In Silico Analysis of Protein–Protein Interactions of Putative Endoplasmic Reticulum Metallopeptidase 1 in Schizosaccharomyces pombe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prediction of Protein–Protein Interaction
2.2. In Silico Prediction of Cleavage Sequences of Proteolytic Candidates
2.3. Three-Dimensional Modeling of the M28 Domain of Ermp1 and Proteolytic Candidates
2.4. Analysis of the Sequence and Structure of the M28 Domain of Ermp1
2.5. Optimizing the Conformational Stability of Proteins through Energy Minimization Techniques
2.6. Protein–Protein Docking of Ermp1 and Proteolytic Candidates
2.7. Solvation of Interaction Models in WaterMap
2.8. Molecular Dynamics Simulation
3. Results
3.1. Prediction of Protein–Protein Interactions of Ermp1 in S. pombe
3.2. Comparing the M28 Domain of Ermp1 between Humans and S. pombe
3.3. 3D Modeling of the M28 Domain of Ermp1 from S. pombe
3.4. Identification of Potential Proteolytic Cleavage Sequences and Generation of 3D Models
3.5. Protein–Protein Docking between the M28 Domain of Ermp1 and Proteolytic Candidates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grandi, A.; Santi, A.; Campagnoli, S.; Parri, M.; De Camilli, E.; Song, C.; Jin, B.; Lacombe, A.; Castori-Eppenberger, S.; Sarmientos, P.; et al. ERMP1, a Novel Potential Oncogene Involved in UPR and Oxidative Stress Defense, Is Highly Expressed in Human Cancer. Oncotarget 2016, 7, 63596–63610. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rudaz, C.; Luna, F.; Tapia, V.; Kerr, B.; Colgin, L.; Galimi, F.; Dissen, G.A.; Rawlings, N.D.; Ojeda, S.R. Fxna, a Novel Gene Differentially Expressed in the Rat Ovary at the Time of Folliculogenesis, Is Required for Normal Ovarian Histogenesis. Development 2007, 134, 945–957. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Zhang, L.; Li, L.; Su, Y. MiR-148b Functions as a Tumor Suppressor by Targeting Endoplasmic Reticulum Metallo Protease 1 in Human Endometrial Cancer Cells. Oncol. Res. 2018, 27, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Chi, L.; Jiao, D.; Nan, G.; Yuan, H.; Shen, J.; Gao, Y. MiR-9-5p Attenuates Ischemic Stroke through Targeting ERMP1-Mediated Endoplasmic Reticulum Stress. Acta Histochem. 2019, 121, 151438. [Google Scholar] [CrossRef] [PubMed]
- Dastghaib, S.; Mokarram, P.; Erfani, M.; Ghavami, S.; Hosseini, S.V.; Zamani, M. Endoplasmic Reticulum Metallo Protease 1, a Triggering Factor for Unfolded Protein Response and Promising Target in Colorectal Cancer. Biologia 2021, 76, 2403–2411. [Google Scholar] [CrossRef]
- Lu, H.; Hu, J.; Li, J.; Lu, W.; Deng, X.; Wang, X. MiR-328-3p Overexpression Attenuates the Malignant Proliferation and Invasion of Liver Cancer via Targeting Endoplasmic Reticulum Metallo Protease 1 to Inhibit AKT Phosphorylation. Ann. Transl. Med. 2020, 8, 754. [Google Scholar] [CrossRef] [PubMed]
- Rahmani-Kukia, N.; Zamani, M.; Mokarram, P. ERMP1 Facilitates The Malignant Characteristics of Colorectal Cancer Cells through Modulating PI3K/AKT/β-Catenin Pathway and Localization of GRP78. Cell J. 2023, 25, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Raman, K. Construction and Analysis of Protein—Protein Interaction Networks. Autom. Exp. 2010, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Zainal-Abidin, R.-A.; Afiqah-Alen, N.; Abdullah-Zawawi, M.-R.; Harun, S.; Mohamed-Hussein, Z.-A. Protein—Protein Interaction (PPI) Network of Zebrafish Oestrogen Receptors: A Bioinformatics Workflow. Life 2022, 12, 650. [Google Scholar] [CrossRef]
- de Las Rivas, J.; Fontanillo, C. Protein-Protein Interactions Essentials: Key Concepts to Building and Analyzing Interactome Networks. PLoS Comput. Biol. 2010, 6, e1000807. [Google Scholar] [CrossRef]
- Skrabanek, L.; Saini, H.K.; Bader, G.D.; Enright, A.J. Computational Prediction of Protein-Protein Interactions. Mol. Biotechnol. 2008, 38, 1–17. [Google Scholar] [CrossRef]
- Murakami, Y.; Tripathi, L.P.; Prathipati, P.; Mizuguchi, K. Network Analysis and in Silico Prediction of Protein–Protein Interactions with Applications in Drug Discovery. Curr. Opin. Struct. Biol. 2017, 44, 134–142. [Google Scholar] [CrossRef]
- Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; Lin, J.; Minguez, P.; Bork, P.; Von Mering, C.; et al. STRING v9.1: Protein-Protein Interaction Networks, with Increased Coverage and Integration. Nucleic Acids Res. 2013, 41, D808–D815. [Google Scholar] [CrossRef]
