Genetic Insights into the Extremely Dwarf Hibiscus syriacus var. micranthus: Complete Chloroplast Genome Analysis and Development of a Novel dCAPS Marker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Collection and Conservation for cp Genome Assembly
2.2. DNA Extraction, Sequencing, Assembly, and Annotation
2.3. Comparative Analyses of cp Genome Sequences
2.4. Phylogenetic Analysis
2.5. InDel dCAPS Marker Design
2.6. Validation of dCAPS Marker across Diverse HS Cultivars
3. Results
3.1. Genome Assembly and Summary
3.2. Gene Annotation and Variations in Genes
3.3. Comparative Analysis of Genome Structure and Sequence Variability
3.4. Phylogenetic Analysis
3.5. Development dCAPS Marker Using a Unique Insertion in HSVM trnL-UAA
3.6. Discrimination Test of HSVM and Maternal Lines Using InDel dCAPS Marker
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ha, Y.M.; Han, I.S.; Kim, K.S. The Rose of Sharon. J. Korean Soc. Hort. Sci. 2013, 5, 323–328. [Google Scholar]
- El Shazly, J.; El Gayed, S.H.; Kandil, Z.A.; Yassin, N.A.; Tawab, S.A.; ElAlfy, T.S.M. Botanical and genetic characterization of Hibiscus syriacus L. cultivated in Egypt. J. Appl. Pharm. Sci. 2018, 8, 92–103. [Google Scholar] [CrossRef]
- Kim, J.H.; Fujieda, K. Studies on the flower color variation in Hibiscus syriacus L. Hort. Environ. Biotechnol. 1991, 32, 247–255. [Google Scholar]
- Park, H.-S.; Cho, Y.-J.; Chung, H.-G.; Jang, Y.-S.; Chung, D.-J. Variation in flower color among hybrids of Jeoktanshim Hibiscus syriacus L. Plant Resour. 2005, 8, 250–257. [Google Scholar]
- Bae, S.H.; Younis, A.; Hwang, Y.J.; Lim, K.B. Comparative morphological analysis of native and exotic cultivars of Hibiscus syriacus. Flower Res. J. 2015, 23, 243–249. [Google Scholar] [CrossRef]
- Eeckhaut, T.G.R.; Van Huylenbroeck, J.M.; De Riek, J.; Van Bockstaele, E. Interspecific Hybridization Between Hibiscus syriacus L. and Hibiscus paramutabilis Bailey. Acta Hortic. 2004, 630, 85–90. [Google Scholar] [CrossRef]
- Song, H.S.; Park, I.S.; Lim, Y.T.; Kim, J.K.; Lee, G.J.; Kim, D.S.; Lee, S.J.; Kang, S.Y. A dwarf type new rose of sharon variety, ‘Ggoma’ developed by a mutation breeding. Korean J. Breed. 2006, 38, 293–294. [Google Scholar]
- Ha, Y.-M.; Shim, K.-K.; Kang, H.-C.; Lim, K.-B. A new cultivar ‘Tohagol Red’ with unique flower shape and color through interspecific hybridization of Hibiscus species. Flower Res. J. 2014, 22, 278–282. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, D.S.; Kim, J.-B.; Ha, B.-K.; Lee, D.M.; Song, H.S.; Kang, S.-Y. Hibiscus syriacus ‘Dasom’, a new flower-color mutant variety developed by radiation breeding. Korean J. Hortic. Sci. Technol. 2015, 33, 298–301. [Google Scholar] [CrossRef]
- Ha, Y.M.; Kim, D.Y.; Shim, K.-K. A new cultivar Hibiscus syriacus ‘Red Bohanjae’ with small violet-pink flowers for a pot plant. Korean J. Hortic. Sci. Technol. 2015, 33, 292–297. [Google Scholar] [CrossRef]
- Kim, K.-H.; Lee, C.-S.; Kang, H.-C. Study on the selection of promising cultivars with unique flower characteristics in the recently developed cultivars of rose of sharon (Hibiscus spp.) for landscape uses. J. Korean Inst. Tradit. Landsc. Archit. 2016, 34, 124–139. [Google Scholar] [CrossRef]
