Assessing Chitinases and Neurofilament Light Chain as Biomarkers for Adult-Onset Leukodystrophies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Individuals
2.2. Biological Samples
2.3. Brain MRI
2.4. CSF Analysis
2.5. Clinical Data Collection
2.6. Genetic Tests
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ALS | amyotrophic lateral sclerosis |
ALSFRS-R | Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised |
ALSP | adult-onset leukoencephalopathy with axonal spheroids and pigmented glia |
AMCase | acidic mammalian chitinase |
APBD | adult polyglucosan body disease |
BWA | Burrows-Wheeler Aligner |
CHI3L1 | chitinase 3-like 1 |
CHI3L2 | chitinase 3-like 2 |
CHIT/CHIT1 | chitotriosidase |
CJD | Creutzfeldt–Jakob disease |
CLPs | chitinase-like proteins |
CNS | central nervous system |
CSF | cerebrospinal fluid |
EDSS | Expanded Disability Status Scale |
ELISA | enzyme-linked immunosorbent assays |
FLAIR | fluid-attenuated inversion recovery |
FSS | Fatigue Severity Scale |
GAD-7 | 7-item Generalized Anxiety Disorder scale |
GATK | Genome Analysis ToolKit |
GD | Gaucher’s disease |
GFAP | glial fibrillary acidic protein |
GH | glycosyl hydrolase |
GlcNAc | N-acetyl-D-glucosamine |
HRQol | health-related quality of life |
IQR | interquartile range |
MCS | mental component summary |
MoCA | Montreal Cognitive Assessment |
MRI | magnetic resonance imaging |
NfL | neurofilament |
OPC | oligodendrocyte progenitor cells |
OVGP1 | oviductin-specific glycoprotein |
PCS | physical component summary |
PHQ-8 | 8-item Patient Health Questionnaire depression scale |
sALS | sporadic amyotrophic lateral sclerosis |
SF-12 | 12-item Short Form Survey |
SF-12v2 | SF-12 Health Survey Version 2 |
SI-CLP | stabilin-1-interacting CLP |
SNV | single-nucleotide variant |
SPRS | Spastic Paraplegia Rating Scale |
T2-WI | T2-weighted imaging |
TBI | traumatic brain injury |
TREM2 | triggering receptor expressed on myeloid cells 2 |
VEP | variant effect predictor |
WM | white matter |
References
- van der Knaap, M.S.; Schiffmann, R.; Mochel, F.; Wolf, N.I. Diagnosis, prognosis, and treatment of leukodystrophies. Lancet Neurol. 2019, 18, 962–972. [Google Scholar] [CrossRef] [PubMed]
- Vanderver, A.; Prust, M.; Tonduti, D.; Mochel, F.; Hussey, H.M.; Helman, G.; Garbern, J.; Eichler, F.; Labauge, P.; Aubourg, P.; et al. Case definition and classification of leukodystrophies and leukoencephalopathies. Mol. Genet. Metab. 2015, 114, 494–500. [Google Scholar] [CrossRef] [PubMed]
- van der Knaap, M.S.; Bugiani, M. Leukodystrophies: A proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol. 2017, 134, 351–382. [Google Scholar] [CrossRef] [PubMed]
- Stellitano, L.A.; Winstone, A.M.; van der Knaap, M.S.; Verity, C.M. Leukodystrophies and genetic leukoencephalopathies in childhood: A national epidemiological study. Dev. Med. Child. Neurol. 2016, 58, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Heim, P.; Claussen, M.; Hoffmann, B.; Conzelmann, E.; Gärtner, J.; Harzer, K.; Hunneman, D.H.; Köhler, W.; Kurlemann, G.; Kohlschütter, A. Leukodystrophy incidence in Germany. Am. J. Med. Genet. 1997, 71, 475–478. [Google Scholar] [CrossRef]
