Low Cell Bioenergetic Metabolism Characterizes Chronic Lymphocytic Leukemia Patients with Unfavorable Genetic Factors and with a Better Response to BTK Inhibition
Abstract
:1. Introduction
2. Materials and Methods
2.1. CLL Patients
2.2. CLL Cell Enrichment
2.3. B-Cells Purification
2.4. Flow Cytometry
2.5. Cytogenetic and Molecular Analysis
2.6. Bioenergetic Metabolic Measurements
2.7. Statistics
3. Results
3.1. Bioenergetic Metabolic Clustering
3.2. Clinical/Biological Correlations
3.3. Response to Treatment with Ibrutinib
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiorazzi, N.; Rai, K.R.; Ferrarini, M. Chronic lymphocytic leukemia. N. Engl. J. Med. 2005, 352, 804–815. [Google Scholar] [CrossRef] [PubMed]
- Kipps, T.J.; Stevenson, F.K.; Wu, C.J.; Croce, C.M.; Packham, G.; Wierda, W.G.; O’Brien, S.; Gribben, J.; Rai, K. Chronic lymphocytic leukaemia. Nat. Rev. Dis. Primers 2017, 3, 16096. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 2019, 94, 1266–1287. [Google Scholar] [CrossRef] [PubMed]
- Rozovski, U.; Hazan-Halevy, I.; Barzilai, M.; Keating, M.J.; Estrov, Z. Metabolism pathways in chronic lymphocytic leukemia. Leuk. Lymphoma 2016, 57, 758–765. [Google Scholar] [CrossRef]
- Vangapandu, H.V.; Havranek, O.; Ayres, M.L.; Kaipparettu, B.A.; Balakrishnan, K.; Wierda, W.G.; Keating, M.J.; Gandhi, V. B cell receptor signaling regulates metabolism in Chronic Lymphocytic Leukemia. Mol. Cancer Res. 2017, 15, 1692–1703. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, L.; Sasaki, Y.; Calado, D.P.; Zhang, B.; Paik, J.H.; DePinho, R.A.; Kutok, J.L.; Kearney, J.F.; Otipoby, K.L.; Rajewsky, K. PI3 kinase signals BCR-dependent mature B cell survival. Cell 2009, 139, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Pal Singh, S.; Dammeijer, F.; Hendriks, R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer 2018, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Shanmugan, M.; McBrayer, S.K.; Rosen, S.T. Targeting the Warburg Effect in Hematological Malignancies: From PET to Therapy. Curr. Opin. Oncol. 2009, 21, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Yun, X.; Zhang, Y.; Wang, X. Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp. Hematol. Oncol. 2022, 11, 39. [Google Scholar] [CrossRef]
- Zelenetz, A.D. Chronic lymphocytic leukemia: Individualizing treatment approach. J. Natl. Compr. Cancer Netw. 2017, 15, 713–715. [Google Scholar] [CrossRef]
- Jitschin, R.; Hofmann, A.D.; Bruns, H.; Gießl, A.; Bricks, J.; Berger, J.; Saul, D.; Eckart, M.J.; Mackensen, A.; Mougiakakos, D. Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood 2014, 123, 2663–2672. [Google Scholar] [CrossRef]
- Falchi, L.; Keating, M.J.; Marom, E.M.; Truong, M.T.; Schlette, E.J.; Sargent, R.L.; Trinh, L.; Wang, X.; Smith, S.C.; Jain, N.; et al. Correlation between FDG/PET, histology, characteristics, and survival in 332 patients with chronic lymphoid leukemia. Blood 2014, 123, 2783–2790. [Google Scholar] [CrossRef]
- Galicia-Vázquez, G.; Aloyz, R. Metabolic rewiring beyond Warburg in chronic lymphocytic leukemia: How much do we actually know? Crit. Rev. Oncol. Hematol. 2019, 134, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Vazquez, G.; Smith, S.; Aloyz, R. Del11q-positive CLL lymphocytes exhibit altered glutamine metabolism and differential response to GLS1 and glucose metabolism inhibition. Blood Cancer J. 2018, 8, 13. [Google Scholar] [CrossRef]
