Genetic and Environmental Factors in Autoimmune Thyroid Disease: Exploring Associations with Selenium Levels and Novel Loci in a Latvian Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical and Biochemical Data of the Study Cohort
2.3. Assessment of Selenium Levels
2.4. Assessment of Thyroid Function and Autoimmunity
2.5. Genotyping
2.6. Association Analysis
2.7. Study Power Calculation
3. Results
3.1. Characterisation of the AITD Study Cohort
3.2. AITD Genome-Wide Association Study
Candidate Genes
3.3. Associations with the Serum Selenium Concentration (Case–Control Design)
Selenium-Level Candidate SNPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franco, J.S.; Amaya-Amaya, J.; Anaya, J.M. Thyroid disease and autoimmune diseases. In Autoimmunity: From Bench to Bedside [Internet]; Anaya, J.M., Shoenfeld, Y., Rojas-Villarraga, A., Levy, R.A., Cervera, R., Eds.; El Rosario University Press: Bogota, Colombia, 2013; pp. 537–554. [Google Scholar]
- Antonelli, A.; Ferrari, S.M.; Corrado, A.; Di Domenicantonio, A.; Fallahi, P. Autoimmune thyroid disorders. Autoimmun. Rev. 2015, 14, 174–180. [Google Scholar] [CrossRef]
- Brix, T.H.; Hegedüs, L. Twin studies as a model for exploring the aetiology of autoimmune thyroid disease. Clin. Endocrinol. 2012, 76, 457–464. [Google Scholar] [CrossRef]
- Weetman, A.P. Determinants of autoimmune thyroid disease. Nat Immunol. 2001, 2, 769–770. [Google Scholar] [CrossRef]
- Ramos-Leví, A.M.; Marazuela, M. Pathogenesis of thyroid autoimmune disease: The role of cellular mechanisms. Endocrinol. Nutr. 2016, 63, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Brix, T.H.; Kyvik, K.O.; Christensen, K.; Hegedüs, L. Evidence for a major role of heredity in Graves’ disease: A population-based study of two Danish twin cohorts. J. Clin. Endocrinol. Metab. 2001, 86, 930–934. [Google Scholar] [CrossRef] [PubMed]
- Stathatos, N.; Daniels, G.H. Autoimmune thyroid disease. Curr. Opin. Rheumatol. 2012, 24, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hu, Z.; Liu, M.; Li, H.; Liang, C.; Li, W.; Bao, L.; Chen, M.; Wu, G. Correlation between CTLA-4 and CD40 gene polymorphisms and their interaction in graves’ disease in a Chinese Han population. BMC Med. Genet. 2018, 19, 171. [Google Scholar] [CrossRef] [PubMed]
- Jabrocka-Hybel, A.; Skalniak, A.; Piątkowski, J.; Turek-Jabrocka, R.; Vyhouskaya, P.; Ludwig-Słomczyńska, A.; Machlowska, J.; Kapusta, P.; Małecki, M.; Pach, D.; et al. How much of the predisposition to Hashimoto’s thyroiditis can be explained based on previously reported associations? J. Endocrinol. Investig. 2018, 41, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Q.; Lee, K.; Cho, S.; Lee, K.; Hahm, K.; Choi, S.; Yun, K.; Chung, H.; Chae, S. Interleukin-27 polymorphisms are associated with inflammatory bowel diseases in a Korean population. J. Gastroenterol. Hepatol. 2009, 24, 1692–1696. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Melo, M.; Carrilho, F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int. J. Endocrinol. 2017, 2017, 1297658. [Google Scholar] [CrossRef]
- Rovite, V.; Wolff-Sagi, Y.; Zaharenko, L.; Nikitina-Zake, L.; Grens, E.; Klovins, J. Genome Database of the Latvian Population (LGDB): Design, Goals, and Primary Results. J. Epidemiol. 2018, 28, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Nève, J. Methods in determination of selenium states. J. Trace Elem. Electrolytes Health Dis. 1991, 5, 1–17. [Google Scholar]
