Study on Chemical Composition and Biological Activity of Psidium guajava Leaf Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Extraction Conditions
2.2. Chromatic Analysis
2.3. GC-MS Active Molecule Analysis
2.4. Quantitative Analysis of Polyphenols and Flavonoids by LC-MS
2.5. Free Radical Scavenging Ability Assay (DPPH Method)
2.6. Antimicrobial Activity Measurement (Disc Diffusion Method)
2.7. Measurement of Ability to Remove Odor of Elderly People (Fehling Reaction)
2.8. Tyrosinase Inhibition Activity Assay
2.9. Collagenase Inhibition Activity Assay
2.10. Statistical Processing
3. Results and Discussion
3.1. Guava Leaf Extract Yield
3.2. Colorimeter Measurement Results
3.3. GC-MS Active Molecule Analysis Results
3.4. Polyphenol and Flavonoid LC-MS Quantitative Analysis Results
3.5. Measurement of Free Radical Erasure Capability (DPPH Method) Results
3.6. Antimicrobial Activity Measurement (Disc Diffusion Method) Results
3.7. Measurement of Ability to Remove Odor of Elderly People (Fehling Reaction) Results
3.8. Tyrosinase Inhibition Activity Assay Results
3.9. Collagenase Inhibition Activity Analysis Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassan, A.; Rahman, S.; Deeba, F.; Mahmud, S. Antimicrobial activity of some plant extracts having hepatoprotective effects. J. Med. Plants Res. 2009, 3, 20–23. [Google Scholar]
- Barbour, E.K.; Sharif, M.A.; Sagherian, V.K.; Habre, A.N.; Talhouk, R.S. Screening of selected indigenous plants of Lebanon for antimicrobial activity. J. Ethnopharmacol. 2004, 93, 1–7. [Google Scholar] [CrossRef]
- Yasunaka, K.; Abe, F.; Nagayama, A.; Okabe, H.; Lozada-Pérez, L.; López Villafranco, E.; Muñiz, E.E.; Aguilar, A.; Reyes-Chilpa, R. Antibacterial activity of crude extracts from Mexican medicinal plants and purifed coumarins and xanthones. J. Ethnopharmacol. 2005, 97, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Rahim, N.; Gomes, D.J.; Watanabe, H.; Rahman, S.R.; Chomvarin, C.; Endtz, H.P.; Alam, M. Antibacterial activity of Psidium guajava leaf and bark against multidrug resistant Vibrio cholerae: Implication for Cholera Control. Jpn. J. Infect. Dis. 2010, 63, 271–274. [Google Scholar] [CrossRef]
- Smith, R.M.; Siwatibau, S. Sesquiterpene hydrocarbons of fijian guavas. Phytochemistry 1975, 14, 2013–2015. [Google Scholar] [CrossRef]
- Boo, H.O.; Hwang, S.J.; Bae, C.S.; Park, S.H.; Song, W.S. Antioxidant Activity According to Each Kind of Natural Plant Pigments. Korean J. Plant Resour. 2011, 24, 105–112. [Google Scholar] [CrossRef]
- Choi, S.M.; Kim, J.H.; Chung, J.S.; Kim, H.Y.; Chang, H.E.; Hwang, S.J.; Hong, S.G. Effect of Aqueous Extract of Guava (Psidium guajava L.) Leaves on the Oral Glucose Tolerance Test and Inhibition of Glycoside Hydrolase. Korean J. Med. Crop Sci. 2012, 20, 94–100. [Google Scholar] [CrossRef]
- Begum, S.; Hassa, S.I.; Siddiqui, B.S.; Shaheen, F.; Ghayur, M.N.; Gilani, A.H. Triterpenoids from the leaves of Psidium guajava. Phytochemistry 2002, 61, 399–403. [Google Scholar] [CrossRef]
- You, S.H. Antioxidant Activity and Whitening activity of Psidium guajava leaf extract. J. Oil Appl. Sci. 2017, 34, 296–304. [Google Scholar]
- Lozoya, X.; Meckes, M.; Abou-Zaid, M.; Tortoriello, J.; Nozzolillo, C.; Arnason, J.T. Calcium-antagonist effect of quercetin and its relation with the spasmolytic properties of Psidium guajava L. Arch. Med. Res. 1994, 25, 17–21. [Google Scholar]