- Kluckova, K.; Clear, A.J.; D’Avola, A.; Rassenti, L.Z.; Kipps, T.J.; Gribben, J.G.; Riches, J.C. B-cell Receptor Signaling Induced Metabolic Alterations in Chronic Lymphocytic Leukemia Can Be Partially Bypassed by TP53 Abnormalities. Hemasphere 2022, 6, e722. [Google Scholar] [CrossRef]
- Napoli, M.; Flores, E.R. The p53 family orchestrates the regulation of metabolism:physiological regulation and implications for cancer therapy. Br. J. Cancer 2017, 116, 149–155. [Google Scholar] [CrossRef]
- Schwartzenberg-Bar-Yoseph, F.; Armoni, M.; Karnieli, E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004, 64, 2627–2633. [Google Scholar] [CrossRef]
- Hong, M.; Xia, Y.; Zhu, Y.; Zhao, H.-H.; Zhu, H.; Xie, Y.; Fan, L.; Wang, L.; Miao, K.-R.; Yu, H.; et al. TP53-induced glycolysis and apoptosis regulator protects from spontaneous apoptosis and predicts poor prognosis in chronic lymphocytic leukemia. Leuk. Res. 2016, 50, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Vázquez, G.; Aloyz, R. Ibrutinib resistance is reduced by an inhibitor of fatty acid oxidation in primary CLL lymphocytes. Front. Oncol. 2018, 8, 411. [Google Scholar] [CrossRef]
- Marignac, V.M.; Smith, S.; Toban, N.; Bazile, M.; Aloyz, R. Resistance to Dasatinib in primary chronic lymphocytic leukemia lymphocytes involves AMPK-mediated energetic re-programming. Oncotarget 2013, 4, 2550–2566. [Google Scholar] [CrossRef]
- Ricciardi, M.R.; Mirabilii, S.; Allegretti, M.; Licchetta, R.; Calarco, A.; Torrisi, M.R.; Foa, R.; Nicolai, R.; Peluso, G.; Tafuri, A. Targeting the leukemia cell metabolism by the CPT1a inhibition: Functional preclinical effects in leukemias. Blood 2015, 126, 1925–1929. [Google Scholar] [CrossRef]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef]
- Bulian, P.; Shanafelt, T.D.; Fegan, C.; Zucchetto, A.; Cro, L.; Nückel, H.; Baldini, L.; Kurtova, A.V.; Ferrajoli, A.; Burger, J.A.; et al. CD49d is the strongest flow cytometry-based predictor of overall survival in chronic lymphocytic leukemia. J. Clin. Oncol. 2014, 32, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Bomben, R.; Rossi, F.M.; Vit, F.; Bittolo, T.; D’Agaro, T.; Zucchetto, A.; Tissino, E.; Pozzo, F.; Vendramini, E.; Degan, M.; et al. TP53 Mutations with Low Variant Allele Frequency Predict Short Survival in Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2021, 27, 5566–5575. [Google Scholar] [CrossRef] [PubMed]
- Allegretti, M.; Ricciardi, M.R.; Licchetta, R.; Mirabilii, S.; Orecchioni, S.; Reggiani, F.; Talarico, G.; Foà, R.; Bertolini, F.; Amadori, S.; et al. The pan-class I phosphatidyl-inositol-3 kinase inhibitor NVP-BKM120 demonstrates anti-leukemic activity in acute myeloid leukemia. Sci. Rep. 2015, 5, 18137. [Google Scholar] [CrossRef]
- Divakaruni, A.S.; Paradyse, A.; Ferrick, D.A.; Murphy, A.N.; Jastroch, M. Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol. 2014, 547, 309–354. [Google Scholar] [PubMed]
- Fukunaga, K.; Hostetler, L. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 1975, 21, 32–40. [Google Scholar] [CrossRef]
