Genetic Variant of DNAM-1 rs763361 C>T Is Associated with Ankylosing Spondylitis in a Mexican Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genotyping
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tam, L.S.; Gu, J.; Yu, D. Pathogenesis of ankylosing spondylitis. Nat. Rev. Rheumatol. 2010, 6, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Dougados, M.; Baeten, D. Spondyloarthritis. Lancet 2011, 377, 2127–2137. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.; Sieper, J. Ankylosing spondylitis. Lancet 2007, 369, 1379–1390. [Google Scholar] [CrossRef] [PubMed]
- Akassou, A.; Bakri, Y. Does HLA-B27 Status Influence Ankylosing Spondylitis Phenotype? Clin. Med. Insights Arthritis Musculoskelet. Disord. 2018, 11, 1179544117751627. [Google Scholar] [CrossRef]
- Burgos-Vargas, R.; Pelaez-Ballestas, I. Epidemiology of spondyloarthritis in Mexico. Am. J. Med. Sci. 2011, 341, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, A.; Campbell, D.; Hannum, C.; Yssel, H.; Franz-Bacon, K.; McClanahan, T.; Kitamura, T.; Nicholl, J.; Sutherland, G.R.; Lanier, L.L.; et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 1996, 4, 573–581. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, L.F.; Smyth, M.J.; Martinet, L. DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol. Cell Biol. 2014, 92, 237–244. [Google Scholar] [CrossRef]
- Pende, D.; Castriconi, R.; Romagnani, P.; Spaggiari, G.M.; Marcenaro, S.; Dondero, A.; Lazzeri, E.; Lasagni, L.; Martini, S.; Rivera, P.; et al. Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: Relevance for natural killer-dendritic cell interaction. Blood 2006, 107, 2030–2036. [Google Scholar] [CrossRef]
- Yeo, J.; Ko, M.; Lee, D.H.; Park, Y.; Jin, H.S. TIGIT/CD226 Axis Regulates Anti-Tumor Immunity. Pharmaceuticals 2021, 14, 200. [Google Scholar] [CrossRef]
- Martinet, L.; De Andrade, L.F.; Guillerey, C.; Lee, J.S.; Liu, J.; Souza-Fonseca-Guimaraes, F.; Hutchinson, D.S.; Kolesnik, T.B.; Nicholson, S.E.; Huntington, N.D.; et al. DNAM-1 expression marks an alternative program of NK cell maturation. Cell Rep. 2015, 11, 85–97. [Google Scholar] [CrossRef]
- Jin, H.S.; Ko, M.; Choi, D.S.; Kim, J.H.; Lee, D.H.; Kang, S.H.; Kim, I.; Lee, H.J.; Choi, E.K.; Kim, K.P.; et al. CD226(hi)CD8(+) T Cells Are a Prerequisite for Anti-TIGIT Immunotherapy. Cancer Immunol. Res. 2020, 8, 912–925. [Google Scholar] [CrossRef]
- Weulersse, M.; Asrir, A.; Pichler, A.C.; Lemaitre, L.; Braun, M.; Carrie, N.; Joubert, M.V.; Le Moine, M.; Do Souto, L.; Gaud, G.; et al. Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8(+) T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy. Immunity 2020, 53, 824–839.e10. [Google Scholar] [CrossRef]
- Du, Y.; Tian, L.; Shen, L.X.; Wang, F.; Yu, L.K.; Song, Y.; Zhu, J.F.; Du, R. Association of the CD226 single nucleotide polymorphism with systemic lupus erythematosus in the Chinese Han population. Tissue Antigens 2011, 77, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Hafler, J.P.; Maier, L.M.; Cooper, J.D.; Plagnol, V.; Hinks, A.; Simmonds, M.J.; Stevens, H.E.; Walker, N.M.; Healy, B.; Howson, J.M.; et al. CD226 Gly307Ser association with multiple autoimmune diseases. Genes Immun. 