- Bell, E.W.; Schwartz, J.H.; Freddolino, P.L.; Zhang, Y. PEPPI: Whole-Proteome Protein-Protein Interaction Prediction through Structure and Sequence Similarity, Functional Association, and Machine Learning. J. Mol. Biol. 2022, 434, 167530. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, G.; Xia, D.; Wang, J. Protein–Protein Interactions Prediction Based on Ensemble Deep Neural Networks. Neurocomputing 2019, 324, 10–19. [Google Scholar] [CrossRef]
- Bader, G.D.; Donaldson, I.; Wolting, C.; Ouellette, B.F.F.; Pawson, T.; Hogue, C.W. V BIND-The Biomolecular Interaction Network Database. Nucleic Acids Res. 2001, 29, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Xenarios, I.; Salwínski, D.; Duan, J.; Higney, P.; Kim, S.-M.; Eisenberg, D. DIP, the Database of Interacting Proteins: A Research Tool for Studying Cellular Networks of Protein Interactions. Nucleic Acids Res. 2002, 30, 303–305. [Google Scholar] [CrossRef] [PubMed]
- del Toro, N.; Shrivastava, A.; Ragueneau, E.; Meldal, B.; Combe, C.; Barrera, E.; Perfetto, L.; How, K.; Ratan, P.; Shirodkar, G.; et al. The IntAct Database: Efficient Access to Fine-Grained Molecular Interaction Data. Nucleic Acids Res. 2022, 50, D648–D653. [Google Scholar] [CrossRef]
- Zanzoni, A.; Montecchi-Palazzi, L.; Quondam, M.; Ausiello, G.; Helmer-Citterich, M.; Cesareni, G. MINT: A Molecular INTeraction Database. FEBS Lett. 2002, 513, 135–140. [Google Scholar] [CrossRef]
- Oughtred, R.; Rust, J.; Chang, C.; Breitkreutz, B.J.; Stark, C.; Willems, A.; Boucher, L.; Leung, G.; Kolas, N.; Zhang, F.; et al. The BioGRID Database: A Comprehensive Biomedical Resource of Curated Protein, Genetic, and Chemical Interactions. Protein Sci. 2021, 30, 187–200. [Google Scholar] [CrossRef]
- Lee, S.A.; Chan, C.H.; Tsai, C.H.; Lai, J.M.; Wang, F.S.; Kao, C.Y.; Huang, C.Y.F. Ortholog-Based Protein-Protein Interaction Prediction and Its Application to Inter-Species Interactions. BMC Bioinform. 2008, 9, S11. [Google Scholar] [CrossRef] [PubMed]
- Breitkopf, S.B.; Yang, X.; Begley, M.J.; Kulkarni, M.; Chiu, Y.H.; Turke, A.B.; Lauriol, J.; Yuan, M.; Qi, J.; Engelman, J.A.; et al. A Cross-Species Study of PI3K Protein-Protein Interactions Reveals the Direct Interaction of P85 and SHP2. Sci. Rep. 2016, 6, 20471. [Google Scholar] [CrossRef] [PubMed]
- Wiles, A.M.; Doderer, M.; Ruan, J.; Gu, T.T.; Ravi, D.; Blackman, B.; Bishop, A.J.R. Building and Analyzing Protein Interactome Networks by Cross-Species Comparisons. BMC Syst. Biol. 2010, 4, 36. [Google Scholar] [CrossRef] [PubMed]
- Wood, V.; Gwilliam, R.; Rajandream, M.-A.; Lyne, M.; Lyne, R.; Stewart, A.; Sgouros, J.; Peat, N.; Hayles, J.; Baker, S.; et al. The Genome Sequence of Schizosaccharomyces Pombe. W. R. McCombie 2002, 415, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Owen, N.; Doe, C.L.; Mellor, J.; Davies, K.E. Characterization of the Schizosaccharomyces Pombe Orthologue of the Human Survival Motor Neuron (SMN) Protein. Hum. Mol. Genet. 2000, 9, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Zhao1, Y.; Lieberman, H.B. Schizosaccharomyces Pombe: A Model for Molecular Studies of Eukaryotic Genes. DNA Cell Biol. 1995, 14, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.A.; Rutherford, K.M.; Hayles, J.; Lock, A.; Bähler, J.; Oliver, S.G.; Mata, J.; Wood, V. Fission Stories: Using PomBase to Understand Schizosaccharomyces Pombe Biology. Genetics 2022, 220, iyab222. [Google Scholar] [CrossRef]
- Deshpande, G.P.; Hayles, J.; Hoe, K.L.; Kim, D.U.; Park, H.O.; Hartsuiker, E. Screening a Genome-Wide S. Pombe Deletion Library Identifies Novel Genes and Pathways Involved in Genome Stability Maintenance. DNA Repair 2009, 8, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.V.; Das, J.; Meyer, M.J.; Cordero, N.A.; Akturk, N.; Wei, X.; Fair, B.J.; Degatano, A.G.; Fragoza, R.; Liu, L.G.; et al. A Proteome-Wide Fission Yeast Interactome Reveals Network Evolution Principles from Yeasts to Human. Cell 2016, 164, 310–323. [Google Scholar] [CrossRef]
- Wang, Z. Big Data Mining Powers Fungal Research: Recent Advances in Fission Yeast Systems Biology Approaches. Curr. Genet. 2017, 63, 427–433. [Google Scholar] [CrossRef]
- Vyas, A.; Freitas, A.V.; Ralston, Z.A.; Tang, Z. Fission Yeast Schizosaccharomyces Pombe: A Unicellular “Micromammal” Model Organism. Curr. Protoc. 2021, 1, e151. [Google Scholar] [CrossRef] [PubMed]
- Guydosh, N.R.; Kimmig, P.; Walter, P.; Green, R. Regulated Ire1-Dependent MRNA Decay Requires No-Go MRNA Degradation to Maintain Endoplasmic Reticulum Homeostasis in S. Pombe. Elife 2017, 6, e29216. [Google Scholar] [CrossRef] [PubMed]
