Biochemical and Molecular Basis of Chemically Induced Defense Activation in Maize against Banded Leaf and Sheath Blight Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Layout of Experiments
2.2. Isolation of the Pathogen and Mass Multiplication of Inoculum
2.3. In Vitro Evaluation of Fungicides against Rhizoctonia solani f. sp. sasakii
2.4. Plant Inoculation with the Pathogen and Spray of Fungicides
2.5. Evaluation of Fungicides against BLSB Disease and Grain Yield
2.6. Assay of Enzyme Activity in Maize Plants Treated with Fungicides
2.7. Expression Study of Salicylic Acid (SA) and Jasmonic Acid (JA) Genes of Maize during Infection
2.8. Primer Validation, RNA Isolation, cDNA Synthesis, and qRT-PCR Analysis of Maize Genes
2.9. Statistical Analysis
3. Results
3.1. In Vitro Evaluation of Fungicides against Rhizoctonia solani f. sp. sasakii
3.2. Effect of Fungicides on BLSB Disease of Maize and Grain Yield
3.3. Estimation of Biochemical Defense-Related Enzymes in Maize Treated with Fungicides
3.4. Effects of Salicylic Acid and Jasmonic Acid Seed Priming on Expression of Defense-Related Genes in Maize
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of the United Nations. Production, Crops. 2018. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 5 April 2020).
- Saxena, S.C. Ear rot and banded leaf and sheath blight of maize. In Proceedings of the 20th Training “Seed Health Management for Better Productivity”, New Delhi, India, 28 March–17 April 2008; G. B. Pant University of Agriculture and Technology: Uttarakhand, India, 2008; pp. 119–123. Available online: https://docplayer.net/13170412-Indian-council-of-agricultural-research-new-delhi.html (accessed on 10 March 2018).
- Hochholdinger, F.; Tuberosa, R. Genetic and genomic dissection of maize root development and architecture. Curr. Opin. Plant Biol. 2009, 12, 172–177. [Google Scholar] [CrossRef]
- Singh, A.; Shahi, J.P. Banded leaf and sheath blight: An emerging disease of maize (Zea mays L). Maydica 2012, 57, 215–219. [Google Scholar]
- Devi, B.; Thakur, B.R. Integrated management of banded leaf and sheath blight of maize caused by Rhizoctonia solani f. sp. sasakii. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 769–777. [Google Scholar] [CrossRef]
- Anonymous. The Biology of Zea mays L. ssp mays (Maize or Corn). Office of the Gene Technology Regulator. 2017. Available online: https://www.ogtr.gov.au/resources/publications/biology-zea-mays-l-ssp-mays-maize-or-corn (accessed on 9 April 2019).
- Hooda, K.S.; Khokhar, M.K.; Parmar, H.; Gogoi, R.; Joshi, D.; Sharma, S.S.; Yadav, O.P. Banded leaf and sheath blight of maize: Historical perspectives, current status and future directions. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 87, 1041–1052. [Google Scholar] [CrossRef]
- Sharma, R.C.; Srinivas, P.; Basta, B.K. Banded leaf and sheath blight of maize its epidemiology and management. In Proceedings of a Maize Symposium; NARC and CIMMYT: Kathmandu, Nepal, 2002; pp. 108–112. [Google Scholar]
- Sharma, R.C. Banded leaf and sheath blight (Rhizoctonia solani f. sp sasakii) of maize. In Stresses of Maize in Tropics; Zaidi, P.H., Singh, N.N., Eds.; Director of Maize Research: Vishnupur, India, 2005; pp. 159–171. [Google Scholar]
- Rani, D.V.; Reddy, N.P.; Devi, U.G. Management of maize banded leaf and sheath blight with fungicides and biocontrol agents. Ann. Biol. Res. 2013, 4, 179–184. [Google Scholar]
- Ashraf, M.; Akram, N.A.; Arteca, R.N.; Foolad, M.R. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit. Rev. Plant Sci. 2010, 29, 162–190. [Google Scholar] [CrossRef]
- Sakhabutdinova, A.R.; Fatkhutdinova, D.R.; Shakirova, F.M. Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. Appl. Biochem. Microbiol. 2004, 40, 501–505. [Google Scholar] [CrossRef]
- Kumar, R.R.; Sharma, S.K.; Goswami, S.; Singh, K.; Gadpayle, K.A.; Singh, G.P.; Pathak, H.; Rai, R.D. Transcript profiling and biochemical characterization of mitochondrial superoxide dismutase (mtSOD) in wheat (Triticum aestivum) under different exogenous stresses. Aust. J. Crop Sci. 2013, 7, 414–424. [Google Scholar]
- Kaya, C.; Ugurlar, F.; Ashraf, M.; Ahmad, P. Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. Plant Physiol. Biochem. 2023, 196, 431–443. [Google Scholar] [CrossRef]
