The Role of Galectins in Asthma Pathophysiology: A Comprehensive Review
Abstract
:1. Introduction
2. Galectin-3
3. Galectin-9
4. Galectin-10
5. Other Galectins
5.1. Galectin-1
5.2. Galectin-7
5.3. Galectin-13
6. Summary
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reports—Global Initiative for Asthma—GINA. Available online: https://ginasthma.org/reports/ (accessed on 9 March 2024).
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2013, 43, 343–373. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Bafadhel, M.; Busse, W.W.; Casale, T.B.; Kocks, J.W.; Pavord, I.D.; Szefler, S.J.; Woodruff, P.G.; de Giorgio-Miller, A.; Trudo, F.; et al. An expert consensus framework for asthma remission as a treatment goal. J. Allergy Clin. Immunol. 2020, 145, 757–765. [Google Scholar] [CrossRef]
- Portacci, A.; Dragonieri, S.; Carpagnano, G.E. Super-Responders to Biologic Treatment in Type 2–High Severe Asthma: Passing Fad or a Meaningful Phenotype? J. Allergy Clin. Immunol. Pr. 2023, 11, 1417–1420. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Portacci, A.; Nolasco, S.; Detoraki, A.; Vatrella, A.; Calabrese, C.; Pelaia, C.; Montagnolo, F.; Scioscia, G.; Valenti, G.; et al. Features of severe asthma response to anti-IL5/IL5r therapies: Identikit of clinical remission. Front. Immunol. 2024, 15, 1343362. [Google Scholar] [CrossRef] [PubMed]
- Vianello, A.; Guarnieri, G.; Achille, A.; Lionello, F.; Lococo, S.; Zaninotto, M.; Caminati, M.; Senna, G. Serum biomarkers of remodeling in severe asthma with fixed airway obstruction and the potential role of KL-6. Clin. Chem. Lab. Med. (Cclm) 2023, 61, 1679–1687. [Google Scholar] [CrossRef]
- Gordon, E.D.; Sidhu, S.S.; Wang, Z.; Woodruff, P.G.; Yuan, S.; Solon, M.C.; Conway, S.J.; Huang, X.; Locksley, R.M.; Fahy, J.V. A protective role for periostin and TGF-β in IgE-mediated allergy and airway hyperresponsiveness. Clin. Exp. Allergy 2011, 42, 144–155. [Google Scholar] [CrossRef]
- Khalfaoui, L.; Symon, F.A.; Couillard, S.; Hargadon, B.; Chaudhuri, R.; Bicknell, S.; Mansur, A.H.; Shrimanker, R.; Hinks, T.S.C.; Pavord, I.D.; et al. Airway remodelling rather than cellular infiltration characterizes both type2 cytokine biomarker-high and -low severe asthma. Allergy 2022, 77, 2974–2986. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.N. Galectinomics: Finding themes in complexity. Biochim. et Biophys. Acta (BBA) Gen. Subj. 2002, 1572, 209–231. [Google Scholar] [CrossRef]
- Thiemann, S.; Baum, L.G. Galectins and Immune Responses—Just How Do They Do Those Things They Do? Annu. Rev. Immunol. 2016, 34, 243–264. [Google Scholar] [CrossRef] [PubMed]
- Hirani, N.; MacKinnon, A.C.; Nicol, L.; Ford, P.; Schambye, H.; Pedersen, A.; Nilsson, U.J.; Leffler, H.; Sethi, T.; Tantawi, S.; et al. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 2020, 57, 2002559. [Google Scholar] [CrossRef] [PubMed]
- Portacci, A.; Diaferia, F.; Santomasi, C.; Dragonieri, S.; Boniello, E.; Di Serio, F.; Carpagnano, G.E. Galectin-3 as prognostic biomarker in patients with COVID-19 acute respiratory failure. Respir. Med. 2021, 187, 106556. [Google Scholar] [CrossRef] [PubMed]