- Kang, H.C.; Kim, D.Y.; Wang, Y.G.; Ha, Y.M. Expanded uses and trend of domestic and international research of rose of sharon (Hibiscus syriacus L.) as Korean national flower. J. Korean Inst. Landsc. Archit. 2019, 47, 49–65. [Google Scholar] [CrossRef]
- Lee, Y.N.; Yim, K.B. Hibiscus syriacus var. micranthus. Korean J. Plant Taxon. 1992, 22, 8. [Google Scholar]
- Shim, K.-K.; Ha, Y.-M.; Ha, J.-H. New dwarf cultivar, ‘Andong’, of Hibiscus syriacus L. HortScience 2000, 35, 402. [Google Scholar] [CrossRef]
- Shim, K.-K.; Ha, Y.-M. New cultivar, Hibiscus syriacus ‘Cheoyong’ and ‘Chungam’, which have aphid resistance and pink flower with red eye spot. Korean Soc. Hort. Sci. Abstr. 2002, 20, 126. [Google Scholar]
- Wang, R.; Park, S.Y.; Park, S.W.; Puja, A.M.; Kim, Y.J. Development of a molecular marker based on chloroplast gene for specific identification of Korean Hibiscus (Hibiscus syriacus ‘Simbaek’). Appl. Biol. Chem. 2021, 64, 96. [Google Scholar] [CrossRef]
- Sowden, R.G.; Watson, S.J.; Jarvis, P. The role of chloroplasts in plant pathology. Essays Biochem. 2018, 62, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef]
- Daniell, H.; Jin, S.; Zhu, X.G.; Gitzendanner, M.A.; Soltis, D.E.; Soltis, P.S. Green giant—A tiny chloroplast genome with mighty power to produce high-value proteins: History and phylogeny. Plant Biotechnol. J. 2021, 19, 430–447. [Google Scholar] [CrossRef]
- Parks, M.; Cronn, R.; Liston, A. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol. 2009, 7, 84. [Google Scholar] [CrossRef]
- Fazekas, A.J.; Burgess, K.S.; Kesanakurti, P.R.; Graham, S.W.; Newmaster, S.G.; Husband, B.C.; Barrett, S.C.H. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE 2008, 3, e2802. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Cho, Y.; Jung, M. A new variety, ‘Tamra’, useful for ornamental and garden tree in Korea althea (Hibiscus syriacus spp.). Korean J. Breed. Sci. 2007, 39, 540–541. [Google Scholar]
- Dinh, X.; Mai, X.; Nguyen, M. Development of short tandem repeat (STR) and derived cleaved amplified polymorphic (dCAPS) markers for distinguishing species and varieties of the genus Panax in Vietnam. Genet. Resour. Crop Evol. 2023, 70, 2047–2054. [Google Scholar] [CrossRef]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar] [CrossRef] [PubMed]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Matvienko, M. CLC Genomics Workbench. Plant and Animal Genome Conference. Senior Field Application Scientist; CLC Bio: Aarhus, Denmark, 2015. [Google Scholar]
- Mayor, C.; Brudno, M.; Schwartz, J.R.; Poliakov, A.; Rubin, E.M.; Frazer, K.A.; Pachter, L.S.; Dubchak, I. VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 2000, 16, 1046–1047. [Google Scholar] [CrossRef] [PubMed]
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef]
- Poplin, R.; Ruano-Rubio, V.; DePristo, M.A.; Fennell, T.J.; Carneiro, M.O.; Van der Auwera, G.A.; Kling, D.E.; Gauthier, L.D.; Levy-Moonshine, A.; Roazen, D.; et al. Scaling Accurate Genetic Variant Discovery to Tens of Thousands of Samples. bioRxiv 2017, 201178. [Google Scholar] [CrossRef]