- Wang, Y.; Mostafa, S.; Zeng, W.; Jin, B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int. J. Mol. Sci. 2021, 22, 8568. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.M.; Kachroo, A.; Kachroo, P. Chemical inducers of systemic immunity in plants. J. Exp. Bot. 2014, 65, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Jabnoun-Khiareddine, H.; El-Mohamedy, R.S.; Abdel-Kareem, F.; Abdallah, R.A.; Gueddes-Chahed, M.; Daami-Remadi, M. Variation in chitosan and salicylic acid efficacy towards soil-borne and air-borne fungi and their suppressive effect of tomato wilt severity. J. Plant Pathol. Microbiol. 2015, 6, 2. [Google Scholar]
- Liu, H.; Carvalhais, L.C.; Schenk, P.M.; Dennis, P.G. Effects of jasmonic acid signalling on the wheat microbiome differs between body sites. Sci. Rep. 2017, 7, 41766. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Singh, A.; Kamal, A. Salicylic acid–mediated defense mechanisms to abiotic stress tolerance. In Plant Signaling Molecules; Woodhead Publishing: Cambridge, UK, 2019; pp. 355–369. [Google Scholar]
- Mohammed, A. Effects of Amistar and Dithane M-45, a systemic fungicide, on growth parameters and antioxidative enzymes of Maize (Zea mays L.). Res. Rev. J. Bot. Sci. 2014, 3, 13–19. [Google Scholar]
- Mohammadi, M.A.; Cheng, Y.; Aslam, M.; Jakada, B.H.; Wai, M.H.; Ye, K.; He, X.; Luo, T.; Ye, L.; Dong, C.; et al. ROS and oxidative response systems in plants under biotic and abiotic stresses: Revisiting the crucial role of phosphite triggered plants defense response. Front. Microbiol. 2021, 12, 631318. [Google Scholar] [CrossRef] [PubMed]
- Maschietto, V.; Lanubile, A.; De Leonardis, S.; Marocco, A.; Paciolla, C. Constitutive expression of pathogenesis-related proteins and antioxydant enzyme activities triggers maize resistance towards Fusarium verticillioides. J. Plant Physiol. 2016, 200, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Meshram, S.; Gogoi, R.; Bashyal, B.M.; Kumar, A.; Mandal, P.K.; Hossain, F. Expression analysis of maize genes during Bipolaris maydis infection and assessing their role in disease resistance and symptom development. Indian J. Biotechnol. 2020, 19, 82–93. [Google Scholar]
- Rajput, V.D.; Harish Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; Mandzhieva, S. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Meshram, S.; Patel, J.S.; Yadav, S.K.; Kumar, G.; Singh, D.P.; Singh, H.B.; Sarma, B.K. Trichoderma mediate early and enhanced lignifications in chickpea during Fusarium oxysporum f. sp. ciceris infection. J. Basic. Microbiol. 2019, 59, 74–86. [Google Scholar] [CrossRef]
- Gajewska, E.; Słaba, M.; Andrzejewska, R.; Skłodowska, M. Nickel-induced inhibition of wheat root growth is related to H2O2 production, but not to lipid peroxidation. Plant Growth Regul. 2006, 49, 95–103. [Google Scholar]
- MacDonald, M.J.; D’Cunha, G.B. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 2007, 85, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, F.; Heidari, R.; Jameii, R.; Purakbar, L. Responses of growth and antioxidative enzymes to various concentrations of nickel in Zea mays leaves and roots. Rom. J. Biol. Plant Biol. 2013, 58, 37–49. [Google Scholar]
- Tripathi, D.; Raikhy, G.; Kumar, D. Chemical elicitors of systemic acquired resistance—Salicylic acid and its functional analogs. Curr. Plant Biol. 2019, 17, 48–59. [Google Scholar] [CrossRef]
- Oostendorp, M.; Kunz, W.; Dietrich, B.; Staub, T. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 2001, 107, 19–28. [Google Scholar] [CrossRef]
- Saleem, M.; Fariduddin, Q.; Castroverde, C.D. Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiol. Biochem. 2021, 168, 381–397. [Google Scholar] [CrossRef]
- Zhang, S.W.; Yang, Y.; Wu, Z.M.; Li, K.T. Induced defense responses against Rhizoctonia solani in rice seedling by a novel antifungalmycin N2 from Streptomyces sp. N2. Australas. Plant Pathol. 2020, 49, 267–276. [Google Scholar] [CrossRef]
- Littlejohn, G.R.; Breen, S.; Smirnoff, N.; Grant, M. Chloroplast immunity illuminated. New Phytol. 2021, 229, 3088–3107. [Google Scholar] [CrossRef] [PubMed]
- Kora, A.J.; Mounika, J.; Jagadeeshwar, R. Rice leaf extract synthesized silver nanoparticles: An in vitro fungicidal evaluation against Rhizoctonia solani, the causative agent of sheath blight disease in rice. Fungal Biol. 2020, 124, 671–681. [Google Scholar] [CrossRef]
- Burgess, L.W.; Phan, H.T.; Knight, T.E.; Tesoriero, L. Diagnostic Manual for Plant Diseases in Vietnam; Australian Centre for International Agricultural Research: Canberra, Australia, 2008.