- Jin, Y.J.; Kang, S.H.; Choi, S.Y.; Park, S.Y.; Park, J.G.; Moon, S.W.; Park, D.B.; Kim, S.J. Effect of fermented guava leaf extract on hyperglycemia in low dose streptozotocin-induced diabetic mice. Korea J. Food Sci. Technol. 2006, 38, 679–683. [Google Scholar]
- Chen, H.Y.; Yen, G.C. Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem. 2007, 101, 686–694. [Google Scholar] [CrossRef]
- Jo, Y.H.; Ok, D.L.; Lee, S.C. Antimicrobial Characteristics of Different Parts of Guava against Food-Borne Bacteria. J. Korean Soc. Food Sci. Nutr. 2009, 38, 1773–1778. [Google Scholar] [CrossRef]
- Lee, D.U.; Weon, K.Y.; Nam, D.Y.; Nam, J.H.; Kim, W.K. Skin protective effect of guava leaves against UV-induced melanogenesis via inhibition of ORAI1 channel and tyrosinase activity. Exp. Dermatol. 2016, 25, 977–982. [Google Scholar] [CrossRef] [PubMed]
- You, D.H.; Park, J.W.; Yuk, H.G.; Lee, S.C. Antioxidant and tyrosinase inhibitory activities of different parts of guava (Psidium guajava L. Food Sci. Biotechnol. 2011, 20, 1095–1100. [Google Scholar] [CrossRef]
- Samejima, H.; Park, B.J. Inhibition Activity of Guava (Psidium guajava L.) Leaf Extract against Collagenase, Elastase, Hyaluronidase, and Carbohydrate Digestion Enzymes. J-STAGE 2019, 63, 12–17. [Google Scholar]
- Shin, J.; Kang, Y.; Kim, W. A Study on the Whitening and Anti-Wrinkle Effects of Red Sword Bean Extract in Functional Cosmetics for Skin Care. Eur. J. Eng. Technol. Res. 2022, 7, 44–50. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, W. Characterization Natural Chamaecyparis Obtusa Leaf Extract to Remove Senile Body Odor. Lond. J. Res. Sci. 2021, 21, 1–14. [Google Scholar]
- Jing, X.; Kang, Y.; Shin, J.; Kim, W. A Study on the Effect of Whitening, Wrinkle Improvement, and Trans-2-nonenal Removal of Wheat Germ Hydrothermal Extract. Lond. J. Eng. Res. 2022, 22, 1–12. [Google Scholar]
- Blois, M.S. Antioxidant determinations by use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Shinichiro, H.; Yoko, G.; Shoji, N.; Yoshiyuki, K.; Kiyohito, S.; Hideaki, O. 2-Nonenal newly found in human body odor tends to increase with aging. J. Investig. Dermatol. 2001, 116, 520–524. [Google Scholar]
- Arora, J.S.; Sing, J.R. Responses of Guava (Psidium guajava L.) to Boron Spray’s. J-STAGE 1972, 41, 239–244. [Google Scholar]
- Lone, Z.A.; Jain, N.K. Phytochemical screening of guava (Psidium guavajava L.) leaf extract and its medicinal importance. Int. J. Innov. Eng. Res. Manag. 2022, 9, 7–12. [Google Scholar]
- Yagi, A.; Kanbara, T.; Morinobu, N. The effect of tyrosinase inhibition for aloe extracts. Planta Medica 1987, 63, 515–517. [Google Scholar] [CrossRef]
- Masamoto, Y.; Ando, H.; Murata, Y.; Shimoishi, Y.; Tada, M.; Takahata, K. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Biosci. Biotechnol. Biochem. 2003, 67, 631–634. [Google Scholar] [CrossRef]
- Hong, K.H.; Choi, W.H.; Ahn, J.; Jung, C.H.; Ha, T.Y. Physicochemical properties of ethanol extracts and dietary fiber from Cassia tora L. seed. Korean J. Food. Nutr. 2012, 25, 612–619. [Google Scholar] [CrossRef]
- Lee, Y.M.; Shin, H.D.; Lee, J.J.; Lee, M.Y. Antioxidative effect of Chaenomelis Fructus ethanol extract. Korean J. Food Preserv. 2007, 14, 177–182. [Google Scholar]
- Park, S.A.; Ha, J.H.; Park, S.N. Antioxidative activity and component analysis of Broussonetia kazinoki SIEB extracts. Appl. Chem. Eng. 2013, 24, 177–183. [Google Scholar]
- Yun, C.Y.; Kim, D.C.; Lee, W.H.; Park, Y.M.; Lee, S.H.; Na, M.K. Torilin from Torilis japonica Inhibits Melanin Production in α-Melanocyte Stimulating Hormone-Activated B16 Melanoma Cells. Planta Medica 2009, 75, 1505–1508. [Google Scholar] [CrossRef]
