Inhibition of Glial Activation and Subsequent Reduction in White Matter Damage through Supplementation with a Combined Extract of Wheat Bran, Citrus Peel, and Jujube in a Rat Model of Vascular Dementia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of WCJ
2.2. Measurement of Phytic Acid Contents
2.3. Cell Culture
2.4. Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick End-Labeling (TUNEL) Staining
2.5. Western Blotting
2.6. Animals
2.7. Diet Preparation
2.8. Diet Administration
2.9. Surgical Procedures for BCCAO
2.10. Assessment of the Pupillary Light Reflex (PLR)
2.11. Luxol Fast Blue Staining
2.12. Immunohistochemical Staining
2.13. Statistical Analyses
3. Results
3.1. Optimization of Ingredient Ratios to Prepare WCJ
3.2. Phytic Acid Content in WCJ
3.3. Improvement in Cell Survival through WCJ Treatment by Apoptosis Inhibition under Hypoxic Conditions
3.4. Reduction in PLR Loss through WCJ Supplementation
3.5. Reduction in White Matter Damage in the CC and OPT through WCJ Supplementation
3.6. Reduction in Astrocytic Activation through WCJ Supplementation
3.7. Reduction in Microglial Activation through WCJ Supplementation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, A.; Kalaria, R.N.; Corbett, A.; Ballard, C. Update on Vascular Dementia. J. Geriatr. Psychiatry Neurol. 2016, 29, 281–301. [Google Scholar] [CrossRef] [PubMed]
- Venkat, P.; Chopp, M.; Chen, J. Models and mechanisms of vascular dementia. Exp. Neurol. 2015, 272, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Giordano, J.; Signorile, A.; Laura Ontario, M.; Castorina, S.; De Pasquale, C.; Eckert, G.; Calabrese, E.J. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J. Neurosci. Res. 2016, 94, 1588–1603. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C. The pathobiology of vascular dementia. Neuron 2013, 80, 844–866. [Google Scholar] [CrossRef]
- Kalaria, R.N. The pathology and pathophysiology of vascular dementia. Neuropharmacology 2018, 134, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Zheng, J.; Mei, B.; Wang, H.Y.; Zheng, M.; Zheng, K. Correlation study of Framingham risk score and vascular dementia: An observational study. Medicine 2017, 96, e8387. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Zhang, J.; Huang, L.; Niu, Y.; Chen, H.; Liu, Q.; Wang, R. Oligodendrocytes Play a Critical Role in White Matter Damage of Vascular Dementia. Neuroscience 2023, 538, 1–10. [Google Scholar] [CrossRef]
- Duncombe, J.; Kitamura, A.; Hase, Y.; Ihara, M.; Kalaria, R.N.; Horsburgh, K. Chronic cerebral hypoperfusion: A key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin. Sci. 2017, 131, 2451–2468. [Google Scholar] [CrossRef]
- Stevens, W.D.; Fortin, T.; Pappas, B.A. Retinal and optic nerve degeneration after chronic carotid ligation: Time course and role of light exposure. Stroke 2002, 33, 1107–1112. [Google Scholar] [CrossRef]
- Farkas, E.; Luiten, P.G.; Bari, F. Permanent, bilateral common carotid artery occlusion in the rat: A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res. Rev. 2007, 54, 162–180. [Google Scholar] [CrossRef]
- Lim, S.H.; Lee, J. Hot water extract of wheat bran attenuates white matter injury in a rat model of vascular dementia. Prev. Nutr. Food Sci. 2014, 19, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Lee, J.; Park, S.; Jung, E.; Lim, S.; Jang, J.; Chae, S.; Ko, M. Wheat bran improves cognition in older adults with memory impairment: A randomized controlled trial. Int. J. Pharmacol. 2018, 14, 922–928. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, H.W.; Jun, J.H.; Ko, B.S. Effects of Herbal Medicine (Gan Mai Da Zao Decoction) on Several Types of Neuropsychiatric Disorders in an Animal Model: A Systematic Review: Herbal medicine for animal studies of neuropsychiatric diseases. J. Pharmacopunct. 2017, 20, 5–9. [Google Scholar] [CrossRef]