- Lu, G.; Moriyama, E.N. Vector NTI, a balanced all-in-one sequence analysis suite. Brief. Bioinform. 2004, 5, 378–388. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Kwon, H.-Y.; Choi, Y.-I.; Shin, H. Comprehensive analysis of chloroplast genome of Hibiscus sinosyriacus: Evolutionary studies in related species and genera. Forests 2023, 14, 2221. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Bui, Q.M.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Bui, Q.M.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Hodgens, C.; Nimchuk, Z.L.; Kieber, J.J. Using indCAPS to detect CRISPR/Cas9 Induced mutations. Bio-Protocol 2019, 9, e3374. [Google Scholar] [CrossRef] [PubMed]
- Neff, M.M.; Turk, E.; Kalishman, M. Web-based primer design for single nucleotide polymorphism analysis. Trends Genet. 2002, 18, 613–615. [Google Scholar] [CrossRef]
- Kishor, R.; Sharma, G.J. The use of the hypervariable P8 region of trnL (UAA) intron for identification of orchid species: Evidence from restriction site polymorphism analysis. PLoS ONE 2018, 13, e0196680. [Google Scholar] [CrossRef]
- Cvetković, T.; Areces-Berazain, F.; Hinsinger, D.D.; Thomas, D.C.; Wieringa, J.J.; Ganesan, S.K.; Strijk, J.S. Phylogenomics resolves deep subfamilial relationships in Malvaceae s.l. G3 2021, 11, jkab136. [Google Scholar] [CrossRef]
Name | Genome Size (bp) | LSC | IRB | SSC | IRA | Number of Genes | Protein-Coding Genes | tRNA | rRNA | GC Contents (%) |
---|---|---|---|---|---|---|---|---|---|---|
HSVM | 161,022 | 89,701 | 25,745 | 19,831 | 25,745 | 130 | 85 | 37 | 8 | 36.83 |
HS N.M.521 | 161,027 | 89,706 | 25,745 | 19,831 | 25,745 | 130 | 85 | 37 | 8 | 36.83 |
HS ‘Tamra’ | 160,899 | 89,755 | 25,742 | 19,660 | 25,742 | 130 | 85 | 37 | 8 | 36.84 |
Role | Group of Gene | Name of Gene | No. |
---|---|---|---|
Photosynthesis | Photosystem I | psaA, psaB, pasC, psaI, psaJ | 5 |
Photosystem II | psbA, psbK, psbI, psbM, psbD, psbF, psbC 4, psbH, psbJ, psbL, psbE, psbN, psbB | 13 | |
Cytochrome b/f complex | psbT, psbZ, petN, petA, petL, petG, petD 1, petB 1 | 8 | |
ATP synthase | atpI, atpH, atpA, atpF 1,4, atpE, atpB | 6 | |
Cytochrome c-type synthesis | ccsA | 1 | |
Assembly/stability of photosystem I | ycf3 (pafI) 3, ycf4 (pafII) | 2 | |
NADPH dehydrogenase | ndhB *,1, ndhH, ndhA 1,4, ndhI, ndhG, ndhJ, ndhE, ndhF, ndhC, ndhK 4, ndhD | 12 | |
Rubisco | rbcL | 1 | |
Transcription and translation | Small subunit of ribosome | rpoA, rpoC2, rpoC1 1,4, rpoB, rps16 1, rps2, rps14, rps4, rps18 4, rps12 ***,1, rps11, rps8, rps3, rps19, rps7 *, rps15 | 18 |
Large subunit of ribosome | rpl33, rpl20, rpl36, rpl14, rpl16 1, rpl22, rpl2 *,1, rpl23 *, rpl32 | 11 | |
Translational initiation factor | infA | 1 | |
Ribosomal RNA | rrn16 *, rrn4.5 *, rrn5 *, rrn23 * | 8 | |
Transfer RNA | trnH-GUG, trnK-UUU 1,4, trnQ-UUG, trnS-GCU, trnS-UCC 1, trnR-UCU, trnC-GCA, trnD-GUC, trnY-GUA, trnE-UUC1,**, trnI-GGU, trnS-UGA, trnG-UCC, trnfM-CAU **, trnS-CGA 4, trnT-UGU, trnL-UAA 1,4, trnF-GAA, trnV-UAC 1, trnW-CCA, trnP-GGU, trnL-CAA *, trnV-GAC *, trnA-UGC 1,*, trnR-ACG *, trnN-GUU *, trnL-UAG, trnI-CAU | 37 | |