- Ahuja, S.C.; Payak, M.M. A field inoculation technique for evaluating maize germplasm to banded leaf and sheath blight. Indian Phytopathol. 1978, 31, 517–520. [Google Scholar]
- Vincent, J.M. Distortion of fungal hyphae in the presence of certain inhibitors. Nature 1947, 159, 850. [Google Scholar] [CrossRef] [PubMed]
- Payak, M.M.; Sharma, R.C. Disease rating scales in maize in India. In Techniques of Scoring for Resistance to Important Diseases of Maize; Indian Agricultural Research Institute: New Delhi, India, 1983; pp. 1–4. [Google Scholar]
- Ahuja, S.C.; Payak, M.M. A rating scale for banded leaf and sheath blight of maize. Indian Phytopathol. 1983, 36, 338–340. [Google Scholar]
- McKinney, H.H. A new system of grading plant diseases. J. Agric. Res. 1923, 26, 195–218. [Google Scholar]
- Chikkappa, G.K. Genetic and Molecular Characterization of Early Maize (Zea mays L.) Parental Lines and Their Hybrids. Master’s Thesis, Division of Genetics, Indian Agricultural Research Institute, New Delhi, India, 2005; pp. 22–23. [Google Scholar]
- Dhindsa, R.S.; Plumb-Dhindsa, P.A.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Aebi, H. [13] Catalase in vitro. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Castillo, F.J.; Penel, C.; Greppin, H. Peroxidase release induced by ozone in Sedum album leaves: Involvement of Ca2+. Plant Physiol. 1984, 74, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Koukol, J.; Conn, E.E. The metabolism of aromatic compounds in higher plants: IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J. Biol. Chem. 1961, 236, 2692–2698. [Google Scholar] [CrossRef] [PubMed]
- Zucker, M. Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiol. 1965, 40, 779. [Google Scholar] [CrossRef]
- Macri’, F.; Di Lenna, P.; Vianello, A. Preliminary Research on Peroxidase, Polyphenoloxidase Activity and Phenol Content in Healthy and Infected Corn Leaves, Susceptible and Resistant to Helminthosporium maydis Race, T. Riv. Patol. Veg. 1974, 10, 109–121. [Google Scholar]
- Abeles, F.B.; Forrence, L.E. Temporal and hormonal control of β-1,3-glucanase in Phaseolus vulgaris L. Plant Physiol. 1970, 45, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.G.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.A.; Tingey, S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18, 6531–6535. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Mahapatra, S.; Khandual, A.; Koshale, K.; Mukherjee, A. Impact of fungicides on Rhizoctonia solani Kuhn causing sheath blight disease of rice. Int. J. Chem. Stud. 2020, 8, 2759–2762. [Google Scholar] [CrossRef]
- Rajput, L.S. Studies on Banded Leaf and Sheath Blight of Maize Caused by Rhizoctonia solani f. sp. sasakii EXNER. Ph.D. Thesis, University of Agricultural Sciences, Dharwad, India, 2013. [Google Scholar]