2009, 10, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.A.; Walker, N.M.; Cooper, J.D.; Smyth, D.J.; Downes, K.; Plagnol, V.; Bailey, R.; Nejentsev, S.; Field, S.F.; Payne, F.; et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 2007, 39, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Zakeri, Z.; Eskandari-Nasab, E.; Atabaki, M.; Pourhosseini, S.M.; Jahantigh, M.; Bahari, G.; Taheri, M. CD226 rs763361 (Gly307Ser) polymorphism is associated with susceptibility to rheumatoid arthritis in Zahedan, southeast Iran. Iran. Biomed. J. 2013, 17, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Löfgren, S.E.; Delgado-Vega, A.M.; Gallant, C.J.; Sánchez, E.; Frostegård, J.; Truedsson, L.; de Ramón Garrido, E.; Sabio, J.M.; González-Escribano, M.F.; Pons-Estel, B.A. A 3′-untranslated region variant is associated with impaired expression of CD226 in T and natural killer T cells and is associated with susceptibility to systemic lupus erythematosus. Arthritis Rheum. 2010, 62, 3404–3414. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.; Aguilera, A.R.; Sundarrajan, A.; Corvino, D.; Stannard, K.; Krumeich, S.; Das, I.; Lima, L.G.; Meza Guzman, L.G.; Li, K.; et al. CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8(+) T Cells. Immunity 2020, 53, 805–823.e15. [Google Scholar] [CrossRef]
- Shirakawa, J.; Shibuya, K.; Shibuya, A. Requirement of the serine at residue 329 for lipid raft recruitment of DNAM-1 (CD226). Int. Immunol. 2005, 17, 217–223. [Google Scholar] [CrossRef]
- Shirakawa, J.; Wang, Y.; Tahara-Hanaoka, S.; Honda, S.; Shibuya, K.; Shibuya, A. LFA-1-dependent lipid raft recruitment of DNAM-1 (CD226) in CD4+ T cell. Int. Immunol. 2006, 18, 951–957. [Google Scholar] [CrossRef]
- Shibuya, K.; Shirakawa, J.; Kameyama, T.; Honda, S.; Tahara-Hanaoka, S.; Miyamoto, A.; Onodera, M.; Sumida, T.; Nakauchi, H.; Miyoshi, H.; et al. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J. Exp. Med. 2003, 198, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, S.; Valkenburg, H.A.; Cats, A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984, 27, 361–368. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Qi, G.; Miller, J.S.; Zheng, S.G. CD226: An Emerging Role in Immunologic Diseases. Front. Cell Dev. Biol. 2020, 8, 564. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Bae, S.; Choi, S.; Ji, J.; Lee, Y. Association between the CD226 rs763361 polymorphism and susceptibility to autoimmune diseases: A meta-analysis. Lupus 2012, 21, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, S.; Hoffjan, S.; Chan, A.; Rey, L.; Harper, L.; Fricke, H.; Holle, J.U.; Gross, W.L.; Epplen, J.T.; Lamprecht, P. Novel association of the CD226 (DNAM-1) Gly307Ser polymorphism in Wegener’s granulomatosis and confirmation for multiple sclerosis in German patients. Genes Immun. 2009, 10, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Mosaad, Y.M.; El-Toraby, E.E.; Tawhid, Z.M.; Abdelsalam, A.I.; Enin, A.F.; Hasson, A.M.; Shafeek, G.M. Association between CD226 polymorphism and soluble levels in rheumatoid arthritis: Relationship with clinical activity. Immunol. Investig. 2018, 47, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Mauro, D.; Thomas, R.; Guggino, G.; Lories, R.; Brown, M.A.; Ciccia, F. Ankylosing spondylitis: An autoimmune or autoinflammatory disease? Nat. Rev. Rheumatol. 2021, 17, 387–404. [Google Scholar] [CrossRef]
Patients n = 34 | Controls n = 70 | |
---|---|---|
Sex | 30 Male | 70 Male |
4 Female | 0 Female | |
Age * | 47.9 ± 13.02 | 20.75 ± 1.86 |
BASDAI * (0–10) | 3.62 ± 1.92 | ND |