- Yeung, W.F.; Chung, K.F.; Ng, K.Y.; Yu, Y.M.; Ziea, E.T.; Ng, B.F. A meta-analysis of the efficacy and safety of traditional Chinese medicine formula Ganmai Dazao decoction for depression. J. Ethnopharmacol. 2014, 153, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Nazari, S.; Rameshrad, M.; Hosseinzadeh, H. Toxicological Effects of Glycyrrhiza glabra (Licorice): A Review. Phytother. Res. 2017, 31, 1635–1650. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Hwang, Y.H.; Choi, J.G.; Ma, J.Y. In vitro and in vivo evaluation of systemic and genetic toxicity of Citrus unshiu peel. J. Ethnopharmacol. 2018, 215, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tomata, Y.; Sugiyama, K.; Sugawara, Y.; Tsuji, I. Citrus consumption and incident dementia in elderly Japanese: The Ohsaki Cohort 2006 Study. Br. J. Nutr. 2017, 117, 1174–1180. [Google Scholar] [CrossRef]
- Yang, E.J.; Lim, S.H.; Song, K.S.; Han, H.S.; Lee, J. Identification of active compounds from Aurantii Immatri Pericarpium attenuating brain injury in a rat model of ischemia-reperfusion. Food Chem. 2013, 138, 663–670. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Li, Z.; Qi, A.; Yao, P.; Zhou, Z.; Dong, T.T.X.; Tsim, K.W.K. A Review of Dietary Ziziphus jujuba Fruit (Jujube): Developing Health Food Supplements for Brain Protection. Evid.-Based Complement. Altern. Med. 2017, 2017, 3019568. [Google Scholar] [CrossRef]
- Weremfo, A.; Abassah-Oppong, S.; Adulley, F.; Dabie, K.; Seidu-Larry, S. Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources. J. Sci. Food Agric. 2023, 103, 26–36. [Google Scholar] [CrossRef]
- Coyle, D.E. Adaptation of C6 glioma cells to serum-free conditions leads to the expression of a mixed astrocyte-oligodendrocyte phenotype and increased production of neurite-promoting activity. J. Neurosci. Res. 1995, 41, 374–385. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frolich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53 (Suppl. S2), S330–S375. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Lee, J. Protection of the brain through supplementation with larch arabinogalactan in a rat model of vascular dementia. Nutr. Res. Pract. 2017, 11, 381–387. [Google Scholar] [CrossRef] [PubMed]
- McKie, V.A.; McCleary, B.A. A Novel and Rapid Colorimetric Method for Measuring Total Phosphorus and Phytic Acid in Foods and Animal Feeds. J. AOAC Int. 2016, 99, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Majtnerova, P.; Rousar, T. An overview of apoptosis assays detecting DNA fragmentation. Mol. Biol. Rep. 2018, 45, 1469–1478. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Kim, C.Y.; Lim, S.H.; Yang, C.H.; Song, K.S.; Han, H.S.; Lee, H.K.; Lee, J. Neuroprotective effects of Triticum aestivum L. against beta-amyloid-induced cell death and memory impairments. Phytother. Res. 2010, 24, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Lee, J. Xyloglucan intake attenuates myocardial injury by inhibiting apoptosis and improving energy metabolism in a rat model of myocardial infarction. Nutr. Res. 2017, 45, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.N.; Berry, M.; Logan, A.; Blanch, R.J.; Ahmed, Z. Caspases in retinal ganglion cell death and axon regeneration. Cell Death Discov. 2017, 3, 17032. [Google Scholar] [CrossRef]
- Kim, S.K.; Cho, K.O.; Kim, S.Y. White Matter Damage and Hippocampal Neurodegeneration Induced by Permanent Bilateral Occlusion of Common Carotid Artery in the Rat: Comparison between Wistar and Sprague-Dawley Strain. Korean J. Physiol. Pharmacol. 2008, 12, 89–94. [Google Scholar] [CrossRef]
- Wakita, H.; Tomimoto, H.; Akiguchi, I.; Kimura, J. Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: An immunohistochemical study. Acta Neuropathol. 1994, 87, 484–492. [Google Scholar] [CrossRef]
- Saggu, R.; Schumacher, T.; Gerich, F.; Rakers, C.; Tai, K.; Delekate, A.; Petzold, G.C. Astroglial NF-κB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol. Commun. 2016, 4, 76. [Google Scholar] [CrossRef]