- Kimmig, P.; Diaz, M.; Zheng, J.; Williams, C.C.; Lang, A.; Aragón, T.; Li, H.; Walter, P. The Unfolded Protein Response in Fission Yeast Modulates Stability of Select MRNAs to Maintain Protein Homeostasis. Elife 2012, 2012, e00048. [Google Scholar] [CrossRef] [PubMed]
- Van Anken, E.; Pincus, D.; Coyle, S.; Aragón, T.; Osman, C.; Lari, F.; Gómez Puerta, S.; Korennykh, A.V.; Walter, P. Specificity in Endoplasmic Reticulum-Stress Signaling in Yeast Entails a Step-Wise Engagement of HAC1 MRNA to Clusters of the Stress Sensor Ire1. Elife 2014, 3, e05031. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Flockhart, I.; Vinayagam, A.; Bergwitz, C.; Berger, B.; Perrimon, N.; Mohr, S.E. An Integrative Approach to Ortholog Prediction for Disease-Focused and Other Functional Studies. BMC Bioinform. 2011, 12, 357. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Tan, H.; Perry, A.J.; Akutsu, T.; Webb, G.I.; Whisstock, J.C.; Pike, R.N. PROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites. PLoS ONE 2012, 7, e50300. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, F.; Leier, A.; Marquez-Lago, T.T.; Akutsu, T.; Haffari, G.; Chou, K.C.; Webb, G.I.; Pike, R.N. PROSPERous: High-Throughput Prediction of Substrate Cleavage Sites for 90 Proteases with Improved Accuracy. Bioinformatics 2018, 34, 684–687. [Google Scholar] [CrossRef]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef]
- Krissinel, E.; Henrick, K. Secondary-Structure Matching (SSM), a New Tool for Fast Protein Structure Alignment in Three Dimensions. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2256–2268. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. Computer Programs PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Julian, A.T.; Mascarenhas Dos Santos, A.C.; Pombert, J.F. 3DFI: A Pipeline to Infer Protein Function Using Structural Homology. Bioinform. Adv. 2021, 1, vbab030. [Google Scholar] [CrossRef]
- Read, R.J.; Adams, P.D.; Arendall, W.B.; Brunger, A.T.; Emsley, P.; Joosten, R.P.; Kleywegt, G.J.; Krissinel, E.B.; Lütteke, T.; Otwinowski, Z.; et al. A New Generation of Crystallographic Validation Tools for the Protein Data Bank. Structure 2011, 19, 1395–1412. [Google Scholar] [CrossRef] [PubMed]
- David, A.; Islam, S.; Tankhilevich, E.; Sternberg, M.J.E. The AlphaFold Database of Protein Structures: A Biologist’s Guide. J. Mol. Biol. 2022, 434, 167336. [Google Scholar] [CrossRef] [PubMed]
- Hornbeck, P.V.; Kornhauser, J.M.; Tkachev, S.; Zhang, B.; Skrzypek, E.; Murray, B.; Latham, V.; Sullivan, M. PhosphoSitePlus: A Comprehensive Resource for Investigating the Structure and Function of Experimentally Determined Post-Translational Modifications in Man and Mouse. Nucleic Acids Res. 2012, 40, D261–D270. [Google Scholar] [CrossRef] [PubMed]
- Blom, N.; Sicheritz-Pontén, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of Post-Translational Glycosylation and Phosphorylation of Proteins from the Amino Acid Sequence. Proteomics 2004, 4, 1633–1649. [Google Scholar] [CrossRef]
- Xu, Y.; Song, J.; Wilson, C.; Whisstock, J.C. PhosContext2vec: A Distributed Representation of Residue-Level Sequence Contexts and Its Application to General and Kinase-Specific Phosphorylation Site Prediction. Sci. Rep. 2018, 8, 8240. [Google Scholar] [CrossRef] [PubMed]
- Bhachoo, J.; Beuming, T. Investigating Protein–Peptide Interactions Using the Schrödinger Computational Suite. Methods Mol. Biol. 2017, 1561, 235–254. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Carballo, A.; Mendoza-Lara, D.F.; Rojas-Morales, J.A.; Alatriste, V.; Merino-Montiel, P.; Luna, F.; Sandoval-Ramirez, J. In Silico Study of Coumarins Derivatives with Potential Use in Systemic Diseases. Biointerface Res. Appl. Chem. 2023, 13, 240. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro Web Server for Protein–Protein Docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef]
- Schrödinger Release 2023-2b: BioLuminate; Schrödinger, LLC.: New York, NY, USA, 2021.
- González-Esparragoza, D.; Carrasco-Carballo, A.; Rosas-Murrieta, N.H.; Millán-Pérez-Peña, L.; Herrera-Camacho, I. In Silico Analysis for Metalloenzyme-Protein Interactions Applied to MMP8-Fibronectin 1 and MMP12-Factor XII. Life Silico 2023, 1, 26–33. [Google Scholar]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Schrödinger Release 2023-2b: WaterMap; Schrödinger, LLC.: New York, NY, USA, 2021.