- Ashrafi, M.R.; Tavasoli, A.R. Childhood leukodystrophies: A literature review of updates on new definitions, classification, diagnostic approach and management. Brain Dev. 2017, 39, 369–385. [Google Scholar] [CrossRef]
- Wolf, N.I.; Ffrench-Constant, C.; van der Knaap, M.S. Hypomyelinating leukodystrophies—Unravelling myelin biology. Nat. Rev. Neurol. 2021, 17, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.; Tolliday, A.; Craven, I.; Connolly, D.J.A. An approach to reporting leukoencephalopathy and leukodystrophies. Clin. Radiol. 2023, 78, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Colonna, M.; Butovsky, O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu. Rev. Immunol. 2017, 35, 441–468. [Google Scholar] [CrossRef]
- Prinz, M.; Masuda, T.; Wheeler, M.A.; Quintana, F.J. Microglia and Central Nervous System-Associated Macrophages—From Origin to Disease Modulation. Annu. Rev. Immunol. 2021, 39, 251–277. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal. Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Muzio, L.; Viotti, A.; Martino, G. Microglia in Neuroinflammation and Neurodegeneration: From Understand to Therapy. Front. Neurosci. 2021, 15, 742065. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, I. The Primary Microglial Leukodystrophies: A Review. Int. J. Mol. Sci. 2022, 23, 6341. [Google Scholar] [CrossRef] [PubMed]
- Papapetropoulos, S.; Pontius, A.; Finger, E.; Karrenbauer, V.; Lynch, D.S.; Brennan, M.; Zappia, S.; Koehler, W.; Schoels, L.; Hayer, S.N.; et al. Adult-Onset Leukoencephalopathy with Axonal Spheroids and Pigmented Glia: Review of Clinical Manifestations as Foundations for Therapeutic Development. Front. Neurol. 2022, 12, 788168. [Google Scholar] [CrossRef]
- Konishi, H.; Kiyama, H. Microglial TREM2/DAP12 Signaling: A Double-Edge Sword in Neural Diseases. Front. Cell. Neurosci. 2018, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Qiao, W.; Li, F.; Ren, Y.; Zheng, J.; Martens, Y.A.; Wang, X.; Li, L.; Liu, C.-C.; Chen, K.; et al. Elevating microglia TREM2 reduces amyloid seeding and suppresses disease-associated microglia. J. Exp. Med. 2022, 219, e20212479. [Google Scholar] [CrossRef] [PubMed]
- Møllgaard, M.; Degn, M.; Sellebjerg, F.; Frederiksen, J.L.; Modvig, S. Cerebrospinal fluid chitinase-3-like-2 and chitotriosidase are potential prognostic biomarkers in early multiple sclerosis. Eur. J. Neurol. 2016, 23, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating neurological impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef]
- Servelhere, K.R.; Faber, I.; Coan, A.C.; França Junior, M. Translation and validation into Brazilian Portuguese of the Spastic Paraplegia Rating Scale (SPRS). Arq. Neuropsiquiatr. 2016, 74, 489–494. [Google Scholar] [CrossRef]
- Apolinario, D.; dos Santos, M.F.; Sassaki, E.; Pegoraro, F.; Pedrini, A.V.A.; Cestari, B.; Amaral, A.H.; Mitt, M.; Müller, M.B.; Suemoto, C.K.; et al. Normative data for the Montreal Cognitive Assessment (MoCA) and the Memory Index Score (MoCA-MIS) in Brazil: Adjusting the nonlinear effects of education with fractional polynomials. Int. J. Geriatr. Psychiatry 2018, 33, 893–899. [Google Scholar] [CrossRef]