Others | RNA processing | matK 4 | 1 |
Carbon metabolism | cemA | 1 | |
Fatty acid synthesis | accD | 1 | |
Proteolysis | clpP 2,4 | 1 | |
Component of TIC complex | ycf1 4 | 1 | |
Hypothetical proteins | ycf2 *,4 | 2 | |
Total number of genes | 130 |
Primer Name | Sequence (5′ → 3′) |
---|---|
Hs_dCAPS_F | ATGCAAAATCTATTTATATGAAAAATAAAAAGC |
Hs_dCAPS_R | AATCAGTTTTTCAAAAGATTTATCAGACA |
No. | Name | Development History | Flower Color | Country | Sequence (5′ → 3′) |
---|---|---|---|---|---|
1 * | HSVM | Regional variety | White with spot | South Korea | CACTCCATAATAGTCTGATA |
2 * | HS ‘Andong’ | HSVM graft mutation | White with spot | South Korea | CACTCCATAATAGTCTGATA |
3 * | HS ‘Lil Kim’ | HSVM graft mutation | White with spot | South Korea | CACTCCATAATAGTCTGATA |
4 | HS ‘Suni’ | HS ‘Helene’ × HS ‘Asadal’ | White with spot | South Korea | CACTCCATA---GTCTGATA |
5 | HS ‘Simsan’ | HS ‘Helene’ × HS ‘Mauve Queen’ | White with spot | South Korea | CACTCCATA---GTCTGATA |
6 | HS ‘Wonwha’ | Selection breeding | White with spot | South Korea | CACTCCATA---GTCTGATA |
7 | HS ‘Ggoma’ | Radiation breeding | White with spot | South Korea | CACTCCATA---GTCTGATA |
8 | HS ‘Tanshim’ | Selection breeding | White with spot | South Korea | CACTCCATA---GTCTGATA |
9 | HS ‘Baekdanshim’ | Selection breeding | White with spot | South Korea | CACTCCATA---GTCTGATA |
10 | HS ‘Byeollee’ | HS ‘Gaeryangdanshim’ × (HS ‘Baekdanshim’ × HSVM) | White with spot | South Korea | CACTCCATA---GTCTGATA |
11 * | HS ‘Simbaek’ | HS ‘Hwahap’ × HS ‘Samchulri’ | White with spot | South Korea | CACTCCATAATAGTCTGATA |
12 * | HS ‘Hairi’ | HS ‘Andong’ × HS ‘Hwahap’ | White with spot | South Korea | CACTCCATAATAGTCTGATA |
13 | HS ‘Saebit’ | Selection breeding | White with spot | South Korea | CACTCCATA---GTCTGATA |
14 | HS ‘Sondok’ | Selection breeding | White with spot | South Korea | CACTCCATA---GTCTGATA |
15 | HS ‘Hanmaum’ | Selection breeding | White with spot | South Korea | CACTCCATA---GTCTGATA |
16 | HS ‘Hanbit’ | Selection breeding | White with spot | South Korea | CACTCCATA---GTCTGATA |
17 | HS ‘Hanyang’ | Selection breeding | White with spot | South Korea | CACTCCATA---GTCTGATA |
18 | HS ‘Hanoltanshim’ | Selection breeding | White with spot | South Korea | CACTCCATA---GTCTGATA |
19 | HS ‘Pheasant Eye’ | Introduction breeding | White with spot | United states | CACTCCATA---GTCTGATA |
20 | HS ‘Hinomaru’ | Exotic cultivar | White with spot | Japan | CACTCCATA---GTCTGATA |
21 * | HS ‘Byeonghwa’ | HS ‘Andong’ × HS ‘Bulsae’ | Purple with spot | South Korea | CACTCCATAATAGTCTGATA |
22 * | HS ‘Cheoyong’ | HS ‘Andong’ × HS ‘Gaeryangjaju1’ | Purple with spot | South Korea | CACTCCATAATAGTCTGATA |
23 * | HS ‘Chungam’ | HS ‘Andong’ × HS ‘Gaeryangjaju1’ | Purple with spot | South Korea | CACTCCATAATAGTCTGATA |
24 * | HS ‘Taewha’ | HS ‘Cheoyong’ × HS ‘Gwangmyoung’ | Purple with spot | South Korea | CACTCCATAATAGTCTGATA |