- Gaughan, E.E.; Quinn, T.M.; Mills, A.; Bruce, A.M.; Antonelli, J.; MacKinnon, A.C.; Aslanis, V.; Li, F.; O’connor, R.; Boz, C.; et al. An Inhaled Galectin-3 Inhibitor in COVID-19 Pneumonitis: A Phase Ib/IIa Randomized Controlled Clinical Trial (DEFINE). Am. J. Respir. Crit. Care Med. 2023, 207, 138–149. [Google Scholar] [CrossRef]
- Portacci, A.; Amendolara, M.; Quaranta, V.N.; Iorillo, I.; Buonamico, E.; Diaferia, F.; Quaranta, S.; Locorotondo, C.; Schirinzi, A.; Boniello, E.; et al. Can Galectin-3 be a reliable predictive biomarker for post-COVID syndrome development? Respir. Med. 2024, 226, 107628. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Sun, L.; Li, C.-F.; Wang, Y.-H.; Yao, J.; Li, H.; Yan, M.; Chang, W.-C.; Hsu, J.-M.; Cha, J.-H.; et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun. 2021, 12, 832. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Simpson, J.L.; Zhang, J.; Gibson, P.G. Galectin-3: Its role in asthma and potential as an anti-inflammatory target. Respir. Res. 2013, 14, 136. [Google Scholar] [CrossRef]
- Tomizawa, H.; Yamada, Y.; Arima, M.; Miyabe, Y.; Fukuchi, M.; Hikichi, H.; Melo, R.C.N.; Yamada, T.; Ueki, S. Galectin-10 as a Potential Biomarker for Eosinophilic Diseases. Biomolecules 2022, 12, 1385. [Google Scholar] [CrossRef] [PubMed]
- Riccio, A.M.; Mauri, P.; De Ferrari, L.; Rossi, R.; Di Silvestre, D.; Benazzi, L.; Chiappori, A.; Negro, R.W.D.; Micheletto, C.; Canonica, G.W. Galectin-3: An early predictive biomarker of modulation of airway remodeling in patients with severe asthma treated with omalizumab for 36 months. Clin. Transl. Allergy 2017, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Fibbens, N.L.; Powell, H.; Cowan, D.C.; Taylor, D.R.; Cowan, J.O.; Gibson, P.G. Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J. Allergy Clin. Immunol. 2014, 133, 997–1007. [Google Scholar] [CrossRef]
- Zuberi, R.I.; Hsu, D.K.; Kalayci, O.; Chen, H.-Y.; Sheldon, H.K.; Yu, L.; Apgar, J.R.; Kawakami, T.; Lilly, C.M.; Liu, F.-T. Critical Role for Galectin-3 in Airway Inflammation and Bronchial Hyperresponsiveness in a Murine Model of Asthma. Am. J. Pathol. 2004, 165, 2045–2053. [Google Scholar] [CrossRef]
- Ge, N.X.; Bahaie, N.S.; Na Kang, B.; Hosseinkhani, M.R.; Gil Ha, S.; Frenzel, E.M.; Liu, F.-T.; Rao, S.P.; Sriramarao, P. Allergen-Induced Airway Remodeling Is Impaired in Galectin-3–Deficient Mice. J. Immunol. 2010, 185, 1205–1214. [Google Scholar] [CrossRef]
- Mammen, M.J.; Sands, M.F.; Abou-Jaoude, E.; Aalinkeel, R.; Reynolds, J.L.; Parikh, N.U.; Sharma, U.; Schwartz, S.A.; Mahajan, S.D. Role of Galectin-3 in the pathophysiology underlying allergic lung inflammation in a tissue inhibitor of metalloproteinases 1 knockout model of murine asthma. Immunology 2017, 153, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Mammen, M.J.; Ali, J.; Aurora, A.; Sharma, U.C.; Aalinkeel, R.; Mahajan, S.D.; Sands, M.; Schwartz, S.A. IL-17 Is a Key Regulator of Mucin-Galectin-3 Interactions in Asthma. Int. J. Cell Biol. 2021, 2021, 9997625. [Google Scholar] [CrossRef]
- Schroeder, J.T.; Adeosun, A.A.; Bieneman, A.P. Epithelial Cell-Associated Galectin-3 Activates Human Dendritic Cell Subtypes for Pro-Inflammatory Cytokines. Front. Immunol. 2020, 11, 524826. [Google Scholar] [CrossRef] [PubMed]