- Park, M.K.; Joo, S.Y. Comparison of antioxidant activities of sea buckthorn (Hippophae rhamnoides) leaf extracts at different ethanol ratios. Korean J. Food Sci. Technol. 2021, 53, 55–62. [Google Scholar]
- Choi, S.Y.; Lim, S.H.; Kim, J.S.; Ha, T.Y.; Kim, S.R. Evaluation of the estrogenic and antioxidant activity of some edibe and medicinal plants. Korean J. Food Sci. Technol. 2005, 37, 549–556. [Google Scholar]
- Fransworth, N.R.; Bunyapraphatsara, N. Thia Medicinal Plants Recommended for Primary Health Care in Thailand; Mahidol University: Bangkok, Thailand, 1990; pp. 202–207. [Google Scholar]
Sample Name | Water and Ethanol (%) | After Decompression (g) | After Enrichment (g) | Yield (%) | |
---|---|---|---|---|---|
A | 70 | 30 | 312 | 112 | 35.8 ± 1.63 a |
B | 50 | 50 | 356 | 91.9 | 25.8 ± 2.54 b |
C | 30 | 70 | 443 | 75.9 | 17.1 ± 1.54 c |
No. | A (30% Ethanol Extract) | B (50% Ethanol Extract) | C (70% Ethanol Extract) |
---|---|---|---|
L* (Brightness) | 20.9 ± 0.56 a | 17.7 ± 0.15 b | 11.8 ± 0.25 c |
a* (Redness) | 11.8 ± 0.40 e | 8.41 ± 0.06 f | 3.20 ± 0.15 h |
b* (Yellowness) | 14.5 ± 0.25 d | 8.41 ± 0.08 g | 2.12 ± 0.09 i |
Retention Time (RT) | Name of the Compound | Area Peak (%) |
---|---|---|
5.190 | Octane | 10.1 |
6.147 | 2,4-Dimethyl-1-heptene | 4.45 |
22.97 | 1-Octadecene | 5.76 |
29.22 | 1-Docosene | 4.49 |
Retention Time (RT) | Name of the Compound | Area Peak (%) |
---|---|---|
5.195 | Octane | 4.79 |
14.80 | Benzene | 1.32 |
17.72 | Caryophyllene | 1.03 |
19.03 | 2,4-Di-tert-butylphenol | 1.13 |
20.27 | Caryophyllene oxide | 2.61 |
22.97 | 1-Octadecene | 4.09 |
29.22 | 1-Docosene | 4.16 |
Retention Time (RT) | Name of the Compound | Area Peak (%) |
---|---|---|
5.194 | Octane | 6.49 |
6.149 | 2,4-Dimethyl-1-heptene | 2.94 |
17.72 | Caryophyllene | 1.18 |
20.27 | Caryophyllene oxide | 2.04 |
21.07 | γ-Muurolene | 1.34 |
21.13 | Copaene | 1.98 |
22.97 | 1-Octadecene | 4.94 |
29.22 | 1-Docosene | 4.32 |
Sample | TPC (μg/mL) | TFC (mg GAE/mL) |
---|---|---|
A (30% ethanol extract) | 122.1 ± 10.5 b | 2.276 ± 1.43 d |
B (50% ethanol extract) | 127.6 ± 12.6 a | 1.944 ± 0.95 e |
C (70% ethanol extract) | 106.1 ± 6.87 c | 1.461 ± 0.86 f |
No. | IC50 (mg/mL) |
---|---|
Control (Ascorbic acid) | 0.01 ± 0.00 a |
A (30% ethanol extract) | 2.70 ± 0.03 d |
B (50% ethanol extract) | 1.80 ± 0.01 c |
C (70% ethanol extract) | 1.40 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Kim, B.; Kang, Y.; Kim, W. Study on Chemical Composition and Biological Activity of Psidium guajava Leaf Extracts. Curr. Issues Mol. Biol. 2024, 46, 2133-2143. https://doi.org/10.3390/cimb46030137
Park H, Kim B, Kang Y, Kim W. Study on Chemical Composition and Biological Activity of Psidium guajava Leaf Extracts. Current Issues in Molecular Biology. 2024; 46(3):2133-2143. https://doi.org/10.3390/cimb46030137
Chicago/Turabian StylePark, Hyonam, Bohee Kim, Yuri Kang, and Woonjung Kim. 2024. "Study on Chemical Composition and Biological Activity of Psidium guajava Leaf Extracts" Current Issues in Molecular Biology 46, no. 3: 2133-2143. https://doi.org/10.3390/cimb46030137
APA StylePark, H., Kim, B., Kang, Y., & Kim, W. (2024). Study on Chemical Composition and Biological Activity of Psidium guajava Leaf Extracts. Current Issues in Molecular Biology, 46(3), 2133-2143. https://doi.org/10.3390/cimb46030137