- Ahn, I.E.; Underbayev, C.; Albitar, A.; Herman, S.E.M.; Tian, X.; Maric, I.; Arthur, D.C.; Wake, L.; Pittaluga, S.; Yuan, C.M.; et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 2017, 129, 1469–1479. [Google Scholar] [CrossRef]
- Desbats, M.A.; Giacomini, I.; Prayer-Galetti, T.; Montopoli, M. Metabolic Plasticity in Chemotherapy Resistance. Front. Oncol. 2020, 10, 281. [Google Scholar] [CrossRef]
- Mirabilii, S.; Ricciardi, M.R.; Tafuri, A. mTOR Regulation of Metabolism in Hematologic Malignancies. Cells 2020, 9, 404. [Google Scholar] [CrossRef]
- Clapham, C.E.; Pettitt, A.R.; Slupsky, J.R. Targeting Cell Metabolism in Chronic Lymphocytic Leukaemia (CLL); Aviable Therapeutic Approach? J. Hematol. Oncol. Res. 2014, 1, 7–23. [Google Scholar] [CrossRef]
- Vangapandu, H.V.; Ayres, M.L.; Bristow, C.A.; Wierda, W.G.; Keating, M.J.; Balakrishnan, K.; Stellrecht, C.M.; Gandhi, V. The Stromal Microenvironment Modulates Mitochondrial Oxidative Phosphorylation in Chronic Lymphocytic Leukemia Cells. Neoplasia 2017, 19, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Jitschin, R.; Braun, M.; Qorraj, M.; Saul, D.; Le Blanc, K.; Zenz, T.; Mougiakakos, D. Stromal cell–mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling. Blood 2015, 125, 3432–3436. [Google Scholar] [CrossRef]
- Guo, A.; Lu, P.; Galanina, N.; Nabhan, C.; Smith, S.M.; Coleman, M.; Wang, Y.L. Heightened BTK-dependent cell proliferation in unmutated chronic lymphocytic leukemia confers increased sensitivity to ibrutinib. Oncotarget 2016, 7, 4598–4610. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, I.; Foà, R. Another step forward in the 20-year history of IGHV mutations in chronic lymphocytic leukemia. Haematologica 2019, 104, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Böttcher, M.; Walther, T.; Mougiakakos, D.; Zenz, T.; Huber, W. Energy metabolism is co-determined by genetic variants in chronic lymphocytic leukemia and influences drug sensitivity. Haematologica 2019, 104, 1830–1840. [Google Scholar] [CrossRef] [PubMed]
- Morabito, F.; Del Poeta, G.; Mauro, F.R.; Reda, G.; Sportoletti, P.; Laurenti, L.; Coscia, M.; Herishanu, Y.; Bossio, S.; Varettoni, M.; et al. TP53 disruption as a risk factor in the era of targeted therapies: A multicenter retrospective study of 525 chronic lymphocytic leukemia cases. Am. J. Hematol. 2021, 96, E306–E310. [Google Scholar] [CrossRef] [PubMed]
- Bomben, R.; Rossi, F.M.; Vit, F.; Bittolo, T.; Zucchetto, A.; Papotti, R.; Tissino, E.; Pozzo, F.; Degan, M.; Polesel, J.; et al. Clinical impact of TP53 disruption in chronic lymphocytic leukemia patients treated with ibrutinib: A campus CLL study. Leukemia 2023, 37, 914–918. [Google Scholar] [CrossRef]
- Eriksson, M.; Ambroise, G.; Ouchida, A.T.; Queiroz, A.L.; Smith, D.; Gimenez-Cassina, A.; Iwanicki, M.P.; Muller, P.A.; Norberg, E.; Vakifahmetoglu-Norberg, H. Effect of Mutant p53 Proteins on Glycolysis and Mitochondrial Metabolism. Mol. Cell. Biol. 2017, 37, e00328-17. [Google Scholar] [CrossRef]
pt n. | WBC | IgHV | MUTATIONS | CYTOGENETICS | OCR Mean | OCR SD | ECAR Mean | ECAR SD |
---|---|---|---|---|---|---|---|---|
low | ||||||||