- Erriah, M.; Pabreja, K.; Fricker, M.; Baines, K.J.; Donnelly, L.E.; Bylund, J.; Karlsson, A.; Simpson, J.L. Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir. Res. 2019, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- del Pozo, V.; Rojo, M.; Rubio, M.L.; Cortegano, I.; Cárdaba, B.; Gallardo, S.; Ortega, M.; Civantos, E.; López, E.; Martín-Mosquero, C.; et al. Gene Therapy with Galectin-3 Inhibits Bronchial Obstruction and Inflammation in Antigen-challenged Rats through Interleukin-5 Gene Downregulation. Am. J. Respir. Crit. Care Med. 2002, 166, 732–737. [Google Scholar] [CrossRef]
- López, E.; del Pozo, V.; Miguel, T.; Sastre, B.; Seoane, C.; Civantos, E.; Llanes, E.; Baeza, M.L.; Palomino, P.; Cárdaba, B.; et al. Inhibition of Chronic Airway Inflammation and Remodeling by Galectin-3 Gene Therapy in a Murine Model. J. Immunol. 2006, 176, 1943–1950. [Google Scholar] [CrossRef]
- Gao, P.; Gibson, P.G.; Baines, K.J.; A Yang, I.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Jenkins, C.; Peters, M.J.; et al. Anti-inflammatory deficiencies in neutrophilic asthma: Reduced galectin-3 and IL-1RA/IL-1β. Respir. Res. 2015, 16, 5. [Google Scholar] [CrossRef]
- Karlsson, A.; Christenson, K.; Matlak, M.; Björstad, Å.; Brown, K.L.; Telemo, E.; Salomonsson, E.; Leffler, H.; Bylund, J. Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology 2008, 19, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Mauri, P.; Riccio, A.M.; Rossi, R.; Di Silvestre, D.; Benazzi, L.; De Ferrari, L.; Negro, R.W.D.; Holgate, S.T.; Canonica, G.W. Proteomics of bronchial biopsies: Galectin-3 as a predictive biomarker of airway remodelling modulation in omalizumab-treated severe asthma patients. Immunol. Lett. 2014, 162, 2–10. [Google Scholar] [CrossRef]
- Riccio, A.M.; Mauri, P.; De Ferrari, L.; Rossi, R.; Di Silvestre, D.; Bartezaghi, M.; Saccheri, F.; Canonica, G.W. Plasma Galectin-3 and urine proteomics predict FEV1 improvement in omalizumab-treated patients with severe allergic asthma: Results from the PROXIMA sub-study. World Allergy Organ. J. 2020, 13, 100095. [Google Scholar] [CrossRef]
- Lv, R.; Bao, Q.; Li, Y. Regulation of M1-type and M2-type macrophage polarization in RAW264.7 cells by Galectin-9. Mol. Med. Rep. 2017, 16, 9111–9119. [Google Scholar] [CrossRef] [PubMed]
- Katoh, S.; Shimizu, H.; Obase, Y.; Oomizu, S.; Niki, T.; Ikeda, M.; Mouri, K.; Kobashi, Y.; Hirashima, M.; Oka, M. Preventive effect of galectin-9 on double-stranded RNA-induced airway hyperresponsiveness in an exacerbation model of mite antigen-induced asthma in mice. Exp. Lung Res. 2013, 39, 453–462. [Google Scholar] [CrossRef]
- Yamamoto, H.; Kashio, Y.; Shoji, H.; Shinonaga, R.; Yoshimura, T.; Nishi, N.; Nabe, T.; Nakamura, T.; Kohno, S.; Hirashima, M. Involvement of Galectin-9 in Guinea Pig Allergic Airway Inflammation. Int. Arch. Allergy Immunol. 2007, 143, 95–105. [Google Scholar] [CrossRef]
- Katoh, S.; Ishii, N.; Nobumoto, A.; Takeshita, K.; Dai, S.-Y.; Shinonaga, R.; Niki, T.; Nishi, N.; Tominaga, A.; Yamauchi, A.; et al. Galectin-9 Inhibits CD44–Hyaluronan Interaction and Suppresses a Murine Model of Allergic Asthma. Am. J. Respir. Crit. Care Med. 2007, 176, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Niki, T.; Tsutsui, S.; Hirose, S.; Aradono, S.; Sugimoto, Y.; Takeshita, K.; Nishi, N.; Hirashima, M. Galectin-9 Is a High Affinity IgE-binding Lectin with Anti-allergic Effect by Blocking IgE-Antigen Complex Formation. J. Biol. Chem. 2009, 284, 32344–32352. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Katoh, S.; Shimizu, H.; Hasegawa, A.; Ohashi-Doi, K.; Oka, M. Beneficial effects of Galectin-9 on allergen-specific sublingual immunotherapy in a Dermatophagoides farinae -induced mouse model of chronic asthma. Allergol. Int. 2017, 66, 432–439. [Google Scholar] [CrossRef]
