 1.06) | 1.37 (0.13; 1.53) | 0.28 (0.11; 1.06) | 0.78 (0.12; 1.90) | 0.73 (0.13; 1.44) | 0.0028 (0.00; 0.29) # | 0.33 (0.13; 1.44) | 0.0028 (0.00; 1.37) |
NF-kB p50, Relative Unit | 1.21 (0.25; 6.85) | 5.70 (0.16; 8.00) | 1.21 (0.25; 6.85) | 0.60 (0.13; 4.56) | 1.00 (0.19; 5.70) | 0.38 (0.13; 23579.19) | 0.68 (0.19; 2.95) | 5.70 (0.13; 23.19) |
VEGFR2, Уcл. Eд. | 0.74 (0.12; 2.33) | 2.00 (1.07; 2.21) | 0.74 (0.12; 2.33) | 2.11 (1.26; 4.27000 **) | 1.73 (0.46; 2.65) | 0.06 (0.00; 3.48) | 2.00 (0.46; 3.48) | 0.06 (0.00; 1.07) ## |
VEGF, Relative Unit | 0.99 (0.37; 1.84) | 1.04 (0.91; 4.48) | 0.99 (0.37; 1.84) | 0.46 (0.02; 6.11) | 0.88 (0.03; 1.71) | 0.93 (0.01; 2.00) | 0.88 (0.03; 1.09) | 2.00 (0.01; 4.48) |
CAIX, Relative Unit | 0.64 (0.20; 6.44) | 4.00 (0.19; 8.88) | 0.64 (0.20; 6.44) | 0.36 (0.23; 2.60) | 0.47 (0.20; 4.00) | 0.35 (0.19; 11.51) | 0.37 (0.20; 2.44) | 8.88 (0.19; 11.51) |
HIF-1, Relative Unit | 0.88 (0.27; 14.01) | 7.59 (0.13; 23.63) | 0.88 (0.27; 14.01) | 0.98 (0.08; 1.45) | 0.96 (0.13; 7.59) | 0.72 (0.03; 2.30) | 0.96 (0.13; 2.30) | 0.72 (0.03; 23.63) |
HIF-2, Relative Unit | 0.43 (0.11; 2.37) | 1.13 (0.13; 4.51) | 0.43 (0.11; 2.37) | 0.66 (0.09; 2.77) | 0.61 (0.09; 3.36) | 0.36 (0.20; 0.50) | 0.20 (0.09; 2.17) | 0.50 (0.36; 4.51) |
VHL, Relative Unit | 0.55 (0.21; 1.26) | 0.25 (0.24; 6.00) | 0.55 (0.21; 1.26) | 0.19 (0.05; 1.12) | 0.38 (0.12; 1.36) | 0.36 (0.16; 1.15) | 0.38 (0.12; 1.15) | 0.36 (0.16; 6.00) |
PD-1, Relative Unit | 0.75 (0.29; 1.95) | 2.58 (0.92; 32.00 *) | 0.75 (0.29; 1.95) | 0.38 (0.06; 1.04) | 0.68 (0.07; 1.15) | 0.50 (0.18; 1.32) | 0.68 (0.07; 1.15) | 0.50 (0.18; 2.58) |
PD-L1, Relative Unit | 0.44 (0.33; 0.93) | 3.87 (0.50; 7.79) | 0.44 (0.33; 0.93) | 2.21 (0.58; 5.66) | 0.84 (0.35; 3.01) | 0.53 (0.06; 0.81) | 0.81 (0.35; 1.41) | 0.53 (0.06; 7.79) |
PD-L2, Relative Unit | 0.37 (0.22; 1.05) | 3.47 (0.25; 5.47) | 0.37 (0.22; 1.05) | 0.78 (0.38; 11.96) | 0.60 (0.33; 2.46) | 0.18 (0.13; 2.14) | 0.60 (0.33; 1.79) | 0.18 (0.13; 5.47) |
AMPK, Relative Unit | 0.68 (0.19; 1.67) | 1.27 (0.47; 4.00) | 0.68 (0.19; 1.67) | 1.29 (0.30; 1.66) | 1.21 (0.47; 1.87) | 0.29 (0.09; 1.44) | 1.21 (0.29; 1.87) | 0.47 (0.09; 1.44) |
LC3B, Relative Unit | 0.57 (0.16; 4.95) | 1.89 (0.12; 8.00) | 0.57 (0.16; 4.95) | 0.38 (0.10; 3.23) | 0.60 (0.12; 3.97) | 0.18 (0.13; 0.30) | 0.50 (0.12; 3.97) | 0.18 (0.13; 1.89) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spirina, L.V.; Avgustinovich, A.V.; Bakina, O.V.; Afanas’ev, S.G.; Volkov, M.Y.; Vtorushin, S.V.; Kovaleva, I.V.; Klyushina, T.S.; Munkuev, I.O. Targeted Sequencing in Gastric Cancer: Association with Tumor Molecular Characteristics and FLOT Therapy Effectiveness. Curr. Issues Mol. Biol. 2024, 46, 1281-1290. https://doi.org/10.3390/cimb46020081
Spirina LV, Avgustinovich AV, Bakina OV, Afanas’ev SG, Volkov MY, Vtorushin SV, Kovaleva IV, Klyushina TS, Munkuev IO. Targeted Sequencing in Gastric Cancer: Association with Tumor Molecular Characteristics and FLOT Therapy Effectiveness. Current Issues in Molecular Biology. 2024; 46(2):1281-1290. https://doi.org/10.3390/cimb46020081
Chicago/Turabian StyleSpirina, Liudmila V., Alexandra V. Avgustinovich, Olga V. Bakina, Sergey G. Afanas’ev, Maxim Yu. Volkov, Sergey V. Vtorushin, Irina V. Kovaleva, Tatyana S. Klyushina, and Igor O. Munkuev. 2024. "Targeted Sequencing in Gastric Cancer: Association with Tumor Molecular Characteristics and FLOT Therapy Effectiveness" Current Issues in Molecular Biology 46, no. 2: 1281-1290. https://doi.org/10.3390/cimb46020081
APA StyleSpirina, L. V., Avgustinovich, A. V., Bakina, O. V., Afanas’ev, S. G., Volkov, M. Y., Vtorushin, S. V., Kovaleva, I. V., Klyushina, T. S., & Munkuev, I. O. (2024). Targeted Sequencing in Gastric Cancer: Association with Tumor Molecular Characteristics and FLOT Therapy Effectiveness. Current Issues in Molecular Biology, 46(2), 1281-1290. https://doi.org/10.3390/cimb46020081