- Winther, K.H.; Rayman, M.P.; Bonnema, S.J.; Hegedüs, L. Selenium in thyroid disorders—Essential knowledge for clinicians. Nat. Rev. Endocrinol. 2020, 16, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.; Awasthi, S.; Watson, H.J.; Goldstein, J.; Panagiotaropoulou, G.; Trubetskoy, V.; Karlsson, R.; Frei, O.; Fan, C.-C.; De Witte, W.; et al. RICOPILI: Rapid Imputation for COnsortias PIpeLIne. Bioinformatics 2020, 36, 930–933. [Google Scholar] [CrossRef]
- Taliun, D.; Harris, D.N.; Kessler, M.D.; Carlson, J.; Szpiech, Z.A.; Torres, R.; Taliun, S.A.G.; Corvelo, A.; Gogarten, S.M.; Kang, H.M.; et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 2021, 590, 290–299. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhao, Z.; Nielsen, J.B.; Fritsche, L.G.; LeFaive, J.; Taliun, S.A.G.; Bi, W.; Gabrielsen, M.E.; Daly, M.J.; Neale, B.M.; et al. Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts. Nat. Genet. 2020, 52, 634–639. [Google Scholar] [CrossRef]
- Hong, E.P.; Park, J.W. Sample size and statistical power calculation in genetic association studies. Genom. Inf. 2012, 10, 117–122. [Google Scholar] [CrossRef]
- Pruim, R.J.; Welch, R.P.; Sanna, S.; Teslovich, T.M.; Chines, P.S.; Gliedt, T.P.; Boehnke, M.; Abecasis, G.R.; Willer, C.J. LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 2010, 26, 2336–2337. [Google Scholar] [CrossRef]
- GTEx Consortium. Erratum: Genetic effects on gene expression across human tissues. Nature 2018, 553, 530. [Google Scholar] [CrossRef]
- GeneCards. The Human Gene Database. LSAMP-20. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=LSAMP (accessed on 13 July 2021).
- Younes, N.; Syed, N.; Yadav, S.K.; Haris, M.; Abdallah, A.M.; Abu-Madi, M. A Whole-Genome Sequencing Association Study of Low Bone Mineral Density Identifies New Susceptibility Loci in the Phase I Qatar Biobank Cohort. J. Pers. Med. 2021, 11, 34. [Google Scholar] [CrossRef]
- Mehrjoo, Z.; Kahrizi, K.; Mohseni, M.; Akbari, M.; Arzhangi, S.; Jalalvand, K.; Najmabadi, H.; Farhadi, M.; Asghari, A.; Mohebbi, S.; et al. Limbic System Associated Membrane Protein Mutation in an Iranian Family Diagnosed with Ménière’s Disease. Arch. Iran. Med. 2020, 23, 319–325. [Google Scholar] [CrossRef]
- Zang, Y.; Guo, D.; Chen, L.; Yang, P.; Zhu, Z.; Bu, X.; Xu, T.; Zhong, C.; Wang, A.; Peng, H.; et al. Association between serum netrin-1 and prognosis of ischemic stroke: The role of lipid component levels. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 852–859. [Google Scholar] [CrossRef]
- Odumpatta, R.; Arumugam, M. Integrative Analysis of Gene Expression and Regulatory Network Interaction Data Reveals the Protein Kinase C Family of Serine/Threonine Receptors as a Significant Druggable Target for Parkinson’s Disease. J. Mol. Neurosci. 2021, 71, 466–480. [Google Scholar] [CrossRef]
- Li, D.; Zhu, G.; Lou, S.; Ma, L.; Zhang, C.; Pan, Y.; Wang, L. The functional variant of NTN1 contributes to the risk of nonsyndromic cleft lip with or without cleft palate. Eur. J. Hum. Genet. 2020, 28, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Opitz, R.; Hitz, M.-P.; Vandernoot, I.; Trubiroha, A.; Abu-Khudir, R.; Samuels, M.; Désilets, V.; Costagliola, S.; Andelfinger, G.; Deladoëy, J. Functional zebrafish studies based on human genotyping point to netrin-1 as a link between aberrant cardiovascular development and thyroid dysgenesis. Endocrinology 2015, 156, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Ajjan, R.A.; Weetman, A.P. The Pathogenesis of Hashimoto’s Thyroiditis: Further Developments in our Understanding. Horm. Metab. Res. 2015, 47, 702–710. [Google Scholar] [CrossRef]
- GeneCards. The Human Gene Database. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=VAT1L (accessed on 13 July 2021).