25 | HS N.M. no. 520 | Designated as a natural monument no. 520 | Purple with spot | South Korea | CACTCCATA---GTCTGATA |
26 | HS N.M. no. 521 | Designated as a natural monument no. 521 | Purple with spot | South Korea | CACTCCATA---GTCTGATA |
27 | HS ‘Tamra’ | Selection breeding | Purple with spot | South Korea | CACTCCATA---GTCTGATA |
28 | HS ‘Soyang’ | Selection breeding | Purple with spot | South Korea | CACTCCATA---GTCTGATA |
29 | HS ‘Ishigakijima’ | Exotic cultivar | Purple with spot | Japan | CACTCCATA---GTCTGATA |
30 | HS ‘Heikeyama’ | Exotic cultivar | Purple with spot | Japan | CACTCCATA---GTCTGATA |
31 | HS ‘Campanha’ | Exotic cultivar | White with spot | United states | CACTCCATA---GTCTGATA |
32 | HS ‘Helene’ | Exotic cultivar | White with spot | United states | CACTCCATA---GTCTGATA |
33 | HS ‘Doroshy Crane’ | Exotic cultivar | White with spot | England | CACTCCATA---GTCTGATA |
34 | HS ‘Mostrosus’ | Exotic cultivar | White with spot | Belgium | CACTCCATA---GTCTGATA |
35 | HS ‘Shiroshorin’ | Exotic cultivar | White with spot | Japan | CACTCCATA---GTCTGATA |
36 | HS ‘Blue Bird’ | Exotic cultivar | Blue with spot | United states/France | CACTCCATA---GTCTGATA |
37 | HS ‘Shigyoku’ | Exotic cultivar | Blue with spot | Japan | CACTCCATA---GTCTGATA |
38 | HS ‘Oknyo’ | Selection breeding | White without spot | South Korea | CACTCCATA---GTCTGATA |
39 | HS ‘Saehan’ | Selection breeding | White without spot | South Korea | CACTCCATA---GTCTGATA |
40 | HS ‘Wood Bridge’ | Exotic cultivar | Red with spot | England | CACTCCATA---GTCTGATA |
41 | HS ‘Akagionmamori’ | Exotic cultivar | Red with spot | Japan | CACTCCATA---GTCTGATA |
42 * | HS ‘Yaum’ | HS ‘Andong’ × HS ‘Samchulri’ | Purple with spot | South Korea | CACTCCATAATAGTCTGATA |
43 * | HS ‘Hwahap’ | HS ‘Andong’ × HS ‘Namwon’ | White with spot | South Korea | CACTCCATAATAGTCTGATA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.-H.; Kwon, H.-Y.; Shin, H. Genetic Insights into the Extremely Dwarf Hibiscus syriacus var. micranthus: Complete Chloroplast Genome Analysis and Development of a Novel dCAPS Marker. Curr. Issues Mol. Biol. 2024, 46, 2757-2771. https://doi.org/10.3390/cimb46030173
Kwon S-H, Kwon H-Y, Shin H. Genetic Insights into the Extremely Dwarf Hibiscus syriacus var. micranthus: Complete Chloroplast Genome Analysis and Development of a Novel dCAPS Marker. Current Issues in Molecular Biology. 2024; 46(3):2757-2771. https://doi.org/10.3390/cimb46030173
Chicago/Turabian StyleKwon, Soon-Ho, Hae-Yun Kwon, and Hanna Shin. 2024. "Genetic Insights into the Extremely Dwarf Hibiscus syriacus var. micranthus: Complete Chloroplast Genome Analysis and Development of a Novel dCAPS Marker" Current Issues in Molecular Biology 46, no. 3: 2757-2771. https://doi.org/10.3390/cimb46030173
APA StyleKwon, S. -H., Kwon, H. -Y., & Shin, H. (2024). Genetic Insights into the Extremely Dwarf Hibiscus syriacus var. micranthus: Complete Chloroplast Genome Analysis and Development of a Novel dCAPS Marker. Current Issues in Molecular Biology, 46(3), 2757-2771. https://doi.org/10.3390/cimb46030173