- Du, S.Q.; Wang, X.R.; Xiao, L.Y.; Tu, J.F.; Zhu, W.; He, T.; Liu, C.Z. Molecular Mechanisms of Vascular Dementia: What Can Be Learned from Animal Models of Chronic Cerebral Hypoperfusion? Mol. Neurobiol. 2017, 54, 3670–3682. [Google Scholar] [CrossRef]
- Rathnasamy, G.; Murugan, M.; Ling, E.A.; Kaur, C. Hypoxia-Induced Iron Accumulation in Oligodendrocytes Mediates Apoptosis by Eliciting Endoplasmic Reticulum Stress. Mol. Neurobiol. 2016, 53, 4713–4727. [Google Scholar] [CrossRef]
- Li, C.; Guan, T.; Chen, X.; Li, W.; Cai, Q.; Niu, J.; Xiao, L.; Kong, J. BNIP3 mediates pre-myelinating oligodendrocyte cell death in hypoxia and ischemia. J. Neurochem. 2013, 127, 426–433. [Google Scholar] [CrossRef]
- Degraeve, B.; Sequeira, H.; Mecheri, H.; Lenne, B. Corpus callosum damage to account for cognitive, affective, and social-cognitive dysfunctions in multiple sclerosis: A model of callosal disconnection syndrome? Mult. Scler. 2023, 29, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bai, L.; Liu, Q.; Wang, S.; Sun, C.; Zhang, M.; Zhang, Y. Corpus callosum integrity loss predicts cognitive impairment in Leukoaraiosis. Ann. Clin. Transl. Neurol. 2020, 7, 2409–2420. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.Y.; Li, H.; Hwang, I.K.; Choi, J.H.; Lee, C.H.; Kwon, D.Y.; Ryu, S.Y.; Kim, Y.S.; Kang, I.J.; Shin, H.C.; et al. Zizyphus attenuates ischemic damage in the gerbil hippocampus via its antioxidant effect. J. Med. Food 2010, 13, 557–563. [Google Scholar] [CrossRef]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Rudjito, R.C.; Jimenez-Quero, A.; Munoz, M.; Kuil, T.; Olsson, L.; Stringer, M.A.; Krogh, K.; Eklof, J.; Vilaplana, F. Arabinoxylan source and xylanase specificity influence the production of oligosaccharides with prebiotic potential. Carbohydr. Polym. 2023, 320, 121233. [Google Scholar] [CrossRef]
- Han, H.S.; Jang, J.H.; Jang, J.H.; Choi, J.S.; Kim, Y.J.; Lee, C.; Lim, S.H.; Lee, H.K.; Lee, J. Water extract of Triticum aestivum L. and its components demonstrate protective effect in a model of vascular dementia. J. Med. Food 2010, 13, 572–578. [Google Scholar] [CrossRef]
- Boudaoud, S.; Sicard, D.; Suc, L.; Conejero, G.; Segond, D.; Aouf, C. Ferulic acid content variation from wheat to bread. Food Sci. Nutr. 2021, 9, 2446–2457. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, H.P.; Zhang, J.; Wang, J.; Yang, W.L.; Yang, M.; Liao, Z.G. Effect of ferulic acid on learning and memory impairments of vascular dementia rats and its mechanism of action. Yao Xue Xue Bao 2012, 47, 256–260. [Google Scholar]
- Zdunek, A.; Pieczywek, P.M.; Cybulska, J. The primary, secondary, and structures of higher levels of pectin polysaccharides. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1101–1117. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, N.N.; Wang, D.; Meng, W.H.; Chen, H.S. Modified Citrus Pectin Alleviates Cerebral Ischemia/Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation via TLR4/NF-κB Signaling Pathway in Microglia. J. Inflamm. Res. 2022, 15, 3369–3385. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Shioda, N.; Han, F.; Moriguchi, S.; Nakajima, A.; Yokosuka, A.; Mimaki, Y.; Sashida, Y.; Yamakuni, T.; Ohizumi, Y.; et al. Nobiletin improves brain ischemia-induced learning and memory deficits through stimulation of CaMKII and CREB phosphorylation. Brain Res. 2009, 1295, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Han, Y.; Kennedy, J.F.; Jiang, H.; Cao, H.; Zhang, Y.; Wang, T. A review on polysaccharides from jujube and their pharmacological activities. Carbohydr. Polym. Technol. Appl. 2022, 3, 100220. [Google Scholar] [CrossRef]
- Xue, X.; Zhao, A.; Wang, Y.; Ren, H.; Du, J.; Li, D.; Li, Y. Composition and content of phenolic acids and flavonoids among the different varieties, development stages, and tissues of Chinese Jujube (Ziziphus jujuba Mill). PLoS ONE 2021, 16, e0254058. [Google Scholar] [CrossRef] [PubMed]