CRP * (mg/dL) | 79.75 ± 58.11 | ND |
Treatment | ||
Sulfasalazine n (%) | 31 (89) | - |
Indometacine n (%) | 22 (63) | - |
Metrotexate n (%) | 19 (54) | - |
Prednisone n (%) | 15 (43) | - |
Others n (%) | 30 (86) | - |
Patients | Controls | OR | p-Value | |
---|---|---|---|---|
n (%) | n (%) | (95% CI) | ||
rs763361 | ||||
Codominant | ||||
CC | 20 (59) | 25 (36) | 1.00 | |
CT | 9 (27) | 33 (47) | 0.34 (0.13–0.88) | 0.022 ** |
TT | 5 (14) | 12 (17) | 0.52 (0.16–1.73) | 0.281 |
Dominant | ||||
CC | 20 (59) | 25 (36) | 1.00 | |
CT + TT | 14 (41) | 45 (64) | 0.39 (0.17–0.90) | 0.025 * |
Recessive | ||||
CC + CT | 29 (85) | 58 (83) | 1.00 | 0.752 |
TT | 5 (15) | 12 (17) | 0.83 (0.27–2.59) | |
Additive | ||||
C | 49 | 83 | 1 | |
T | 19 | 57 | 0.56 (0.30–1.05) | 0.072 |
rs727088 | ||||
Codominant | ||||
AA | 28 (82) | 61 (87) | 1.00 | |
GA | 1 (3) | 5 (7) | 0.44 (0.05–3.91) | 0.581 |
GG | 5 (15) | 4 (6) | 2.72 (0.68–10.92) | 0.144 |
Dominant | ||||
AA | 28 (82) | 61 (87) | 1.00 | 0.514 |
GA + GG | 6 (18) | 9 (13) | 1.45 (0.47–4.48) | |
Recessive | ||||
AA + GA | 29 (85) | 66 (94) | 1.00 | |
GG | 5 (15) | 4 (6) | 2.84 (0.71–11.37) | 0.126 |
Additive | ||||
A | 57 | 127 | 1.00 | |
G | 11 | 13 | 1.885 (0.79–4.46) | 0.144 |
rs763361 | rs727088 | Freq. | OR (95% CI) | p-Value |
---|---|---|---|---|
C | A | 0.6346 | 1 | ---- |
T | A | 0.25 | 0.31 (0.13–0.73) | 0.0085 ** |
T | G | 0.1154 | 1.05 (0.53–2.09) | 0.89 |
Global haplotypes associated p < 0.0071 * | ||||
SNPs | D’ | r | p-value | |
rs763361–rs727088 | 0.9994 | 0.4757 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Reyes, A.; Zambrano-Zaragoza, J.F.; Agraz-Cibrián, J.M.; Ayón-Pérez, M.F.; Gutiérrez-Silerio, G.Y.; Del Toro-Arreola, S.; Alejandre-González, A.G.; Ortiz-Martínez, L.; Haramati, J.; Tovar-Ocampo, I.C.; et al. Genetic Variant of DNAM-1 rs763361 C>T Is Associated with Ankylosing Spondylitis in a Mexican Population. Curr. Issues Mol. Biol. 2024, 46, 2819-2826. https://doi.org/10.3390/cimb46040176
Vázquez-Reyes A, Zambrano-Zaragoza JF, Agraz-Cibrián JM, Ayón-Pérez MF, Gutiérrez-Silerio GY, Del Toro-Arreola S, Alejandre-González AG, Ortiz-Martínez L, Haramati J, Tovar-Ocampo IC, et al. Genetic Variant of DNAM-1 rs763361 C>T Is Associated with Ankylosing Spondylitis in a Mexican Population. Current Issues in Molecular Biology. 2024; 46(4):2819-2826. https://doi.org/10.3390/cimb46040176
Chicago/Turabian StyleVázquez-Reyes, Alejandro, José Francisco Zambrano-Zaragoza, Juan Manuel Agraz-Cibrián, Miriam Fabiola Ayón-Pérez, Gloria Yareli Gutiérrez-Silerio, Susana Del Toro-Arreola, Alan Guillermo Alejandre-González, Liliana Ortiz-Martínez, Jesse Haramati, Iris Celeste Tovar-Ocampo, and et al. 2024. "Genetic Variant of DNAM-1 rs763361 C>T Is Associated with Ankylosing Spondylitis in a Mexican Population" Current Issues in Molecular Biology 46, no. 4: 2819-2826. https://doi.org/10.3390/cimb46040176
APA StyleVázquez-Reyes, A., Zambrano-Zaragoza, J. F., Agraz-Cibrián, J. M., Ayón-Pérez, M. F., Gutiérrez-Silerio, G. Y., Del Toro-Arreola, S., Alejandre-González, A. G., Ortiz-Martínez, L., Haramati, J., Tovar-Ocampo, I. C., Victorio-De los Santos, M., & Gutiérrez-Franco, J. (2024). Genetic Variant of DNAM-1 rs763361 C>T Is Associated with Ankylosing Spondylitis in a Mexican Population. Current Issues in Molecular Biology, 46(4), 2819-2826. https://doi.org/10.3390/cimb46040176