- Biswal, J.; Jayaprakash, P.; Rayala, S.K.; Venkatraman, G.; Rangaswamy, R.; Jeyaraman, J. WaterMap and Molecular Dynamic Simulation-Guided Discovery of Potential PAK1 Inhibitors Using Repurposing Approaches. ACS Omega 2021, 6, 26829–26845. [Google Scholar] [CrossRef]
- Sobhia, M.E.; Ghosh, K.; Sivangula, S.; Kumar, S.; Singh, H. Identification of Potential SARS-CoV-2 Mpro Inhibitors Integrating Molecular Docking and Water Thermodynamics. J. Biomol. Struct. Dyn. 2022, 40, 5079–5089. [Google Scholar] [CrossRef]
- Schrödinger Release 2024-1: Desmond Molecular Dynamics System; D.E. Shaw Research: New York, NY, USA, 2024.
- Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06, Tampa, FL, USA, 11–17 November 2006. [Google Scholar] [CrossRef]
- Iqbal, D.; Rehman, M.T.; Alajmi, M.F.; Alsaweed, M.; Jamal, Q.M.S.; Alasiry, S.M.; Albaker, A.B.; Hamed, M.; Kamal, M.; Albadrani, H.M. Multitargeted Virtual Screening and Molecular Simulation of Natural Product-like Compounds against GSK3β, NMDA-Receptor, and BACE-1 for the Management of Alzheimer’s Disease. Pharmaceuticals 2023, 16, 622. [Google Scholar] [CrossRef]
- Lieberman, H.B.; Hopkins, K.M.; Nass, M.; Demetrick, D.; Davey, S. A Human Homolog of the Schizosaccharomyces Pombe Rad9 Checkpoint Control Gene. Genetics 1996, 93, 13890–13895. [Google Scholar] [CrossRef]
- Lieberman, H.B. Rad9, an Evolutionarily Conserved Gene with Multiple Functions for Preserving Genomic Integrity. J. Cell Biochem. 2006, 97, 690–697. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, M.; Meng, Z.; Leung, L.K.; Chan, F.L.; Hu, X.; Chi, K.; Liu, C.; Yao, X. Knockdown of TM9SF4 Boosts ER Stress to Trigger Cell Death of Chemoresistant Breast Cancer Cells. Oncogene 2019, 38, 5778–5791. [Google Scholar] [CrossRef]
- Sun, J.; Ren, D. IER3IP1 Deficiency Leads to Increased β-Cell Death and Decreased β-Cell Proliferation. Oncotarget 2017, 8, 56768–56779. [Google Scholar] [CrossRef]
- Lounis, M.A.; Lalonde, S.; Rial, S.A.; Bergeron, K.F.; Ralston, J.C.; Mutch, D.M.; Mounier, C. Hepatic BSCL2 (Seipin) Deficiency Disrupts Lipid Droplet Homeostasis and Increases Lipid Metabolism via SCD1 Activity. Lipids 2017, 52, 129–150. [Google Scholar] [CrossRef]
- Rallis, C.; Townsend, S.; Bähler, J. Genetic Interactions and Functional Analyses of the Fission Yeast Gsk3 and Amk2 Single and Double Mutants Defective in TORC1-Dependent Processes. Sci. Rep. 2017, 7, srep44257. [Google Scholar] [CrossRef]
- Roguev, A.; Bandyopadhyay, S.; Zofall, M.; Zhang, K.; Fischer, T.; Collins, S.R.; Qu, H.; Shales, M.; Park, H.-O.; Hayles, J.; et al. Conservation and Rewiring of Functional Modules Revealed by an Epistasis Map in Fission Yeast. Science 2008, 322, 405–410. [Google Scholar] [CrossRef]
- VanderSluis, B.; Costanzo, M.; Billmann, M.; Ward, H.N.; Myers, C.L.; Andrews, B.J.; Boone, C. Integrating Genetic and Protein–Protein Interaction Networks Maps a Functional Wiring Diagram of a Cell. Curr. Opin. Microbiol. 2018, 45, 170–179. [Google Scholar] [CrossRef]
- Bouhaddou, M.; Eckhardt, M.; Chi Naing, Z.Z.; Kim, M.; Ideker, T.; Krogan, N.J. Mapping the Protein–Protein and Genetic Interactions of Cancer to Guide Precision Medicine. Curr. Opin. Genet. Dev. 2019, 54, 110–117. [Google Scholar] [CrossRef]
- Leclerc, G.M.; Leclerc, G.J.; Kuznetsov, J.N.; DeSalvo, J.; Barredo, J.C. Metformin Induces Apoptosis through AMPK-Dependent Inhibition of UPR Signaling in ALL Lymphoblasts. PLoS ONE 2013, 8, e74420. [Google Scholar] [CrossRef]
- Meares, G.P.; Mines, M.A.; Beurel, E.; Eom, T.Y.; Song, L.; Zmijewska, A.A.; Jope, R.S. Glycogen Synthase Kinase-3 Regulates Endoplasmic Reticulum (ER) Stress-Induced CHOP Expression in Neuronal Cells. Exp. Cell Res. 2011, 317, 1621–1628. [Google Scholar] [CrossRef]
- Corazzari, M.; Gagliardi, M.; Fimia, G.M.; Piacentini, M. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate. Front. Oncol. 2017, 7, 78. [Google Scholar] [CrossRef]