- Sziksz, E.; Kozma, G.T.; Pállinger, É.; Komlósi, Z.I.; Ádori, C.; Kovács, L.; Szebeni, B.; Rusai, K.; Losonczy, G.; Szabó, A.; et al. Galectin-9 in Allergic Airway Inflammation and Hyper-Responsiveness in Mice. Int. Arch. Allergy Immunol. 2009, 151, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Cuellar, S.; de la Fuente, H.; Cruz-Adalia, A.; Lamana, A.; Cibrian, D.; Giron, R.M.; Vara, A.; Sanchez-Madrid, F.; Ancochea, J. Reduced expression of galectin-1 and galectin-9 by leucocytes in asthma patients. Clin. Exp. Immunol. 2012, 170, 365–374. [Google Scholar] [CrossRef]
- Katoh, S.; Nobumoto, A.; Matsumoto, N.; Matsumoto, K.; Ehara, N.; Niki, T.; Inada, H.; Nishi, N.; Yamauchi, A.; Fukushima, K.; et al. Involvement of Galectin-9 in Lung Eosinophilia in Patients with Eosinophilic Pneumonia. Int. Arch. Allergy Immunol. 2010, 153, 294–302. [Google Scholar] [CrossRef]
- Kubach, J.; Lutter, P.; Bopp, T.; Stoll, S.; Becker, C.; Huter, E.; Richter, C.; Weingarten, P.; Warger, T.; Knop, J.; et al. Human CD4+CD25+ regulatory T cells: Proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood 2007, 110, 1550–1558. [Google Scholar] [CrossRef]
- Melo, R.C.N.; Wang, H.; Silva, T.P.; Imoto, Y.; Fujieda, S.; Fukuchi, M.; Miyabe, Y.; Hirokawa, M.; Ueki, S.; Weller, P.F. Galectin-10, the protein that forms Charcot-Leyden crystals, is not stored in granules but resides in the peripheral cytoplasm of human eosinophils. J. Leukoc. Biol. 2020, 108, 139–149. [Google Scholar] [CrossRef]
- Persson, E.K.; Verstraete, K.; Heyndrickx, I.; Gevaert, E.; Aegerter, H.; Percier, J.-M.; Deswarte, K.; Verschueren, K.H.G.; Dansercoer, A.; Gras, D.; et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science 2019, 364, eaaw4295. [Google Scholar] [CrossRef]
- Fu, Y.-F.; Jiang, S.-C.; Zhang, Z.-W.; Yang, X.-Y.; Li, Z.-L.; Hu, J.; Yuan, S. Lactose and Galactose Promote the Crystallization of Human Galectin-10. Molecules 2023, 28, 1979. [Google Scholar] [CrossRef]
- Na, H.; Sayed, H.; Ayala, G.J.; Wang, X.; Liu, Y.; Yu, J.; Liu, T.; Mayo, K.H.; Su, J. Glutathione disrupts galectin-10 Charcot-Leyden crystal formation to possibly ameliorate eosinophil-based diseases such as asthma. Acta Biochim. Biophys. Sin. 2023, 55, 613–622. [Google Scholar] [CrossRef]
- Yoshimura, H.; Takeda, Y.; Shirai, Y.; Yamamoto, M.; Nakatsubo, D.; Amiya, S.; Enomoto, T.; Hara, R.; Adachi, Y.; Edahiro, R.; et al. Galectin-10 in serum extracellular vesicles reflects asthma pathophysiology. J. Allergy Clin. Immunol. 2024. [Google Scholar] [CrossRef]
- Lingblom, C.; Andersson, K.; Wennerås, C. Kinetic studies of galectin-10 release from eosinophils exposed to proliferating T cells. Clin. Exp. Immunol. 2020, 203, 230–243. [Google Scholar] [CrossRef]