- Guedes, K.; Pereira, C.; Pavan, K.; Valério, B.C.O. Cross-cultural adaptation and validation of als Functional Rating Scale-Revised in Portuguese language. Arq. Neuropsiquiatr. 2010, 68, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Strine, T.W.; Spitzer, R.L.; Williams, J.B.W.; Berry, J.T.; Mokdad, A.H. The PHQ-8 as a measure of current depression in the general population. J. Affect. Disord. 2009, 114, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Dickey, A.; Wheeden, K.; Lyon, D.; Burrell, S.; Hegarty, S.; Falchetto, R.; Williams, E.R.; Barman-Aksözen, J.; DeCongelio, M.; Bulkley, A.; et al. Quantifying the impact of symptomatic acute hepatic porphyria on well-being via patient-reported outcomes: Results from the Porphyria Worldwide Patient Experience Research (POWER) study. JIMD Rep. 2022, 64, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Alencar, M.A.; Soares, B.L.; Rangel, M.F.d.A.; Abdo, J.S.; de Almeida, R.A.P.; de Araújo, C.M.; de Souza, L.C.; Gomes, G.d.C. Fatigue in amyotrophic lateral sclerosis and correlated factors. Arq. Neuropsiquiatr. 2022, 80, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Maruish, M.E. (Ed.) User’s Manual for the SF-12v2 Health Survey, 3rd ed.; QualityMetric Incorporated: Lincoln, NE, USA, 2012. [Google Scholar]
- Andersen, J.; Thomsem, J.; Enes, A.R.; Sandberg, S.; Aarsand, A.K. Health-related quality of life in porphyria cutanea tarda: A cross-sectional registry based study. Health Qual. Life Outcomes 2020, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Funkhouser, J.D.; Aronson, N.N., Jr. Chitinase family GH18: Evolutionary insights from the genomic history of a diverse protein family. BMC Evol. Biol. 2007, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.-S.; Xie, X.-L.; Liang, G.; Gong, F.; Wang, Y.; Wei, X.-Q.; Wang, Q.; Ji, Z.-L.; Chen, Q.-X. The GH18 family of chitinases: Their domain architectures, functions and evolutions. Glycobiology 2012, 22, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Valle, M.S.; Casabona, A.; Malaguarnera, L. Chitinase Signature in the Plasticity of Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 6301. [Google Scholar] [CrossRef] [PubMed]
- Kanneganti, M.; Kamba, A.; Mizoguchi, E. Role of chitotriosidase (chitinase 1) under normal and disease conditions. J. Epithel. Biol. Pharmacol. 2012, 5, 1–9. [Google Scholar] [CrossRef]
- Artieda, M.; Cenarro, A.; Gañán, A.; Jericó, I.; Gonzalvo, C.; Casado, J.M.; Vitoria, I.; Puzo, J.; Pocoví, M.; Civeira, F.; et al. Serum chitotriosidase activity is increased in subjects with atherosclerosis disease. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1645–1652. [Google Scholar] [CrossRef]
- Bargagli, E.; Maggiorelli, C.; Rottolli, P. Human chitotriosidase: A potential new marker of sarcoidosis severity. Respiration 2008, 76, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Comabella, M.; Domínguez, C.; Rio, J.; Martín-Gallán, P.; Vilches, A.; Vilarrasa, N.; Espejo, C.; Montalban, X. Plasma chitotriosidase activity in multiple sclerosis. Clin. Immunol. 2009, 131, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Mazur, M.; Zielińska, A.; Grzybowski, M.M.; Olczak, J.; Fichna, J. Chitinases and Chitinase-Like Proteins as Therapeutic Targets in Inflammatory Diseases, with a Special Focus on Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2021, 22, 6966. [Google Scholar] [CrossRef] [PubMed]