- Meyer, M.C.; Bueno, C.J.; De Souza, N.L.; Yorinori, J.T. Effect of doses of fungicides and plant resistance activators on the control of Rhizoctonia foliar blight of soybean, and on Rhizoctonia solani AG1–IA in vitro development. Crop Prot. 2006, 25, 848–854. [Google Scholar] [CrossRef]
- Utiamada, C.M. Eficiencia de fungicidas em aplicacao foliar no controle da mela (Tanatephorus cucumeris/Rhizoctonia solani), na cultura da soja. In Proceedings of the Reuniao de Pesquisa de Soja Da Regiao Central Do Brasil, Cuiaba, Brazil, 28–30 August 2000; Resumos. Embrapa Soja: Cuiaba, Brazil, 2000. [Google Scholar]
- Miranda, V.D.; Porto, W.F.; Fernandes, G.D.; Pogue, R.; Nolasco, D.O.; Araujo, A.C.; Cota, L.V.; Freitas, C.G.; Dias, S.C.; Franco, O.L. Comparative transcriptomic analysis indicates genes associated with local and systemic resistance to Colletotrichum graminicola in maize. Sci. Rep. 2017, 7, 2483. [Google Scholar] [CrossRef] [PubMed]
- Rudić, J.; Dragićević, M.B.; Momčilović, I.; Simonović, A.D.; Pantelić, D. In Silico study of superoxide dismutase gene family in potato and effects of elevated temperature and salicylic acid on gene expression. Antioxidants 2022, 11, 488. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Sui, Y.; Yu, C.; Wang, X.; Zhang, W.; Wang, B.; Yan, J.; Duan, L. Coronatine-Induced Maize Defense against Gibberella Stalk Rot by Activating Antioxidants and Phytohormone Signaling. J. Fungi 2023, 9, 1155. [Google Scholar] [CrossRef] [PubMed]
- Ghorbel, M.; Brini, F.; Sharma, A.; Landi, M. Role of jasmonic acid in plants: The molecular point of view. Plant Cell Rep. 2021, 40, 1471–1494. [Google Scholar] [CrossRef]
- Huang, H.; Ullah, F.; Zhao, Y. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 2019, 10, 440478. [Google Scholar] [CrossRef]
- Vanacore, M.F.; Sartori, M.; Giordanino, F.; Barros, G.; Nesci, A.; García, D. Physiological Effects of Microbial Biocontrol Agents in the Maize Phyllosphere. Plants 2023, 12, 4082. [Google Scholar] [CrossRef]
- Yan, Y.; Christensen, S.; Isakeit, T.; Engelberth, J.; Meeley, R.; Hayward, A.; Emery, R.N.; Kolomiets, M.V. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 2012, 24, 1420–1436. [Google Scholar] [CrossRef] [PubMed]
- Battilani, P.; Lanubile, A.; Scala, V.; Reverberi, M.; Gregori, R.; Falavigna, C.; Dall’asta, C.; Park, Y.S.; Bennett, J.; Borrego, E.J.; et al. Oxylipins from both pathogen and host antagonize jasmonic acid-mediated defence via the 9-lipoxygenase pathway in Fusarium verticillioides infection of maize. Mol. Plant Pathol. 2018, 19, 2162–2176. [Google Scholar] [CrossRef] [PubMed]
- Gorman, Z.; Christensen, S.A.; Yan, Y.; He, Y.; Borrego, E.; Kolomiets, M.V. Green leaf volatiles and jasmonic acid enhance susceptibility to anthracnose diseases caused by Colletotrichum graminicola in maize. Mol. Plant Pathol. 2020, 21, 702–715. [Google Scholar] [CrossRef] [PubMed]
S. No. | Common Name and (a.i. Formulation) | Trade Name | Chemical Name | Empirical Formula | Source |
---|---|---|---|---|---|