- Duntas, L.H.; Benvenga, S. Selenium: An element for life. Endocrine 2015, 48, 756–775. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Rayman, M.P.; Lv, H.; Schomburg, L.; Cui, B.; Gao, C.; Chen, P.; Zhuang, G.; Zhang, Z.; Peng, X.; et al. Low Population Selenium Status Is Associated with Increased Prevalence of Thyroid Disease. J. Clin. Endocrinol. Metab. 2015, 100, 4037–4047. [Google Scholar] [CrossRef] [PubMed]
- Khong, J.J.; Goldstein, R.F.; Sanders, K.M.; Schneider, H.; Pope, J.; Burdon, K.P.; Craig, J.E.; Ebeling, P.R. Serum selenium status in Graves’ disease with and without orbitopathy: A case-control study. Clin. Endocrinol. 2014, 80, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Bülow Pedersen, I.; Knudsen, N.; Carlé, A.; Schomburg, L.; Köhrle, J.; Jørgensen, T.; Rasmussen, L.B.; Ovesen, L.; Laurberg, P. Serum selenium is low in newly diagnosed Graves’ disease: A population-based study. Clin. Endocrinol. 2013, 79, 584–590. [Google Scholar] [CrossRef]
- Zheng, H.; Wei, J.; Wang, L.; Wang, Q.; Zhao, J.; Chen, S.; Wei, F. Effects of Selenium Supplementation on Graves’ Disease: A Systematic Review and Meta-Analysis. Evid. Based Complement. Alternat. Med. 2018, 26, 3763565. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef] [PubMed]
- Burk, R.F.; Hill, K.E.; Motley, A.K. Plasma selenium in specific and non-specific forms. Biofactors 2001, 14, 107–114. [Google Scholar] [CrossRef]
- Mao, J.; Vanderlelie, J.J.; Perkins, A.V.; Redman, C.W.; Ahmadi, K.R.; Rayman, M.P. Genetic polymorphisms that affect selenium status and response to selenium supplementation in United Kingdom pregnant women. Am. J. Clin. Nutr. 2016, 103, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Hsu, L.; Harrison, T.; King, I.B.; Stürup, S.; Song, X.; Duggan, D.; Liu, Y.; Hutter, C.; Chanock, S.J.; et al. Genome-wide association study of serum selenium concentrations. Nutrients 2013, 5, 1706–1718. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.M.; Zhu, G.; Dy, V.; Heath, A.C.; Madden, P.A.F.; Kemp, J.P.; McMahon, G.; St Pourcain, B.; Timpson, N.J.; Golding, J.; et al. Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Hum. Mol. Genet. 2013, 22, 3998–4006. [Google Scholar] [CrossRef]
- Cornelis, M.C.; Fornage, M.; Foy, M.; Xun, P.; Gladyshev, V.N.; Morris, S.; Chasman, D.I.; Hu, F.B.; Rimm, E.B.; Kraft, P.; et al. Genome-wide association study of selenium concentrations. Hum. Mol. Genet. 2015, 24, 1469–1477. [Google Scholar] [CrossRef]
- Deng, L.; Jiang, C.; Chen, L.; Jin, J.; Wei, J.; Zhao, L.; Chen, M.; Pan, W.; Xu, Y.; Chu, H.; et al. The ubiquitination of rag A GTPase by RNF152 negatively regulates mTORC1 activation. Mol. Cell 2015, 58, 804–818. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, W.; Wu, Y.; Zheng, J.; Suo, T.; Tang, H.; Tang, J. RNF152, a novel lysosome localized E3 ligase with pro-apoptotic activities. Protein Cell 2010, 1, 656–663. [Google Scholar] [CrossRef]