- Lustoza, A.C.D.M.; Palma, L.M.; Façanha, A.R.; Okorokov, L.A.; Okorokova-Façanha, A.L. P 5a-Type ATPase Cta4p Is Essential for Ca 2+ Transport in the Endoplasmic Reticulum of Schizosaccharomyces Pombe. PLoS ONE 2011, 6, e27843. [Google Scholar] [CrossRef]
- Schönthal, A.H. Endoplasmic Reticulum Stress: Its Role in Disease and Novel Prospects for Therapy. Scientifica 2012, 2012, 857516. [Google Scholar] [CrossRef]
- Chevrier, B.; D’Orchymont, H.; Schalk, C.; Tarnus, C.; Moras, D. The Structure of the Aeromonas Proteolytica Aminopeptidase Complexed with a Hydroxamate Inhibitor: Involvement in Catalysis of Glu151 and Two Zinc Ions of the Co-Catalytic Unit. Eur. J. Biochem. 1996, 237, 393–398. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS Database of Proteolytic Enzymes, Their Substrates and Inhibitors in 2017 and a Comparison with Peptidases in the PANTHER Database. Nucleic Acids Res 2018, 46, D624–D632. [Google Scholar] [CrossRef]
- Auld, D.S. Catalytic Mechanisms for Metallopeptidases. In Handbook of Proteolytic Enzymes; Elsevier: Amsterdam, The Netherlands, 2013; Volume 1, pp. 370–396. [Google Scholar] [CrossRef]
- Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and Recalibrations. Nucleic Acids Res 2015, 43, D512–D520. [Google Scholar] [CrossRef]
- Tsai, C.-F.; Wang, Y.-T.; Yen, H.-Y.; Tsou, C.-C.; Ku, W.-C.; Lin, P.-Y.; Chen, H.-Y.; Nesvizhskii, A.I.; Ishihama, Y.; Chen, Y.-J. Large-Scale Determination of Absolute Phosphorylation Stoichiometries in Human Cells by Motif-Targeting Quantitative Proteomics. Nat. Commun. 2015, 6, 6622. [Google Scholar] [CrossRef]
- Mancinelli, R.; Carpino, G.; Petrungaro, S.; Mammola, C.L.; Tomaipitinca, L.; Filippini, A.; Facchiano, A.; Ziparo, E.; Giampietri, C. Multifaceted Roles of GSK-3 in Cancer and Autophagy-Related Diseases. Oxidative Med. Cell Longev. 2017, 2017, 4629495. [Google Scholar] [CrossRef]
- Plyte, S.E.; Feoktistova, A.; Burke, J.D.; Woodgett, J.R.; Gould, K.L. Schizosaccharomyces Pombe Skp1 Encodes a Protein Kinase Related to Mammalian Glycogen Synthase Kinase 3 and Complements a Cdc14 Cytokinesis Mutant. Mol. Cell Biol. 1996, 16, 179–191. [Google Scholar] [CrossRef]
- Kim, W.; Bennett, E.J.; Huttlin, E.L.; Guo, A.; Li, J.; Possemato, A.; Sowa, M.E.; Rad, R.; Rush, J.; Comb, M.J.; et al. Systematic and Quantitative Assessment of the Ubiquitin-Modified Proteome. Mol. Cell 2011, 44, 325–340. [Google Scholar] [CrossRef]
- Lumpkin, R.J.; Gu, H.; Zhu, Y.; Leonard, M.; Ahmad, A.S.; Clauser, K.R.; Meyer, J.G.; Bennett, E.J.; Komives, E.A. Site-Specific Identification and Quantitation of Endogenous SUMO Modifications under Native Conditions. Nat. Commun. 2017, 8, 1171. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Furnham, N.; Thornton, J.M. The Ramachandran Plot and Protein Structure Validation. In Biomolecular Forms and Functions; World Scientific Pub Co. Inc.: Hackensack, NJ, USA, 2013; pp. 62–75. [Google Scholar] [CrossRef]
- Holz, R.C. The Aminopeptidase from Aeromonas Proteolytica: Structure and Mechanism of Co-Catalytic Metal Centers Involved in Peptide Hydrolysis. Coord. Chem. Rev. 2002, 232, 5–26. [Google Scholar] [CrossRef]
- Desmarais, W.; Bienvenue, D.L.; Bzymek, K.P.; Petsko, G.A.; Ringe, D.; Holz, R.C. The High-Resolution Structures of the Neutral and the Low PH Crystals of Aminopeptidase from Aeromonas Proteolytica. J. Biol. Inorg. Chem. 2006, 11, 398–408. [Google Scholar] [CrossRef]
- Richards, A.L.; Eckhardt, M.; Krogan, N.J. Mass Spectrometry-based Protein–Protein Interaction Networks for the Study of Human Diseases. Mol. Syst. Biol. 2021, 17, e8792. [Google Scholar] [CrossRef]
- Hiller, O.; Lichte, A.; Oberpichler, A.; Kocourek, A.; Tschesche, H. Matrix Metalloproteinases Collagenase-2, Macrophage Elastase, Collagenase-3, and Membrane Type 1-Matrix Metalloproteinase Impair Clotting by Degradation of Fibrinogen and Factor XII. J. Biol. Chem. 2000, 275, 33008–33013. [Google Scholar] [CrossRef]