1 | Hexaconazole 5% SC | Contaf Plus | 2-(2,4-Dichlorophenyl)-1-(1H-1,2,4-triazol-1-yl) hexan-2-ol | C14H17Cl2N3O | TATA Rallis India |
2 | Carbendazim 50% (w/w) WP | Bavistin | Methyl 1-2 benzimidazole carbamate | C9H9N3O2 | BASF India |
3 | Validamycin 3% (w/w) L | Sheathmar-3 | 2,3-Dihydroxy-6 (hydroxymethyl)-4-[-4,5,6-trihydroxy 3 (hydroxymethyl) cyclohex-2-en-1 yl] amino cyclohexyl β-D glucopyranoside. | C20H35NO13 | Dhanuka Agritech |
4 | Tebuconazole 25.9% (m/m) EC | Folicur | 1-(4-Chlorophenyl)-4,4-dimethyl-3-(1H, 1,2,4-triazol-1-ylmethyl) pentan-3-ol | C16H22ClN3O | Bayer Crop Science |
5 | Trifloxystrobin 25% + Tebuconazole 50% (m/m) WG | Nativo | Benzeneacetic acid, (E,E)-alpha-(methoxylmino)-2-((((1-(3-trifluoromethyl) phenyl) ethylidene) amino) oxy) methy)-,methyl ester methyl (E)-2-[2-[6- | C20H19F3N2O4 and C16H22ClN3O | Bayer Crop Science |
6 | Azoxystrobin 23% (w/w) SC | Amistar | (2-Cyanophenoxy) pyrimidin-4-yl] oxyphenyl]-3-methoxyprop-2-enoate | C22H17N3O5 | Syngenta India |
7 | Pencycuron 22.9% (w/w) | Monceren | 1-(4-chlorbenzyl)-1-cyclopentyl-3-phenylurea | C19H21ClN2O | Bayer Crop Science |
PDI | AUDPC | Disease Severity (According to 1–5 Scale) |
---|---|---|
20.0 | 1050 | Resistant (R) (Score: ≤2.0) (1 to 1.5) (PDI ≤ 40.0) |
30.0 | ||
50.0 | 1575 | Moderately resistant (MR) (Score: 2.1–3.0) (PDI 40.1–60.0) |
60.0 | ||
70.0 | 2175 | Moderately susceptible (MS) (Score:3.1–4.0) (PDI 60.1–80.0) |
80.0 | ||
90.0 | 2775 | Susceptible (S) (Score: ≥4.0) (PDI ≥ 80.0) |
100.0 |
Gene | Primer Details (5′-3′) | Size (bp) | Accession No |
---|---|---|---|
Superoxide dismutase | ZM_SOD (F *) 5′-AGT CAC CCA CCC CAT CCA AG-3′ | 146 | NC_050102.1 |
ZM_SOD (R #) 5′-GTG CGG AGG AAT AGG GAG C-3′ | |||
β-1,3 glucanase | ZM_Glucan (F) 5′-ATG GCG AGG CAG GGT GTC-3′ | 188 | NC_050098.1 |
ZM_Glucan (R) 5′-ACG CCG ATG GAT TGG ACT C-3′ | |||
Polyphenol oxidase | ZM_PPO (F) 5′-CGT CCA AGA AGA CCA CCG T-3′ | 146 | NC_050105.1 |
ZM_PPO (R) 5′-ACT GGA CAG GCC GTT GAG CA-3′ | |||
Ascorbate peroxidase | ZM_APX (F) 5′-ACC ATG AAG ACC CCC GTC GA-3′ | 118 | |
ZM_APX (R) 5′-GGT AGA AGT CAG CGT AGG ATA G-3′ | NC_050100.1 | ||
Catalase | ZM_CAT (F) 5′-ACG TGC GCC GAC TTC CTG-3′ | 180 | |
ZM_CAT (R) 5′-GAA GAA GAC GGG GAA GTT GTT-3′ | NC_050099.1 | ||
Phenylalanine ammonialyase | ZM_PAL (F) 5′-TCG AAC TGC AAC CGA AAG A-3′ | 108 | NC_050096.1 |
ZM_PAL (R) 5′-CAG CCA GGA TTG CCA GAA TA-3′ |
Treatments | Fungicides | Potato Dextrose Agar (PDA) | Potato Dextrose Broth (PDB) | ||||||
---|---|---|---|---|---|---|---|---|---|
Radial Growth * (mm) at | Inhibition (%) at | Radial Growth * (mm) at | Inhibition (%) at (500 ppm) | Mycelial Weight * (mg) at | Reduction (%) at (1000 ppm) | Mycelial Weight * (mg) at | Reduction (%) at (500 ppm) | ||
(1000 ppm) | (1000 ppm) | (500 ppm) | (1000 ppm) | (500 ppm) | |||||
T1 | Hexaconazole | 0 | 100 | 0 | 100.00 (90.00) | 0 | 100.00 (90.00) # | 0 | 100.00 (90.00) |