- Okamoto, T.; Imaizumi, K.; Kaneko, M. The Role of Tissue-Specific Ubiquitin Ligases, RNF183, RNF186, RNF182 and RNF152, in Disease and Biological Function. Int. J. Mol. Sci. 2020, 21, 3921. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Filippini, T.; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Crespi, C.M. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2018, 1, CD005195. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Yin, F.; Guang, S.; He, F.; Yang, L.; Peng, J. The Glycosylphosphatidylinositol biosynthesis pathway in human diseases. Orphanet J. Rare Dis. 2020, 15, 129. [Google Scholar] [CrossRef] [PubMed]
- De Felice, B.; Garbi, C.; Wilson, R.R.; Santoriello, M.; Nacca, M. Effect of selenocystine on gene expression profiles in human keloid fibroblasts. Genomics 2011, 97, 265–276. [Google Scholar] [CrossRef]
- Volta, U.; Ravaglia, G.; Granito, A.; Forti, P.; Maioli, F.; Petrolini, N.; Zoli, M.; Bianchi, F.B. Coeliac disease in patients with autoimmune thyroiditis. Digestion 2001, 64, 61–65. [Google Scholar] [CrossRef]
- Pallotta, D.P.; Granito, A.; Raiteri, A.; Boe, M.; Pratelli, A.; Giamperoli, A.; Monaco, G.; Faggiano, C.; Tovoli, F. Autoimmune Polyendocrine Syndromes in Adult Italian Celiac Disease Patients. J. Clin. Med. 2024, 13, 488. [Google Scholar] [CrossRef]
- Granito, A.; Muratori, L.; Pappas, G.; Muratori, P.; Ferri, S.; Cassani, F.; Lenzi, M.; Bianchi, F.B. Clinical features of type 1 autoimmune hepatitis in elderly Italian patients. Aliment. Pharmacol. Ther. 2005, 21, 1273–1277. [Google Scholar] [CrossRef]
Parameter | Controls (n = 2442) | GD (n = 148) | HT (n = 102) | p Values (Control-GD and Control-HT) |
---|---|---|---|---|
Sex | ||||
Female | 1477 (60.5%) | 122 (82.4%) | 85 (83.3%) | <0.0001 both |
Male | 965 (39.5%) | 26 (17.6%) | 17 (16.7%) | <0.0001 both |
Age | ||||
Mean (SD) | 54.3 (14.0) | 48.4 (15.6) | 48.3 (15.6) | <0.0001 both |
Median [Min, Max] | 55.0 [18.0, 94.0] | 50.5 [21.0, 84.0] | 52.0 [22.0, 78.0] |
Tested Phenotype | Pos | Alleles | Freq% * | Cases/ Controls | Lead SNP ID | Nearest Gene | OR (CI 95%) | p Value |
---|---|---|---|---|---|---|---|---|
GD | chr 13: 65 718 934 | T/C | 4.4 | 148/2442 | rs117860697 | HNRNPA3P5 | 3.3 (2.2–4.6) | 1.13 × 10−9 |
GD | chr 17: 9 016 416 | A/G | 0.5 | 148/2442 | rs189272113 | NTN1 | 6.9 (3.6–13.1) | 4.55 × 10−9 |
GD | chr 3: 117 084 612 | T/C | 0.9 | 148/2442 | rs147639537 | LSAMP | 7.0 (3.5–13.7) | 1.76 × 10−8 |
HT | chr 16: 77 939 442 | A/C | 3.1 | 102/2442 | rs7184775 | VAT1L | 4.9 (2.8–8.7) | 4.45 × 10−8 |
Parameter | Controls (n = 81) | GD (n = 72 *) | HT (n = 146 *) | p Value | ||