- Shindo, A.; Liang, A.C.; Maki, T.; Miyamoto, N.; Tomimoto, H.; Lo, E.H.; Arai, K. Subcortical ischemic vascular disease: Roles of oligodendrocyte function in experimental models of subcortical white-matter injury. J. Cereb. Blood Flow Metab. 2016, 36, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Mendis, M.; Leclerc, E.; Simsek, S. Arabinoxylans, gut microbiota and immunity. Carbohydr. Polym. 2016, 139, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Beukema, M.; Faas, M.M.; de Vos, P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: Impact via gut microbiota and direct effects on immune cells. Exp. Mol. Med. 2020, 52, 1364–1376. [Google Scholar] [CrossRef]
- Adam, A.; Crespy, V.; Levrat-Verny, M.A.; Leenhardt, F.; Leuillet, M.; Demigne, C.; Remesy, C. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J. Nutr. 2002, 132, 1962–1968. [Google Scholar] [CrossRef]
- Manthey, J.A.; Cesar, T.B.; Jackson, E.; Mertens-Talcott, S. Pharmacokinetic study of nobiletin and tangeretin in rat serum by high-performance liquid chromatography-electrospray ionization-mass spectrometry. J. Agric. Food Chem. 2011, 59, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Linh, T.T.D.; Hsieh, Y.C.; Huang, L.K.; Hu, C.J. Clinical Trials of New Drugs for Vascular Cognitive Impairment and Vascular Dementia. Int. J. Mol. Sci. 2022, 23, 11067. [Google Scholar] [CrossRef] [PubMed]
- Filley, C.M. White matter dementia. Ther. Adv. Neurol. Disord. 2012, 5, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Micu, I.; Plemel, J.R.; Caprariello, A.V.; Nave, K.A.; Stys, P.K. Axo-myelinic neurotransmission: A novel mode of cell signalling in the central nervous system. Nat. Rev. Neurosci. 2018, 19, 49–58. [Google Scholar] [CrossRef]
- Alix, J.J.; Domingues, A.M. White matter synapses: Form, function, and dysfunction. Neurology 2011, 76, 397–404. [Google Scholar] [CrossRef]
Wheat Bran | WBE | Citrus | Citrus Extract | Jujube | Jujube Extract | WCJ | |
---|---|---|---|---|---|---|---|
Content (%) a | 3.5 ± 0.17 | 5.2 ± 0.21 | 0.059 | 0.049 ± 0.014 | 0.051 | 0.10 ± 0.10 | 2.2 ± 0.14 |
Trial numbers | 2 | 3 | 1 | 2 | 1 | 2 | 2 |
Sham | Control | WCJ 100 mg/kg | WCJ 400 mg/kg | p-Value | |
---|---|---|---|---|---|
Loss of PLR | 0 (0%) a | 5 (83%) | 3 (50%) | 1 (17%) | 0.015 |
Normal PLR | 6 (100%) | 1 (17%) | 3 (50%) | 5 (83%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.H.; Lim, S.-H.; Hwang, J.H.; Lee, J. Inhibition of Glial Activation and Subsequent Reduction in White Matter Damage through Supplementation with a Combined Extract of Wheat Bran, Citrus Peel, and Jujube in a Rat Model of Vascular Dementia. Curr. Issues Mol. Biol. 2024, 46, 1485-1502. https://doi.org/10.3390/cimb46020096
Kim KH, Lim S-H, Hwang JH, Lee J. Inhibition of Glial Activation and Subsequent Reduction in White Matter Damage through Supplementation with a Combined Extract of Wheat Bran, Citrus Peel, and Jujube in a Rat Model of Vascular Dementia. Current Issues in Molecular Biology. 2024; 46(2):1485-1502. https://doi.org/10.3390/cimb46020096
Chicago/Turabian StyleKim, Ki Hong, Sun-Ha Lim, Jeong Hyun Hwang, and Jongwon Lee. 2024. "Inhibition of Glial Activation and Subsequent Reduction in White Matter Damage through Supplementation with a Combined Extract of Wheat Bran, Citrus Peel, and Jujube in a Rat Model of Vascular Dementia" Current Issues in Molecular Biology 46, no. 2: 1485-1502. https://doi.org/10.3390/cimb46020096
APA StyleKim, K. H., Lim, S. -H., Hwang, J. H., & Lee, J. (2024). Inhibition of Glial Activation and Subsequent Reduction in White Matter Damage through Supplementation with a Combined Extract of Wheat Bran, Citrus Peel, and Jujube in a Rat Model of Vascular Dementia. Current Issues in Molecular Biology, 46(2), 1485-1502. https://doi.org/10.3390/cimb46020096