(90.00) # | |||||||||
T2 | Carbendazim | 0 | 100 | 13.5 | 84.63 (66.94) | 0 | 100.00 (90.00) | 0 | 100.00 (90.00) |
−90 | |||||||||
T3 | Validamycin | 0 | 100 | 0 | 100.00 (90.00) | 0 | 100.00 (90.00) | 0 | 100.00 (90.00) |
−90 | |||||||||
T4 | Tebuconazole | 0 | 100 | 0 | 100.00 (90.00) | 0 | 100.00 (90.00) | 0 | 100.00 (90.00) |
−90 | |||||||||
T5 | Tri. + Teb. (Nativo) | 0 | 100 | 0 | 100.00 (90.00) | 0 | 100.00 (90.00) | 0 | 100.00 (90.00) |
−90 | |||||||||
T6 | Azoxystrobin | 0 | 100 | 13.83 | 92.19 (76.67) | 0 | 100.00 (90.00) | 0 | 100.00 (90.00) |
−90 | |||||||||
T7 | Pencycuron | 43.17 | 52.04 | 46.33 | 48.52 (44.12) | 15.17 | 95.3 | 23.7 | 94.71 |
−46.2 | −77.46 | −76.78 | |||||||
T8 | Control (untreated) | 90 | 0 | 90 | 0 | 324.27 | 0 | 461.87 | 0 |
0 | 0 | 0 | 0 | ||||||
C. D. (5%) | -- | 5.05 | -- | 7.61 | -- | 0.32 | -- | 1.3 | |
C. V. | -- | 3.95 | -- | 6.37 | -- | 0.24 | -- | 0.96 |
Tr. | Fungicide | Lesion Length * (cm) | Disease Score * (1–5 Scale) | PDI * (%) | Yield π (Q/ha) |
---|---|---|---|---|---|
T1 | Hexaconazole (0.1%) | 45.76 | 3.41 | 68.27 (56.44) # | 49.44 |
T2 | Carbendazim (0.1%) | 36.72 | 3.49 | 69.72 (57.01) | 50.16 |
T3 | Validamycin (0.1%) | 33.94 | 3.23 | 64.55 (53.56) | 53.93 |
T4 | Tebuconazole (0.05%) | 32.22 | 3.14 | 62.79 (52.62) | 56.61 |
T5 | Trifloxystrobin + Tebuconazole (0.05%) | 37.20 | 2.97 | 59.36 (50.38) | 48.66 |
T6 | Azoxystrobin (0.05%) | 31.24 | 2.81 | 56.20 (48.61) | 58.35 |
T7 | Pencycuron (0.1%) | 44.83 | 3.91 | 77.73 (62.01) | 47.12 |
T8 | Control (water) | 55.38 | 5.12 | 95.10 (77.20) | 44.93 |
C. D. (5%) | 12.42 | 1.19 | 14.60 | N/A | |
C. V. | 17.71 | 19.19 | 14.43 | 28.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamidi, S.M.; Meshram, S.; Kumar, A.; Singh, A.; Yadav, R.; Gogoi, R. Biochemical and Molecular Basis of Chemically Induced Defense Activation in Maize against Banded Leaf and Sheath Blight Disease. Curr. Issues Mol. Biol. 2024, 46, 3063-3080. https://doi.org/10.3390/cimb46040192
Hamidi SM, Meshram S, Kumar A, Singh A, Yadav R, Gogoi R. Biochemical and Molecular Basis of Chemically Induced Defense Activation in Maize against Banded Leaf and Sheath Blight Disease. Current Issues in Molecular Biology. 2024; 46(4):3063-3080. https://doi.org/10.3390/cimb46040192
Chicago/Turabian StyleHamidi, Shah Mahmood, Shweta Meshram, Aundy Kumar, Archana Singh, Rajbir Yadav, and Robin Gogoi. 2024. "Biochemical and Molecular Basis of Chemically Induced Defense Activation in Maize against Banded Leaf and Sheath Blight Disease" Current Issues in Molecular Biology 46, no. 4: 3063-3080. https://doi.org/10.3390/cimb46040192
APA StyleHamidi, S. M., Meshram, S., Kumar, A., Singh, A., Yadav, R., & Gogoi, R. (2024). Biochemical and Molecular Basis of Chemically Induced Defense Activation in Maize against Banded Leaf and Sheath Blight Disease. Current Issues in Molecular Biology, 46(4), 3063-3080. https://doi.org/10.3390/cimb46040192