- Manna, O.M.; La Grutta, S.; Malizia, V.; Fucarino, A.; Rappa, F.; Picone, D.; Fasola, S.; Profita, M.; Bucchieri, F.; Gagliardo, R. Role of Galectin-10 (Gal-10) in nasal epithelium inflammation and remodeling of children with seasonal allergic rhinitis (SAR). Eur. Respir. J. 2023, 62, PA4754. [Google Scholar] [CrossRef]
- Virkud, Y.V.; Kelly, R.S.; Croteau-Chonka, D.C.; Celedón, J.C.; Dahlin, A.; Avila, L.; Raby, B.A.; Weiss, S.T.; Lasky-Su, J.A. Novel eosinophilic gene expression networks associated with IgE in two distinct asthma populations. Clin. Exp. Allergy 2018, 48, 1654–1664. [Google Scholar] [CrossRef]
- Nyenhuis, S.M.; Alumkal, P.; Du, J.; Maybruck, B.T.; Vinicky, M.; Ackerman, S.J. Charcot–Leyden crystal protein/galectin-10 is a surrogate biomarker of eosinophilic airway inflammation in asthma. Biomark. Med. 2019, 13, 715–724. [Google Scholar] [CrossRef]
- Rodríguez-Alcázar, J.F.; Ataide, M.A.; Engels, G.; Schmitt-Mabmunyo, C.; Garbi, N.; Kastenmüller, W.; Latz, E.; Franklin, B.S. Charcot–Leyden Crystals Activate the NLRP3 Inflammasome and Cause IL-1β Inflammation in Human Macrophages. J. Immunol. 2019, 202, 550–558. [Google Scholar] [CrossRef]
- Kobayashi, K.; Nagase, H.; Sugimoto, N.; Yamamoto, S.; Tanaka, A.; Fukunaga, K.; Atsuta, R.; Tagaya, E.; Hojo, M.; Gon, Y.; et al. Mepolizumab decreased the levels of serum galectin-10 and eosinophil cationic protein in asthma. Asia Pac. Allergy 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Devouassoux, G.; Pachot, A.; Laforest, L.; Diasparra, J.; Freymond, N.; Van Ganse, E.; Mougin, B.; Pacheco, Y. Galectin-10 mRNA is overexpressed in peripheral blood of aspirin-induced asthma. Allergy 2007, 63, 125–131. [Google Scholar] [CrossRef]
- Gevaert, E.; Delemarre, T.; De Volder, J.; Zhang, N.; Holtappels, G.; De Ruyck, N.; Persson, E.; Heyndrickx, I.; Verstraete, K.; Aegerter, H.; et al. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis. J. Allergy Clin. Immunol. 2019, 145, 427–430. [Google Scholar] [CrossRef]
- Rabinovich, G.A.; Sotomayor, C.E.; Riera, C.M.; Bianco, I.; Correa, S.G. Evidence of a Role for Galectin-1 in Acute Inflammation. Eur. J. Immunol. 2000, 30, 1331–1339. [Google Scholar] [CrossRef]
- Perone, M.J.; Bertera, S.; Shufesky, W.J.; Divito, S.J.; Montecalvo, A.; Mathers, A.R.; Larregina, A.T.; Pang, M.; Seth, N.; Wucherpfennig, K.W.; et al. Suppression of Autoimmune Diabetes by Soluble Galectin-1. J. Immunol. 2009, 182, 2641–2653. [Google Scholar] [CrossRef]
- Yakushina, V.D.; Vasil’eva, O.A.; Ryazantseva, N.V.; Novitsky, V.V.; Tashireva, L.A. The effects of galectin-1 on the gene expression of the transcription factors TBX21, GATA-3, FOXP3 and RORC. Mol. Cell. Biochem. 2014, 398, 245–249. [Google Scholar] [CrossRef]
- Ge, N.X.; Gil Ha, S.; Greenberg, Y.G.; Rao, A.; Bastan, I.; Blidner, A.G.; Rao, S.P.; Rabinovich, G.A.; Sriramarao, P. Regulation of eosinophilia and allergic airway inflammation by the glycan-binding protein galectin-1. Proc. Natl. Acad. Sci. USA 2016, 113, E4837–E4846. [Google Scholar] [CrossRef]
- Pang, X.; Qiao, J. Galectin-1 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells through the inactivation of PI3K/Akt signaling pathway. Biosci. Rep. 2020, 40. [Google Scholar] [CrossRef] [PubMed]
- Sewgobind, N.V.; Albers, S.; Pieters, R.J. Functions and Inhibition of Galectin-7, an Emerging Target in Cellular Pathophysiology. Biomolecules 2021, 11, 1720. [Google Scholar] [CrossRef]