- Barone, R.; Simporé, J.; Malaguarnera, L.; Pignatelli, S.; Musumeci, S. Plasma chitotriosidase activity in acute Plasmodium falciparum malaria. Clin. Chim. Acta 2003, 331, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Pinteac, R.; Montalban, X.; Comabella, M. Chitinases and chitinase-like proteins as biomarkers in neurologic disorders. Neurol. Neuroimmunol. Neuroinflamm. 2020, 8, e921. [Google Scholar] [CrossRef] [PubMed]
- Hinsinger, G.; Galéotti, N.; Nabholz, N.; Urbach, S.; Rigau, V.; Demattei, C.; Lehmann, S.; Camu, W.; Labauge, P.; Castelnovo, G.; et al. Chitinase 3-like proteins as diagnostic and prognostic biomarkers of multiple sclerosis. Mult. Scler. 2015, 21, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Sotgiu, S.; Piras, M.; Barone, R.; Arru, G.; Fois, M.; Rosati, G.; Musumeci, S. Chitotriosidase and Alzheimer’s Disease. Curr. Alzheimer Res. 2007, 4, 295–296. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.; Gromicho, M.; Pronto-Laborinho, A.; Almeida, C.; Gomes, R.A.; Guerreiro, A.C.L.; Oliva, A.; Pinto, S.; de Carvalho, M. Cerebrospinal Fluid Chitinases as Biomarkers for Amyotrophic Lateral Sclerosis. Diagnostics 2021, 11, 1210. [Google Scholar] [CrossRef]
- Bustamante, A.; Dominguez, C.; Rodriguez-Sureda, V.; Vilches, A.; Penalba, A.; Giralt, D.; García-Berrocoso, T.; Llombart, V.; Flores, A.; Rubiera, M.; et al. Prognostic value of plasma chitotriosidase activity in acute stroke patients. Int. J. Stroke 2014, 9, 910–916. [Google Scholar] [CrossRef]
- Carabias, C.S.; Gomez, P.A.; Panero, I.; Eiriz, C.; Castaño-León, A.M.; Egea, J.; Lagares, A.; Paredes, I.; Alén, J.A.F.; Moreno-Gómez, L.M.; et al. Chitinase-3-like Protein 1, Serum Amyloid A1, C-Reactive Protein, and Procalcitonin Are Promising Biomarkers for Intracranial Severity Assessment of Traumatic Brain Injury: Relationship with Glasgow Coma Scale and Computed Tomography Volumetry. World Neurosurg. 2020, 134, e120–e143. [Google Scholar] [CrossRef]
- Abu-Rumeileh, S.; Steinacker, P.; Polischi, B.; Mammana, A.; Bartoletti-Stella, A.; Oeckl, P.; Baiardi, S.; Zenesini, C.; Huss, A.; Cortelli, P.; et al. CSF biomarkers of neuroinflammation in distinct forms and subtypes of neurodegenerative dementia. Alzheimers Res. Ther. 2019, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Barro, C.; Kappos, L.; Comabella, M.; Fazekas, F.; et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Hayer, S.N.; Krey, I.; Barro, C.; Rössler, F.; Körtvelyessy, P.; Lemke, J.R.; Kuhle, J.; Schöls, L. NfL is a biomarker for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. Neurology 2018, 91, 755–757. [Google Scholar] [CrossRef] [PubMed]