- Yasuhara, T.; Nakai, T.; Ohashi, A. Aminopeptidase Y, a New Aminopeptidase from Saccharomyces Cerevisiae. Purification, Properties, Localization, and Processing by Protease B. J. Biol. Chem. 1994, 269, 13644–13650. [Google Scholar] [CrossRef]
- Shiba, T.; Koga, H.; Shin, H.-W.; Kawasaki, M.; Kato, R.; Nakayama, K.; Wakatsuki, S. Structural Basis for Rab11-Dependent Membrane Recruitment of a Family of Rab11-Interacting Protein 3 (FIP3) Arfophilin-1. Proc. Natl. Acad. Sci. USA 2006, 103, 15416–15421. [Google Scholar] [CrossRef]
- Kumar, P.; Wolberger, C. Structure of the Yeast Bre1 RING Domain. Proteins Struct. Funct. Bioinform. 2015, 83, 1185–1190. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Gan, J.; Wang, W.; Sun, B.; Huang, Z.X.; Xia, Z.X. Structures of Cytochrome B5 Mutated at the Charged Surface-Residues and Their Interactions with Cytochrome c. Chin. J. Chem. 2002, 2, 1225–1234. [Google Scholar] [CrossRef]
- Dohm, J.A.; Lee, S.J.; Hardwick, J.M.; Hill, R.B.; Gittis, A.G. Cytosolic Domain of the Human Mitochondrial Fission Protein Fis1 Adopts a TPR Fold. Proteins Struct. Funct. Genet. 2004, 54, 153–156. [Google Scholar] [CrossRef]
- Zhang, Y.; Inoue, M.; Tsutsumi, A.; Watanabe, S.; Nishizawa, T.; Nagata, K.; Kikkawa, M.; Inaba, K. Cryo-EM Structures of SERCA2b Reveal the Mechanism of Regulation by the Luminal Extension Tail. Sci. Adv. 2020, 6, eabb0147. [Google Scholar] [CrossRef]
- Kazanov, M.D.; Igarashi, Y.; Eroshkin, A.M.; Cieplak, P.; Ratnikov, B.; Zhang, Y.; Li, Z.; Godzik, A.; Osterman, A.L.; Smith, J.W. Structural Determinants of Limited Proteolysis. J. Proteome Res. 2011, 10, 3642–3651. [Google Scholar] [CrossRef]
- Oldfield, C.J.; Dunker, A.K. Intrinsically Disordered Proteins and Intrinsically Disordered Protein Regions. Annu. Rev. Biochem. 2014, 83, 553–584. [Google Scholar] [CrossRef]
- Ruff, K.M.; Pappu, R.V. AlphaFold and Implications for Intrinsically Disordered Proteins. J. Mol. Biol. 2021, 433, 167208. [Google Scholar] [CrossRef]
- Mahrus, S.; Trinidad, J.C.; Barkan, D.T.; Sali, A.; Burlingame, A.L.; Wells, J.A. Global Sequencing of Proteolytic Cleavage Sites in Apoptosis by Specific Labeling of Protein N Termini. Cell 2008, 134, 866–876. [Google Scholar] [CrossRef]
- Timmer, J.C.; Zhu, W.; Pop, C.; Regan, T.; Snipas, S.J.; Eroshkin, A.M.; Riedl, S.J.; Salvesen, G.S. Structural and Kinetic Determinants of Protease Substrates. Nat. Struct. Mol. Biol. 2009, 16, 1101–1108. [Google Scholar] [CrossRef]
- Hartmann, M.; Clark, T.; Van Eldik, R. Hydration and Water Exchange of Zinc (II) Ions. Application of Density Functional Theory. J. Am. Chem. Soc. 1997, 119, 7843–7850. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, H.B.; Ji, L.N.; Mao, Z.W. Insights into Metalloenzyme Microenvironments: Biomimetic Metal Complexes with a Functional Second Coordination Sphere. Chem. Soc. Rev. 2013, 42, 8360–8375. [Google Scholar] [CrossRef]
- Zastrow, M.L.; Pecoraro, V.L. Designing Hydrolytic Zinc Metalloenzymes. Biochemistry 2014, 53, 957–978. [Google Scholar] [CrossRef]
- Jeong, W.J.; Lee, J.; Eom, H.; Song, W.J. A Specific Guide for Metalloenzyme Designers: Introduction and Evolution of Metal-Coordination Spheres Embedded in Protein Environments. Acc. Chem. Res. 2023, 56, 2416–2425. [Google Scholar] [CrossRef]
- Hitzerd, S.M.; Verbrugge, S.E.; Ossenkoppele, G.; Jansen, G.; Peters, G.J. Positioning of Aminopeptidase Inhibitors in next Generation Cancer Therapy. Amino Acids 2014, 46, 793–808. [Google Scholar] [CrossRef]
- Holstein, S.A.; Heckman, C.A.; Davies, F.E.; Morgan, G.J.; Gelius, S.S.; Lehmann, F. Aminopeptidases in Cancer, Biology and Prospects for Pharmacological Intervention. Curr. Cancer Drug Targets 2022, 23, 25–46. [Google Scholar] [CrossRef]