#1 | 37210 | unmutated | Del13q14.3; del11q22.3 | 17.90 | 0.64 | 2.36 | 0.98 | |
#2 | 73290 | unmutated | del13q14.3; del 17p (15%) | 23.01 | 5.53 | 6.56 | 1.04 | |
#3 | 159000 | unmutated | SF3B1 | neg | 10.48 | 1.75 | 2.39 | 0.25 |
#4 | 32500 | mutated | del13 | 8.67 | 1.34 | 2.10 | 0.26 | |
#5 | 27900 | mutated | del 13q | 17.20 | 2.81 | 6.92 | 0.38 | |
#6 | 50000 | mutated | del 13q14.3 | 16.75 | 3.58 | 7.16 | 0.30 | |
#7 | 25000 | unmutated | NOTCH1 | tris 12 | 40.87 | 3.34 | 10.57 | 1.16 |
#8 | 80600 | unmutated | del11q22.3 | 7.06 | 2.12 | 1.54 | 0.05 | |
#9 | 20900 | unmutated | neg | 44.49 | 2.21 | 12.53 | 1.30 | |
#10 | 49200 | mutated | neg | 31.45 | 4.18 | 11.59 | 1.89 | |
#11 | 140000 | unmutated | del11 | 19.43 | 6.33 | 6.58 | 2.56 | |
#12 | 102400 | unmutated | TP53, SF3B1 | del 17p; del 11q | 23.86 | 2.06 | 10.98 | 0.54 |
#13 | 47200 | mutated | SF3B1 | del 13q14.3; del11q22.3 | 19.79 | 1.45 | 5.75 | 0.32 |
#14 | 79230 | mutated | neg | 27.43 | 4.12 | 8.44 | 1.95 | |
#15 | 77240 | mutated | del13 | 4.50 | 3.56 | 2.40 | 0.82 | |
#16 | 40940 | mutated | del13 | 21.74 | 2.44 | 6.08 | 0.58 | |
#17 | 40400 | mutated | del 13q14.3 | 23.46 | 8.73 | 7.43 | 1.91 | |
#18 | 25400 | mutated | del13 | 17.71 | 2.11 | 5.95 | 0.96 | |
#19 | 76200 | mutated | neg | 11.57 | 1.37 | 4.47 | 0.92 | |
#20 | 16300 | unmutated | TP53 | del 13q14.3 | 32.83 | 1.23 | 12.53 | 0.16 |
#21 | 41600 | unmutated | NOTCH1 | del 13q14.3 (7%) | 36.21 | 2.40 | 14.01 | 0.65 |
#22 | 78000 | unmutated | NOTCH1 | del13 | 15.95 | 4.90 | 2.72 | 0.62 |
#23 | 92300 | unmutated | TP53, SF3B1 | del17;tris12;del13 | 27.73 | 6.42 | 6.71 | 1.99 |
#24 | 15300 | mutated | SF3B1 | neg | 15.72 | 2.62 | 5.72 | 0.14 |
#25 | 26800 | unmutated | neg | 37.25 | 4.70 | 14.32 | 1.08 | |
#26 | 50000 | mutated | TP53 | del17:del13 | 34.21 | 2.50 | 13.38 | 0.94 |
high | ||||||||
#27 | 15100 | unmutated | tris 12 | 51.88 | 1.10 | 21.07 | 3.13 | |
#28 | 4600 | mutated | SF3B1 | neg | 56.42 | 9.17 | 24.86 | 4.14 |
#29 | 30000 | mutated | nd | 75.60 | 3.46 | 20.29 | 0.81 | |
#30 | 32290 | unmutated | tris 12 | 68.23 | 1.49 | 22.83 | 1.59 | |
#31 | 15400 | mutated | del 13q14.3 | 71.15 | 6.37 | 21.30 | 1.81 | |
#32 | 3880 | nd | 46.02 | 19.65 | 20.56 | 7.68 | ||
#33 | 21100 | mutated | neg | 66.63 | 1.96 | 20.18 | 0.37 | |
#34 | 14810 | unmutated | tris 12 | 60.83 | 2.07 | 22.14 | 1.43 | |
#35 | 6040 | mutated | nd | 69.08 | 10.05 | 22.06 | 4.93 |
Tot | CLL High (%tot) | CLL Low (%tot) | p | |
---|---|---|---|---|
IGHV Mutated | 18 | 5 (27.8%) | 13 (72.2%) | n.s. |
IGHV Unmutated | 16 | 3 (18.8%) | 13 (81.2%) | 0.0124 |
del(13q) | 11 | 1 (9.1%) | 10 (90.9%) | 0.0067 |
del(17p) | 0 | 0 (0%) | 0 (0%) | n.s. |
del(11q) | 2 | 0 (0%) | 2 (100%) | n.s. |
del(13q);del(17p) | 3 | 0 (0%) | 3 (100%) | n.s. |
del(11q);del(17p) | 1 | 0 (0%) | 1 (100%) | n.s. |
del(11q);del(13q) | 3 | 0 (0%) | 3 (100%) | n.s. |
Tris12 | 4 | 1 (25%) | 3 (75%) | n.s. |
TP53 | 4 | 0 (0%) | 4 (100%) | 0.046 |
NOTCH1 | 2 | 0 (0%) | 2 (100%) | n.s. |
BIRC3 | 5 | 0 (0%) | 5 (100%) | 0.025 |
SF3B1 | 6 | 1 (16.7%) | 5 (83.3%) | n.s. |
pt n. | WBC | IgHV | MUTATIONS | CYTOGENETICS | OCR Mean | OCR SD | ECAR Mean | ECAR SD |