- Benkert, P.; Meier, S.; Schaedelin, S.; Manouchehrinia, A.; Yaldizli, Ö.; Maceski, A.; Oechtering, J.; Achtnichts, L.; Conen, D.; Derfuss, T.; et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: A retrospective modelling and validation study. Lancet Neurol. 2022, 21, 246–257. [Google Scholar] [CrossRef]
- Meyer, T.; Salkic, E.; Grehl, T.; Weyen, U.; Kettemann, D.; Weydt, P.; Günther, R.; Lingor, P.; Koch, J.C.; Petri, S.; et al. Performance of serum neurofilament light chain in a wide spectrum of clinical courses of amyotrophic lateral sclerosis-a cross-sectional multicenter study. Eur. J. Neurol. 2023, 30, 1600–1610. [Google Scholar] [CrossRef]
- Miller, T.M.; Cudkowicz, M.E.; Genge, A.; Shaw, P.J.; Sobue, G.; Bucelli, R.C.; Chiò, A.; Van Damme, P.; Ludolph, A.C.; Glass, J.D.; et al. Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N. Engl. J. Med. 2022, 387, 1099–1110. [Google Scholar] [CrossRef]
- Benatar, M.; Wuu, J.; Turner, M.R. Neurofilament light chain in drug development for amyotrophic lateral sclerosis: A critical appraisal. Brain 2023, 146, 2711–2716. [Google Scholar] [CrossRef]
- Benatar, M.; Wuu, J.; Andersen, P.M.; Bucelli, R.C.; Andrews, J.A.; Otto, M.; Farahany, N.A.; Harrington, E.A.; Chen, W.; Mitchell, A.A.; et al. Design of a Randomized, Placebo-Controlled, Phase 3 Trial of Tofersen Initiated in Clinically Presymptomatic SOD1 Variant Carriers: The ATLAS study. Neurotherapeutics 2022, 19, 1248–1258. [Google Scholar] [CrossRef]
- Gaetani, L.; Parnetti, L. NfL as Analogue of C-Reactive Protein in Neurologic Diseases: Instructions for Use. Neurology 2022, 98, 911–912. [Google Scholar] [CrossRef]
- Barro, C.; Chitnis, T.; Weiner, H.L. Blood neurofilament light: A critical review of its application to neurologic disease. Ann. Clin. Transl. Neurol. 2020, 7, 2508–2523. [Google Scholar] [CrossRef]
- van Ballegoij, W.J.C.; van de Stadt, S.I.W.; Huffnagel, I.C.; Kemp, S.; Willemse, E.A.J.; Teunissen, C.E.; Engelen, M. Plasma NfL and GFAP as biomarkers of spinal cord degeneration in adrenoleukodystrophy. Ann. Clin. Transl. Neurol. 2020, 7, 2127–2136. [Google Scholar] [CrossRef] [PubMed]
- Beerepoot, S.; Heijst, H.; Roos, B.; Wamelink, M.M.C.; Boelens, J.J.; Lindemans, C.A.; van Hasselt, P.M.; Jacobs, E.H.; van der Knaap, M.S.; Teunissen, C.E.; et al. Neurofilament light chain and glial fibrillary acidic protein levels in metachromatic leukodystrophy. Brain 2022, 145, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Ashton, N.J.; Di Molfetta, G.; Tan, K.; Blennow, K.; Zetterberg, H.; Messing, A. Plasma concentrations of glial fibrillary acidic protein, neurofilament light, and tau in Alexander disease. Neurol. Sci. 2024; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hayer, S.N.; Santhanakumaran, V.; Böhringer, J.; Schöls, L. Chitotriosidase is a biomarker for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. Ann. Clin. Transl. Neurol. 2022, 9, 1807–1812. [Google Scholar] [CrossRef]
- Schlepckow, K.; Morenas-Rodríguez, E.; Hong, S.; Haass, C. Stimulation of TREM2 with agonistic antibodies-an emerging therapeutic option for Alzheimer’s disease. Lancet Neurol. 2023, 22, 1048–1060. [Google Scholar] [CrossRef]
Group A (N = 15) | |
Current Age (IQR) | 33.8 (26–39.5) years |
Gender (M/F) | 9 (60%) M/6 (40%) F |