- Tian, J.; He, R.; Fan, Y.; Zhang, Q.; Tian, B.; Zhou, C.; Liu, C.; Song, M.; Zhao, S. Galectin-7 overexpression destroys airway epithelial barrier in transgenic mice. Integr. Zool. 2020, 16, 270–279. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, W. Silencing of Gal-7 inhibits TGF-β1-induced apoptosis of human airway epithelial cells through JNK signaling pathway. Exp. Cell Res. 2018, 375, 100–105. [Google Scholar] [CrossRef]
- Yi, L.; Zhang, S.; Feng, Y.; Wu, W.; Chang, C.; Chen, D.; Chen, S.; Zhao, J.; Zhen, G. Increased epithelial galectin-13 expression associates with eosinophilic airway inflammation in asthma. Clin. Exp. Allergy 2021, 51, 1566–1576. [Google Scholar] [CrossRef]
- Ho, M.K.; Springer, T.A. Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J. Immunol. 1982, 128, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.N.; Barondes, S.H. God must love galectins; He made so many of them. Glycobiology 1999, 9, 979–984. [Google Scholar] [CrossRef]
- Fujisawa, T.; Velichko, S.; Thai, P.; Hung, L.-Y.; Huang, F.; Wu, R. Regulation of Airway MUC5AC Expression by IL-1β and IL-17A; the NF-κB Paradigm. J. Immunol. 2009, 183, 6236–6243. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- McKinley, L.; Alcorn, J.F.; Peterson, A.; DuPont, R.B.; Kapadia, S.; Logar, A.; Henry, A.; Irvin, C.G.; Piganelli, J.D.; Ray, A.; et al. TH17 Cells Mediate Steroid-Resistant Airway Inflammation and Airway Hyperresponsiveness in Mice. J. Immunol. 2008, 181, 4089–4097. [Google Scholar] [CrossRef]
- Liu, F.-T.; Stowell, S.R. The role of galectins in immunity and infection. Nat. Rev. Immunol. 2023, 23, 479–494. [Google Scholar] [CrossRef]
- Sato, S.; Ouellet, N.; Pelletier, I.; Simard, M.; Rancourt, A.; Bergeron, M.G. Role of Galectin-3 as an Adhesion Molecule for Neutrophil Extravasation During Streptococcal Pneumonia. J. Immunol. 2002, 168, 1813–1822. [Google Scholar] [CrossRef]
- Snarr, B.D.; St-Pierre, G.; Ralph, B.; Lehoux, M.; Sato, Y.; Rancourt, A.; Takazono, T.; Baistrocchi, S.R.; Corsini, R.; Cheng, M.P.; et al. Galectin-3 enhances neutrophil motility and extravasation into the airways during Aspergillus fumigatus infection. PLOS Pathog. 2020, 16, e1008741. [Google Scholar] [CrossRef]
- Rao, S.P.; Na Ge, X.; Sriramarao, P. Regulation of Eosinophil Recruitment and Activation by Galectins in Allergic Asthma. Front. Med. 2017, 4, 68. [Google Scholar] [CrossRef]
- Alexander, W.S. Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2002, 2, 410–416. [Google Scholar] [CrossRef]
- López, E.; Zafra, M.P.; Sastre, B.; Gámez, C.; Lahoz, C.; del Pozo, V. Gene Expression Profiling in Lungs of Chronic Asthmatic Mice Treated with Galectin-3: Downregulation of Inflammatory and Regulatory Genes. Mediat. Inflamm. 2011, 2011, 1–9. [Google Scholar] [CrossRef]
- Iwasaki-Hozumi, H.; Chagan-Yasutan, H.; Ashino, Y.; Hattori, T. Blood Levels of Galectin-9, an Immuno-Regulating Molecule, Reflect the Severity for the Acute and Chronic Infectious Diseases. Biomolecules 2021, 11, 430. [Google Scholar] [CrossRef]
- Katoh, S.; Matsumoto, N.; Kawakita, K.; Tominaga, A.; Kincade, P.W.; Matsukura, S. A Role for CD44 in an Antigen-Induced Murine Model of Pulmonary Eosinophilia. J. Clin. Investig. 2003, 111, 1563–1570. [Google Scholar] [CrossRef]