- Polaina, J.; MacCabe, A.P. Industrial Enzymes: Structure, Function and Applications; Springer: Berlin/Heidelberg, Germany, 2007; Chapter 15; pp. 243–260. ISBN 9781402053771. [Google Scholar]
- Mina-Osorio, P. The Moonlighting Enzyme CD13: Old and New Functions to Target. Trends Mol. Med. 2008, 14, 361–371. [Google Scholar] [CrossRef]
- Moore, H.E.; Davenport, E.L.; Smith, E.M.; Muralikrishnan, S.; Dunlop, A.S.; Walker, B.A.; Krige, D.; Drummond, A.H.; Hooftman, L.; Morgan, G.J.; et al. Aminopeptidase Inhibition as a Targeted Treatment Strategy in Myeloma. Mol. Cancer Ther. 2009, 8, 762–770. [Google Scholar] [CrossRef]
- Qi, L.; Tsai, B.; Arvan, P. New Insights into the Physiological Role of Endoplasmic Reticulum-Associated Degradation. Trends Cell Biol. 2017, 27, 430–440. [Google Scholar] [CrossRef]
- Suzuki, T.; Bridges, D.; Nakada, D.; Skiniotis, G.; Morrison, S.J.; Lin, J.D.; Saltiel, A.R.; Inoki, K. Inhibition of AMPK Catabolic Action by GSK3. Mol. Cell 2013, 50, 407–419. [Google Scholar]
- Xiao, B.; Sanders, M.J.; Carmena, D.; Bright, N.J.; Haire, L.F.; Underwood, E.; Patel, B.R.; Heath, R.B.; Walker, P.A.; Hallen, S.; et al. Structural Basis of AMPK Regulation by Small Molecule Activators. Nat. Commun. 2013, 4, 3017. [Google Scholar] [CrossRef]
- Cetrullo, S.; D’Adamo, S.; Tantini, B.; Borzì, R.M.; Flamigni, F. MTOR, AMPK, and Sirt1: Key Players in Metabolic Stress Management. Crit. Rev. Eukaryot. Gene Expr. 2015, 25, 59–75. [Google Scholar] [CrossRef]
- Evangelisti, C.; Chiarini, F.; Paganelli, F.; Marmiroli, S.; Martelli, A.M. Crosstalks of GSK3 Signaling with the MTOR Network and Effects on Targeted Therapy of Cancer. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118635. [Google Scholar] [CrossRef]
- Nie, T.; Yang, S.; Ma, H.; Zhang, L.; Lu, F.; Tao, K.; Wang, R.; Yang, R.; Huang, L.; Mao, Z.; et al. Regulation of ER Stress-Induced Autophagy by GSK3Β-TIP60-ULK1 Pathway. Cell Death Dis. 2016, 7, e2563. [Google Scholar] [CrossRef]
- Liu, C.M.; Yang, H.X.; Ma, J.Q.; Yang, W.; Feng, Z.J.; Sun, J.M.; Cheng, C.; Li, J.; Jiang, H. Role of AMPK Pathway in Lead-Induced Endoplasmic Reticulum Stress in Kidney and in Paeonol-Induced Protection in Mice. Food Chem. Toxicol. 2018, 122, 87–94. [Google Scholar] [CrossRef]
- Nascimento Mello, A.L.; Sagrillo, F.S.; de Souza, A.G.; Costa, A.R.P.; Campos, V.R.; Cunha, A.C.; Imbroisi Filho, R.; da Costa Santos Boechat, F.; Sola-Penna, M.; de Souza, M.C.B.V.; et al. Selective AMPK Activator Leads to Unfolded Protein Response Downregulation and Induces Breast Cancer Cell Death and Autophagy. Life Sci. 2021, 276, 119470. [Google Scholar] [CrossRef]
- Hartmuth, S.; Petersen, J. Fission Yeast Tor1 Functions as Part of TORC1 to Control Mitotic Entry through the Stress MAPK Pathway Following Nutrient Stress. J. Cell Sci. 2009, 122, 1737–1746. [Google Scholar] [CrossRef]
- Wu, H.; Ng, B.S.H.; Thibault, G. Endoplasmic Reticulum Stress Response in Yeast and Humans. Biosci. Rep. 2014, 34, 321–330. [Google Scholar] [CrossRef]
- Hu, W.; Ohue, M. SpatialPPI: Three-Dimensional Space Protein-Protein Interaction Prediction with AlphaFold Multimer. Comput. Struct. Biotechnol. J. 2024, 23, 1214–1225. [Google Scholar] [CrossRef]
- Malladi, S.; Powell, H.R.; David, A.; Islam, S.A.; Copeland, M.M.; Kundrotas, P.J.; Sternberg, M.J.E.; Vakser, I.A. GWYRE: A Resource for Mapping Variants onto Experimental and Modeled Structures of Human Protein Complexes. J. Mol. Biol. 2022, 434, 167608. [Google Scholar] [CrossRef]
- Mishra, M.; Jiang, H.; Wei, Q. New Insights on the Differential Interaction of Sulfiredoxin with Members of the Peroxiredoxin Family Revealed by Protein-Protein Docking and Experimental Studies. Eur. J. Pharmacol. 2023, 954, 175873. [Google Scholar] [CrossRef]
- Jakhmola, V.; Parashar, T.; Ghildiyal, P.; Ansori, A.N.M.; Sharma, R.K.; Rao, N.G.R.; Kalra, K.; Singh, N.; Nainwal, N.; Singh, R.K.; et al. An In Silico Study to Explore the Role of EGFR in Ovarian Cancer. Pharmacogn. J. 2022, 14, 817–821. [Google Scholar] [CrossRef]