CHIT (IQR) | 940.8 (794–1027.5) pg/mL |
CHI3L2 (IQR) | 5258.8 (4723.5–5864.5) pg/mL |
NfL (IQR) | 644.9 (562.5–718) pg/mL |
Group B (N = 11) | |
Age at Disease Onset (IQR) | 36.7 (31.5–40.5) years |
Gender (M/F) | 7 (63.7%) M/4 (36.3%) F |
Death | 5 (45.4%) |
Duration of disease at CSF collection | 6.9 (5.5–8.5) months |
CHIT (IQR) | 4371 (3882.5–4960) pg/mL |
CHI3L2 (IQR) | 11,811.9 (10,304.5–13,015) pg/mL |
NfL (IQR) | 1515.4 (1182.5–1726.5) pg/mL |
Genetic Variants | |
c.1441C>T (p.Gln481Ter) | N = 3 |
c.1765G>A (p.Gly589Arg) | N = 1 |
c.2342C>T (p.Ala781Val) | N = 2 |
c.2345G>A (p.Arg782His) | N = 2 |
c.2381T>C (p.Ile794Thr) | N = 1 |
c.2624T>C (p.Met875Thr) | N = 2 |
Group C (N = 7) | |
Current Age (IQR) | 35.7 (33–38.5) years |
Gender (M/F) | 4 (57.1%) M/3 (42.9%) F |
CHIT (IQR) | 1188.5 (1048.5–1291.5) pg/mL |
CHI3L2 (IQR) | 5515.8 (5227.5–5709.5) pg/mL |
NfL (IQR) | 726.2 (700.5–761) pg/mL |
Group D (N = 15) | |
Age at Disease Onset (IQR) | 29.6 (23–32.5) years |
Gender (M/F) | 8 (53.3%) M/7 (46.7%) F |
Duration of disease at CSF collection | 7.8 (5.0–9.5) months |
CHIT (IQR) | 2155.8 (1053–3065) pg/mL |
CHI3L2 (IQR) | 6953.5 (5196–8575) pg/mL |
NfL (IQR) | 761 (693.5–823.5) pg/mL |
Group E (N = 15) | |
Age at Disease Onset (IQR) | 57.8 (54.5–61.5) years |
Gender (M/F) | 9 (60%) M/6 (40%) F |
Duration of disease at CSF collection | 6.2 (4.0–7.5) months |
CHIT (IQR) | 10,698.7 (9660.5–11,244.5) pg/mL |
CHI3L2 (IQR) | 18,961.8 (18,163–19,449) pg/mL |
NfL (IQR) | 8570.6 (8142–9347) pg/mL |
Group A | Group B | Group C | Group D | Group E | |
---|---|---|---|---|---|
EDSS | N/A | <2.5: n = 11 ≥2.5: n = 4 | N/A | <2.5: n = 5 ≥2.5: n = 10 | N/A |
FSS (IQR) | 1.03 (0.85–1.2) | 4.17 (3.75–4.60) | 1.02 (0.9–1.15) | 2.65 (2.05–3.25) | 5.86 (5.65–6.15) |
GAD-7 (IQR) | 7.5 (5.5–9.5) | 11.9 (8.5–14.5) | 6.5 (5.5–7.5) | 15.2 (12.5–18.0) | 16.4 (14.0–19.0) |
MoCA (IQR) | 29.4 (29.5–30.0) | 21.5 (18.0–25.5) | 29.4 (29.0–30.0) | 22.0 (19.5–24.5) | 24.8 (23.5–26.5) |
PHQ-8 (IQR) | 7.1 (5.0–9.0) | 11.72 (9.5–14.0) | 5.2 (4.0–6.5) | 14.5 (10.5–17.5) | 17.8 (15.0–20.5) |
SPRS (IQR) | N/A | 9.54 (6.5–11.5) | N/A | 11.0 (6.0–15.0) | N/A |
SF12-PCS (IQR) | 52.6 (48.9–55.9) | 36.6 (34.8–41.4) | 51.2 (46.8–54.5) | 35.0 (32.4–38.9) | 27.5 (24.7–28.9) |
SF12-MCS (IQR) | 49.7 (46.9–52.7) | 30.9 (24.9–34.9) | 48.9 (46.9–48.8) | 33.6 (26.3–39.2) | 27.9 (23.1–31.4) |
ALSFRS-R (IQR) | N/A | N/A | N/A | N/A | 32.3 (30.0–34.5) |
Patient | Leukodystrophy | Gene | Variant 1 | Variant 2 |
---|---|---|---|---|
1 | X-linked Adrenoleukodystrophy | ABCD1 | c.311G>A (p.Arg104His) | N/A |
2 | Metachromatic Leukodystrophy | ARSA | c.257G>A (p.Arg86Gln) | c.1283C>T (p.Pro428Leu) |
3 | Cerebrotendinous Xanthomatosis | CYP27A1 | c.1183C>T (p.Arg395Cys) | c.1183C>T (p.Arg395Cys) |
4 | X-linked Adrenoleukodystrophy | ABCD1 | c.1817C>T (p.Ser606Leu) | N/A |
5 | Leukoencephalopathy with vanishing white matter | EIF2B5 | c.338G>A (p.Arg113His) | c.338G>A (p.Arg113His) |
6 | Leukoencephalopathy with ataxia | CLCN2 | c.1709G>A (p.Trp570Ter) | c.1709G>A (p.Trp570Ter) |
7 | Leukoencephalopathy with ataxia | CLCN2 | c.1709G>A (p.Trp570Ter) | c.1709G>A (p.Trp570Ter) |