- Inoue, H.; Fukuyama, S.; Matsumoto, K.; Kubo, M.; Yoshimura, A. Role of endogenous inhibitors of cytokine signaling in allergic asthma. Curr. Med. Chem. 2007, 14, 181–189. [Google Scholar] [CrossRef]
- Wiersma, V.R.; de Bruyn, M.; Helfrich, W.; Bremer, E. Therapeutic potential of Galectin-9 in human disease. Med. Res. Rev. 2011, 33, E102–E126. [Google Scholar] [CrossRef]
- Su, J. A Brief History of Charcot-Leyden Crystal Protein/Galectin-10 Research. Molecules 2018, 23, 2931. [Google Scholar] [CrossRef]
- Melo, R.C.N.; Weller, P.F. Contemporary understanding of the secretory granules in human eosinophils. J. Leukoc. Biol. 2018, 104, 85–93. [Google Scholar] [CrossRef]
- Lao, L.-M.; Kumakiri, M.; Nakagawa, K.; Ishida, H.; Ishiguro, K.; Yanagihara, M.; Ueda, K. The ultrastructural findings of Charcot-Leyden crystals in stroma of mastocytoma. J. Dermatol. Sci. 1998, 17, 198–204. [Google Scholar] [CrossRef]
- Zhou, Z.; Teneri, D.G.; Dvorak, A.M.; Ackerman, S.J. The gene for human eosinophil Charcot-Leyden crystal protein directs expression of lysophospholipase activity and spontaneous crystallization in transiently transfected COS cells. J. Leukoc. Biol. 1992, 52, 588–595. [Google Scholar] [CrossRef]
- Dyer, K.D.; Rosenberg, H.F. Eosinophil Charcot-Leyden crystal protein binds to beta-galactoside sugars. Life Sci. 1996, 58, 2073–2082. [Google Scholar] [CrossRef]
- Yousefi, S.; A Gold, J.; Andina, N.; Lee, J.J.; Kelly, A.M.; Kozlowski, E.; Schmid, I.; Straumann, A.; Reichenbach, J.; Gleich, G.J.; et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 2008, 14, 949–953. [Google Scholar] [CrossRef]
- Ueki, S.; Melo, R.C.N.; Ghiran, I.; Spencer, L.A.; Dvorak, A.M.; Weller, P.F. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 2013, 121, 2074–2083. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Ueki, S.; Kamide, Y.; Miyabe, Y.; Fukuchi, M.; Yokoyama, Y.; Furukawa, T.; Azuma, N.; Oka, N.; Takeuchi, H.; et al. Increased Circulating Cell-Free DNA in Eosinophilic Granulomatosis with Polyangiitis: Implications for Eosinophil Extracellular Traps and Immunothrombosis. Front. Immunol. 2022, 12, 801897. [Google Scholar] [CrossRef]
- De Re, V.; Simula, M.P.; Cannizzaro, R.; Pavan, A.; De Zorzi, M.A.; Toffoli, G.; Canzonieri, V. Galectin-10, Eosinophils, and Celiac Disease. Ann. N. Y. Acad. Sci. 2009, 1173, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Ueki, S.; Yamamoto, Y.; Nara, M.; Fukuchi, M.; Nakayama, K.; Omori, Y.; Takahashi, N.; Hirokawa, M. Hypereosinophilic syndrome with abundant Charcot-Leyden crystals in spleen and lymph nodes. Asia Pac. Allergy 2020, 10, e24. [Google Scholar] [CrossRef] [PubMed]
- Smart, C.; Brown, J.; Kocjan, G.; Proctor, I. Eosinophilic pleural effusion with Charcot–Leyden crystals in invasive aspergillosis. Cytopathology 2011, 23, 340–342. [Google Scholar] [CrossRef]
- Fukuchi, M.; Kamide, Y.; Ueki, S.; Miyabe, Y.; Konno, Y.; Oka, N.; Takeuchi, H.; Koyota, S.; Hirokawa, M.; Yamada, T.; et al. Eosinophil ETosis–Mediated Release of Galectin-10 in Eosinophilic Granulomatosis with Polyangiitis. Arthritis Rheumatol. 2021, 73, 1683–1693. [Google Scholar] [CrossRef]
- Farooque, S.P.; Lee, T.H. Aspirin-Sensitive Respiratory Disease. Annu. Rev. Physiol. 2009, 71, 465–487. [Google Scholar] [CrossRef]