---|---|---|---|---|---|---|
Control-GD | Control-HT | |||||
Sex | Males | 12 | 8 | 15 | 0.53 | 0.32 |
Females | 69 | 63 | 131 | |||
Mean age ± SD | 37.4 ± 13.1 | 49.6 ± 15.5 | 50.7 ± 15.9 | <0.0001 | <0.0001 | |
Median age ± SD (range) | 32 (22–72) | 53 (21–81) | 51.5 (18–78) | - | ||
Mean serum Se ± SD | 88.2 ± 33.7 | 71.8 ± 19.4 | 95.2 ± 21.9 | 0.0004 | 0.06 | |
Median serum Se (IQR) | 83.4 (69.0–115.8) | 69.4 (68.0–106.2) | 93.7 (80.4–110.4) | - |
Tested Phenotype | Pos | Alleles | Freq% * | Cases/ Controls | Lead SNP ID | Nearest Gene | OR (CI 95%) | p Value |
---|---|---|---|---|---|---|---|---|
Serum selenium > 80 µg/L | chr 18: 61 747 557 | G/A | 54.8 | 169/128 | rs6567243 | LINC01544/ RNF152/PIGN | 3.24 (2.1–4.9) | 5.31 × 10−8 |
SNP | G11 | G12 | G22 |
---|---|---|---|
Chr5 rs921943 | |||
Genotype | T/T | T/C | C/C |
Count (n = 297) | 33 | 145 | 119 |
Serum selenium, mean (SD) | 83.0 (31.1) | 87.0 (25.8) | 90.1 (26.7) |
Chr5 rs17823744 | |||
Genotype | G/G | G/A | A/A |
Count (n = 297) | 2 | 77 | 218 |
Serum selenium, mean (SD) | 60.0 (2.6) | 88.0 (28.4) | 88.0 (26.2) |
Chr18 rs6567243 | |||
Genotype | G/G | G/A | A/A |
Count (n = 297) | 71 | 153 | 73 |
Serum selenium, mean (SD) | 96.1 (24.3) | 89.7 (27.4) | 75.7 (23.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upmale-Engela, S.; Vaivode, I.; Peculis, R.; Litvina, H.; Zake, T.; Skesters, A.; Gogins, D.; Rovite, V.; Konrade, I. Genetic and Environmental Factors in Autoimmune Thyroid Disease: Exploring Associations with Selenium Levels and Novel Loci in a Latvian Cohort. Curr. Issues Mol. Biol. 2024, 46, 2553-2565. https://doi.org/10.3390/cimb46030162
Upmale-Engela S, Vaivode I, Peculis R, Litvina H, Zake T, Skesters A, Gogins D, Rovite V, Konrade I. Genetic and Environmental Factors in Autoimmune Thyroid Disease: Exploring Associations with Selenium Levels and Novel Loci in a Latvian Cohort. Current Issues in Molecular Biology. 2024; 46(3):2553-2565. https://doi.org/10.3390/cimb46030162
Chicago/Turabian StyleUpmale-Engela, Sabine, Ieva Vaivode, Raitis Peculis, Helena Litvina, Tatjana Zake, Andrejs Skesters, Deniss Gogins, Vita Rovite, and Ilze Konrade. 2024. "Genetic and Environmental Factors in Autoimmune Thyroid Disease: Exploring Associations with Selenium Levels and Novel Loci in a Latvian Cohort" Current Issues in Molecular Biology 46, no. 3: 2553-2565. https://doi.org/10.3390/cimb46030162
APA StyleUpmale-Engela, S., Vaivode, I., Peculis, R., Litvina, H., Zake, T., Skesters, A., Gogins, D., Rovite, V., & Konrade, I. (2024). Genetic and Environmental Factors in Autoimmune Thyroid Disease: Exploring Associations with Selenium Levels and Novel Loci in a Latvian Cohort. Current Issues in Molecular Biology, 46(3), 2553-2565. https://doi.org/10.3390/cimb46030162