- Desta, I.T.; Porter, K.A.; Xia, B.; Kozakov, D.; Vajda, S. Performance and Its Limits in Rigid Body Protein-Protein Docking. Structure 2020, 28, 1071–1081. [Google Scholar] [CrossRef]
- Gupta, S.; Ali, A.; Pandey, S.; Khan, I.A.; Prakash, P. Fibronectin Containing Alternatively Spliced Extra Domain A Interacts at the Central and C-Terminal Domain of Toll-like Receptor-4. Sci. Rep. 2022, 12, 9662. [Google Scholar] [CrossRef]
- Sotudian, S.; Desta, I.T.; Hashemi, N.; Zarbafian, S.; Kozakov, D.; Vakili, P.; Vajda, S.; Paschalidis, I.C. Improved Cluster Ranking in Protein–Protein Docking Using a Regression Approach. Comput. Struct. Biotechnol. J. 2021, 19, 2269–2278. [Google Scholar] [CrossRef]
Human Protein | UniProt ID | Ortholog SCHPO 1 | UniProt ID | MMP 2 Prediction | Segment | Position | Score 3 |
---|---|---|---|---|---|---|---|
PRKAB1 | Q9Y478 | Amk2 | P78789 | MMP9 | RAQS MISI | Met40 | 1.16 |
RAB5C | P51148 | Ypt5 | P36586 | MMP9 | SLAP MYYR | Met83 | 1.08 |
PEX12 | O00623 | Pex12 | Q8TFH8 | MMP9 | FWRL MI | Met342 | 1.22 |
CYB5B | O43169 | Oca8 | Q9USM6 | MMP9 | GEEV LVDL | Leu45 | 0.98 |
FIS1 | Q9Y3D6 | Fis1 | Q9USZ8 | MMP9 | EALK LKNR | Leu117 | 1.05 |
ATP2B2 | Q01814 | Pmc1 | Q9HDW7 | MMP9 | TTMA MRTE | Met429 | 1.23 |
Protein | Template | Organism | PDB ID | Identity Percentage | Q-Score 1 | RMSD 2 (Å) | Ramachandran Plot 3 |
---|---|---|---|---|---|---|---|
Ypt5 | Rab11 | H. sapiens | 2D7C [90] | 43% | 0.95 | 0.33 | 87.1% |
Pex12 | Ring 3 ligase | S. cerevisiae | 4R7E [91] | 28% | 0.71 | 0.71 | 85.1% |
Oca8 | Cytochrome b5 | B. taurus | 1M2I [92] | 50% | 1.00 | 0.00 | 90.3% |
Fis1 | Fis1 | H. sapiens | 1NZN [93] | 25% | 0.90 | 0.49 | 90.0% |
Pmc1 | SERCA2b | H. sapiens | 6LLE [94] | 28% | 0.80 | 0.47 | 87.5% |
Ligand SCHPO 1 | Docking Prediction | Docking Program | PIPER Energy Score | Cluster Size |
---|---|---|---|---|
Amk2 | RAQS MISI | ClusPro BioLuminate | −923.2 −951.3 | 28 57 |
Ypt5 | S LAPMYYR | ClusPro BioLuminate | −645.5 −638.4 | 31 28 |
Pex12 | FWR LMI | ClusPro BioLuminate | −680.8 −667.4 | 124 78 |
Oca8 | GEEVLVD L | ClusPro BioLuminate | −500.6 −542.6 | 62 54 |
Fis1 | EALKLKN R | ClusPro BioLuminate | −607.1 −633.0 | 92 74 |
Pmc1 | TT MAMRTE | ClusPro BioLuminate | −1137.7 −1212.5 | 35 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Esparragoza, D.; Carrasco-Carballo, A.; Rosas-Murrieta, N.H.; Millán-Pérez Peña, L.; Luna, F.; Herrera-Camacho, I. In Silico Analysis of Protein–Protein Interactions of Putative Endoplasmic Reticulum Metallopeptidase 1 in Schizosaccharomyces pombe. Curr. Issues Mol. Biol. 2024, 46, 4609-4629. https://doi.org/10.3390/cimb46050280
González-Esparragoza D, Carrasco-Carballo A, Rosas-Murrieta NH, Millán-Pérez Peña L, Luna F, Herrera-Camacho I. In Silico Analysis of Protein–Protein Interactions of Putative Endoplasmic Reticulum Metallopeptidase 1 in Schizosaccharomyces pombe. Current Issues in Molecular Biology. 2024; 46(5):4609-4629. https://doi.org/10.3390/cimb46050280
Chicago/Turabian StyleGonzález-Esparragoza, Dalia, Alan Carrasco-Carballo, Nora H. Rosas-Murrieta, Lourdes Millán-Pérez Peña, Felix Luna, and Irma Herrera-Camacho. 2024. "In Silico Analysis of Protein–Protein Interactions of Putative Endoplasmic Reticulum Metallopeptidase 1 in Schizosaccharomyces pombe" Current Issues in Molecular Biology 46, no. 5: 4609-4629. https://doi.org/10.3390/cimb46050280
APA StyleGonzález-Esparragoza, D., Carrasco-Carballo, A., Rosas-Murrieta, N. H., Millán-Pérez Peña, L., Luna, F., & Herrera-Camacho, I. (2024). In Silico Analysis of Protein–Protein Interactions of Putative Endoplasmic Reticulum Metallopeptidase 1 in Schizosaccharomyces pombe. Current Issues in Molecular Biology, 46(5), 4609-4629. https://doi.org/10.3390/cimb46050280