- Dunican, E.M.; Elicker, B.M.; Gierada, D.S.; Nagle, S.K.; Schiebler, M.L.; Newell, J.D.; Raymond, W.W.; Lachowicz-Scroggins, M.E.; Di Maio, S.; Hoffman, E.A.; et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J. Clin. Investig. 2018, 128, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Aegerter, H.; Lambrecht, B.N. The Pathology of Asthma: What Is Obstructing Our View? Annu. Rev. Pathol. Mech. Dis. 2023, 18, 387–409. [Google Scholar] [CrossRef] [PubMed]
- Aegerter, H.; Smole, U.; Heyndrickx, I.; Verstraete, K.; Savvides, S.N.; Hammad, H.; Lambrecht, B.N. Charcot–Leyden crystals and other protein crystals driving type 2 immunity and allergy. Curr. Opin. Immunol. 2021, 72, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Linssen, R.S.; Chai, G.; Ma, J.; Kummarapurugu, A.B.; van Woensel, J.B.M.; Bem, R.A.; Kaler, L.; Duncan, G.A.; Zhou, L.; Rubin, B.K.; et al. Neutrophil Extracellular Traps Increase Airway Mucus Viscoelasticity and Slow Mucus Particle Transit. Am. J. Respir. Cell Mol. Biol. 2021, 64, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.J.; Heaney, L.G.; Humbert, M.; Kent, B.D.; Shavit, A.; Hiljemark, L.; Olinger, L.; Cohen, D.; Menzies-Gow, A.; Korn, S.; et al. Reduction of daily maintenance inhaled corticosteroids in patients with severe eosinophilic asthma treated with benralizumab (SHAMAL): A randomised, multicentre, open-label, phase 4 study. Lancet 2024, 403, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Scioscia, G.; Nolasco, S.; Campisi, R.; Quarato, C.M.I.; Caruso, C.; Pelaia, C.; Portacci, A.; Crimi, C. Switching Biological Therapies in Severe Asthma. Int. J. Mol. Sci. 2023, 24, 9563. [Google Scholar] [CrossRef]
- Campisi, R.; Nolasco, S.; Pelaia, C.; Impellizzeri, P.; D’amato, M.; Portacci, A.; Ricciardi, L.; Scioscia, G.; Crimi, N.; Scichilone, N.; et al. Benralizumab Effectiveness in Severe Eosinophilic Asthma with Co-Presence of Bronchiectasis: A Real-World Multicentre Observational Study. J. Clin. Med. 2023, 12, 3953. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portacci, A.; Iorillo, I.; Maselli, L.; Amendolara, M.; Quaranta, V.N.; Dragonieri, S.; Carpagnano, G.E. The Role of Galectins in Asthma Pathophysiology: A Comprehensive Review. Curr. Issues Mol. Biol. 2024, 46, 4271-4285. https://doi.org/10.3390/cimb46050260
Portacci A, Iorillo I, Maselli L, Amendolara M, Quaranta VN, Dragonieri S, Carpagnano GE. The Role of Galectins in Asthma Pathophysiology: A Comprehensive Review. Current Issues in Molecular Biology. 2024; 46(5):4271-4285. https://doi.org/10.3390/cimb46050260
Chicago/Turabian StylePortacci, Andrea, Ilaria Iorillo, Leonardo Maselli, Monica Amendolara, Vitaliano Nicola Quaranta, Silvano Dragonieri, and Giovanna Elisiana Carpagnano. 2024. "The Role of Galectins in Asthma Pathophysiology: A Comprehensive Review" Current Issues in Molecular Biology 46, no. 5: 4271-4285. https://doi.org/10.3390/cimb46050260
APA StylePortacci, A., Iorillo, I., Maselli, L., Amendolara, M., Quaranta, V. N., Dragonieri, S., & Carpagnano, G. E. (2024). The Role of Galectins in Asthma Pathophysiology: A Comprehensive Review. Current Issues in Molecular Biology, 46(5), 4271-4285. https://doi.org/10.3390/cimb46050260