8 | Adult polyglucosan body disease (APBD) | GBE1 | c.986A>C (p.Tyr329Ser) | c.986A>C (p.Tyr329Ser) |
9 | Adult polyglucosan body disease (APBD) | GBE1 | c.986A>C (p.Tyr329Ser) | c.1621A>G (p.Asn541Asp) |
10 | Alexander Disease | GFAP | c.715C>T (p.Arg239Cys) | N/A |
11 | Cerebrotendinous Xanthomatosis | CYP27A1 | c.1435C>G (p.Arg479Gly) | c.1435C>G (p.Arg479Gly) |
12 | Progressive leukodystrophy with ovarian failure | AARS2 | c.1561C>T (p.Arg521Ter) | c.595C>T (p.Arg199Cys) |
13 | Progressive leukodystrophy with ovarian failure | AARS2 | c.1561C>T (p.Arg521Ter) | c.1561C>T (p.Arg521Ter) |
14 | Cerebrotendinous Xanthomatosis | CYP27A1 | c.1183C>T (p.Arg395Cys) | c.1028C>G (p.Thr343Arg) |
15 | Leukoencephalopathy with vanishing white matter | EIF2B5 | c.271A>G (p.Thr91Ala) | c.271A>G (p.Thr91Ala) |
Group A (Mean) | Group B (Mean) | Mean Difference | p-Value | |
---|---|---|---|---|
FSS | 1.03 | 4.17 | −3.13 | 0.00001 |
GAD-7 | 7.53 | 11.90 | −4.37 | 0.005 |
MoCA | 29.46 | 21.54 | 7.92 | 0.0001 |
PHQ-8 | 7.13 | 11.72 | −4.59 | 0.003 |
PCS | 52.65 | 32.60 | 16.04 | 0.00001 |
MCS | 49.77 | 30.95 | 18.81 | 0.00001 |
Group A (Mean) | Group D (Mean) | Mean Difference | p-Value | |
---|---|---|---|---|
FSS | 1.03 | 2.65 | −1.62 | 0.00001 |
GAD-7 | 7.53 | 15.26 | −7.73 | 0.00001 |
MoCA | 29.46 | 22.00 | 7.46 | 0.00001 |
PHQ-8 | 7.13 | 14.53 | −7.40 | 0.00001 |
PCS | 52.65 | 35.00 | 17.65 | 0.00001 |
MCS | 49.77 | 33.68 | 16.09 | 0.00001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, P.d.L.; Rodrigues, T.d.P.V.; Pinto, L.D.; Pereira, I.C.; Farias, I.B.; Cavalheiro, R.B.R.; Mendes, P.M.; Peixoto, K.O.; Barile, J.P.; Seneor, D.D.; et al. Assessing Chitinases and Neurofilament Light Chain as Biomarkers for Adult-Onset Leukodystrophies. Curr. Issues Mol. Biol. 2024, 46, 4309-4323. https://doi.org/10.3390/cimb46050262
Serrano PdL, Rodrigues TdPV, Pinto LD, Pereira IC, Farias IB, Cavalheiro RBR, Mendes PM, Peixoto KO, Barile JP, Seneor DD, et al. Assessing Chitinases and Neurofilament Light Chain as Biomarkers for Adult-Onset Leukodystrophies. Current Issues in Molecular Biology. 2024; 46(5):4309-4323. https://doi.org/10.3390/cimb46050262
Chicago/Turabian StyleSerrano, Paulo de Lima, Thaiane de Paulo Varollo Rodrigues, Leslyê Donato Pinto, Indiara Correia Pereira, Igor Braga Farias, Renan Brandão Rambaldi Cavalheiro, Patrícia Marques Mendes, Kaliny Oliveira Peixoto, João Paulo Barile, Daniel Delgado Seneor, and et al. 2024. "Assessing Chitinases and Neurofilament Light Chain as Biomarkers for Adult-Onset Leukodystrophies" Current Issues in Molecular Biology 46, no. 5: 4309-4323. https://doi.org/10.3390/cimb46050262
APA StyleSerrano, P. d. L., Rodrigues, T. d. P. V., Pinto, L. D., Pereira, I. C., Farias, I. B., Cavalheiro, R. B. R., Mendes, P. M., Peixoto, K. O., Barile, J. P., Seneor, D. D., Correa Silva, E. G., Oliveira, A. S. B., Pinto, W. B. V. d. R., & Sgobbi, P. (2024). Assessing Chitinases and Neurofilament Light Chain as Biomarkers for Adult-Onset Leukodystrophies. Current Issues in Molecular Biology, 46(5), 4309-4323. https://doi.org/10.3390/cimb46050262