---|---|---|---|---|---|---|---|---|
low | ||||||||
#2 | 73290 | unmutated | del13q14.3; del 17p (15%) | 23.01 | 5.53 | 6.56 | 1.04 | |
#3 | 159000 | unmutated | SF3B1 | neg | 10.48 | 1.75 | 2.39 | 0.25 |
#7 | 25000 | unmutated | NOTCH1 | tris 12 | 40.87 | 3.34 | 10.57 | 1.16 |
#9 | 20900 | unmutated | neg | 44.49 | 2.21 | 12.53 | 1.3 | |
#12 | 102400 | unmutated | TP53, SF3B1 | del 17p; del 11q | 23.86 | 2.06 | 10.98 | 0.54 |
#13 | 47200 | mutated | SF3B1 | del 13q14.3; del11q22.3 | 19.79 | 1.45 | 5.75 | 0.32 |
#17 | 40400 | mutated | del 13q14.3 | 23.46 | 8.73 | 7.43 | 1.91 | |
#22 | 78000 | unmutated | NOTCH1 | del13 | 15.95 | 4.9 | 2.72 | 0.62 |
#25 | 26800 | unmutated | neg | 37.25 | 4.7 | 14.32 | 1.08 | |
high | ||||||||
#29 | 30000 | mutated | nd | 75.6 | 3.46 | 20.29 | 0.81 | |
#32 | 3880 | nv | 46.02 | 19.65 | 20.56 | 7.68 | ||
#33 | 21100 | mutated | no | 66.63 | 1.96 | 20.18 | 0.37 | |
#34 | 14810 | unmutated | tris 12 | 60.83 | 2.07 | 22.14 | 1.43 |
Tot (12) | CLL High (3—%tot) | CLL Low (9—%tot) | |
---|---|---|---|
IGHV MUTATED | 4 | 2 (50%) | 2 (50%) |
IGHV UNMUTATED | 8 | 1 (12.5%) | 7 (87.5%) |
del(13q) | 1 | 0 (0%) | 1 (100%) |
del(17q) | 0 | 0 (0%) | 0 (0%) |
del(11p) | 0 | 0 (0%) | 0 (0%) |
del(13q);del(17p) | 1 | 0 (0%) | 1 (100%) |
del(11q);del(17p) | 1 | 0 (0%) | 1 (100%) |
del(11q);del(13q) | 1 | 0 (0%) | 1 (100%) |
Tris12 | 2 | 1 (50%) | 1 (50%) |
TP53 | 1 | 0 (0%) | 1 (100%) |
NOTCH1 | 1 | 0 (0%) | 1 (100%) |
BIRC3 | 3 | 0 (0%) | 3 (100%) |
SF3B1 | 3 | 0 (0%) | 3 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirabilii, S.; Piedimonte, M.; Conte, E.; Mirabilii, D.; Rossi, F.M.; Bomben, R.; Zucchetto, A.; Gattei, V.; Tafuri, A.; Ricciardi, M.R. Low Cell Bioenergetic Metabolism Characterizes Chronic Lymphocytic Leukemia Patients with Unfavorable Genetic Factors and with a Better Response to BTK Inhibition. Curr. Issues Mol. Biol. 2024, 46, 5085-5099. https://doi.org/10.3390/cimb46060305
Mirabilii S, Piedimonte M, Conte E, Mirabilii D, Rossi FM, Bomben R, Zucchetto A, Gattei V, Tafuri A, Ricciardi MR. Low Cell Bioenergetic Metabolism Characterizes Chronic Lymphocytic Leukemia Patients with Unfavorable Genetic Factors and with a Better Response to BTK Inhibition. Current Issues in Molecular Biology. 2024; 46(6):5085-5099. https://doi.org/10.3390/cimb46060305
Chicago/Turabian StyleMirabilii, Simone, Monica Piedimonte, Esmeralda Conte, Daniele Mirabilii, Francesca Maria Rossi, Riccardo Bomben, Antonella Zucchetto, Valter Gattei, Agostino Tafuri, and Maria Rosaria Ricciardi. 2024. "Low Cell Bioenergetic Metabolism Characterizes Chronic Lymphocytic Leukemia Patients with Unfavorable Genetic Factors and with a Better Response to BTK Inhibition" Current Issues in Molecular Biology 46, no. 6: 5085-5099. https://doi.org/10.3390/cimb46060305
APA StyleMirabilii, S., Piedimonte, M., Conte, E., Mirabilii, D., Rossi, F. M., Bomben, R., Zucchetto, A., Gattei, V., Tafuri, A., & Ricciardi, M. R. (2024). Low Cell Bioenergetic Metabolism Characterizes Chronic Lymphocytic Leukemia Patients with Unfavorable Genetic Factors and with a Better Response to BTK Inhibition. Current Issues in Molecular Biology, 46(6), 5085-5099. https://doi.org/10.3390/cimb46060305