The Role of Oxytocin in Polycystic Ovary Syndrome: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
6. Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PCOS | Polycystic Ovary Syndrome |
OT | oxytocin |
PVN | paraventicular nucleus |
SON | supraoptic nucleus |
LH | luteinizing hormone |
CA | cornu ammonis |
PGF2α | Prostaglandin F2α |
LD | linkage disequilibrium |
AMH | anti-mullerian hormone |
BMI | Body Mass Index |
T | total testosterone |
FSH | follicle-stimulating hormone |
TSH | thyroid-stimulating hormone |
DHEAS | dehydroepiandrosterone sulfate |
HOMA-IR | insulin resistance index |
HCG | chorionic gonadotropin |
IUI | intrauterine insemination |
CCh | carbachol |
PNX-14 | phoenixin-14 |
NES-1 | nesfatin-1 |
DA | dopamine |
PRL | prolactin |
SNPs | single nucleotides polymorphism |
P4 | progesterone |
E2 | estradiol |
AST | aspartate aminotransferase |
ALT | alanine aminotransferase |
LDH | lactate dehydrogenase |
NPY | Neuropeptide Y |
POMC | proopiomelanocortin |
E2/T | estradiol/testosterone ratio |
E2/A | estradiol/androstenedione ratio |
References
- Witchel, S.F.; Teede, H.J.; Peña, A.S. Curtailing PCOS. Pediatr. Res. 2020, 87, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Deswal, R.; Narwal, V.; Dang, A.; Pundir, C.S. The Prevalence of Polycystic Ovary Syndrome: A Brief Systematic Review. J. Hum. Reprod. Sci. 2020, 13, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Chiaffarino, F.; Cipriani, S.; Dalmartello, M.; Ricci, E.; Esposito, G.; Fedele, F.; La Vecchia, C.; Negri, E.; Parazzini, F. Prevalence of polycystic ovary syndrome in European countries and USA: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 279, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.; Legro, R.S.; Lizneva, D.; Natterson-Horowtiz, B.; Teede, H.J.; Yildiz, B.O. Polycystic ovary syndrome. Nature reviews. Dis. Primers 2016, 2, 16057. [Google Scholar] [CrossRef] [PubMed]
- Carmina, E. Diagnosis of polycystic ovary syndrome: From NIH criteria to ESHRE-ASRM guidelines. Minerva Ginecol. 2004, 56, 1–6. [Google Scholar] [PubMed]
- Blank, S.K.; McCartney, C.R.; Chhabra, S.; Helm, K.D.; Eagleson, C.A.; Chang, R.J.; Marshall, J.C. Modulation of gonadotropin-releasing hormone pulse generator sensitivity to progesterone inhibition in hyperandrogenic adolescent girls—Implications for regulation of pubertal maturation. J. Clin. Endocrinol. Metab. 2009, 94, 2360–2366. [Google Scholar] [CrossRef] [PubMed]
- Haqq, L.; McFarlane, J.; Dieberg, G.; Smart, N. Effect of lifestyle intervention on the reproductive endocrine profile in women with polycystic ovarian syndrome: A systematic review and meta-analysis. Endocr. Connect. 2014, 3, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Malini, N.A.; Roy George, K. Evaluation of different ranges of LH: FSH ratios in polycystic ovarian syndrome (PCOS)—Clinical based case control study. Gen. Comp. Endocrinol. 2018, 260, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Xie, L.; Wu, Q.; Cong, J.; Ma, H.; Li, J.; Cai, W.; Wu, X. Elevated baseline LH/FSH ratio is associated with poor ovulatory response but better clinical pregnancy and live birth in Chinese women with PCOS after ovulation induction. Heliyon 2023, 9, e13024. [Google Scholar] [CrossRef]
- Kriedt, K.J.; Alchami, A.; Davies, M.C. PCOS: Diagnosis and management of related infertility. Obstet. Gynaecol. Reprod. Med. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Cho, L.W.; Jayagopal, V.; Kilpatrick, E.S.; Holding, S.; Atkin, S.L. The LH/FSH ratio has little use in diagnosing polycystic ovarian syndrome. Ann. Clin. Biochem. 2006, 43 Pt 3, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Joham, A.E.; Norman, R.J.; Stener-Victorin, E.; Legro, R.S.; Franks, S.; Moran, L.J.; Boyle, J.; Teede, H.J. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022, 10, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Balen, A.H.; Morley, L.C.; Misso, M.; Franks, S.; Legro, R.S.; Wijeyaratne, C.N.; Stener-Victorin, E.; Fauser, B.C.; Norman, R.J.; Teede, H. The management of anovulatory infertility in women with polycystic ovary syndrome: An analysis of the evidence to support the development of global WHO guidance. Hum. Reprod. Update 2016, 22, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Melo, A.S.; Ferriani, R.A.; Navarro, P.A. Treatment of infertility in women with polycystic ovary syndrome: Approach to clinical practice. Clinics 2015, 70, 765–769. [Google Scholar] [CrossRef]
- Sirmans, S.M.; Pate, K.A. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin. Epidemiol. 2013, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Salley, K.E.; Wickham, E.P.; Cheang, K.I.; Essah, P.A.; Karjane, N.W.; Nestler, J.E. Glucose intolerance in polycystic ovary syndrome—A position statement of the Androgen Excess Society. J. Clin. Endocrinol. Metab. 2007, 92, 4546–4556. [Google Scholar] [CrossRef] [PubMed]
- Du Vigneaud, V.; Ressler, C.; Swan, J.M.; Roberts, C.W.; Katsoyannis, P.G. Oxytocin: Synthesis. J. Am. Chem. Soc. 1954, 76, 3115–3118. [Google Scholar] [CrossRef]
- Freund-Mercier, M.J.; Moos, F.; Poulain, D.A.; Richard, P.; Rodriguez, F.; Theodosis, D.T.; Vincent, J.D. Role of central oxytocin in the control of the milk ejection reflex. Brain Res. Bull. 1988, 20, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Dierickx, K.; Vandesande, F. Immunocytochemical demonstration of separate vasopressin Neurophysin and oxytocin-neurophysin neurons in the human hypothalamus. Cell Tissue Res. 1979, 196, 203–212. [Google Scholar] [CrossRef]
- Carter, C.S. Oxytocin pathways and the evolution of human behavior. Annu. Rev. Psychol. 2014, 65, 17–39. [Google Scholar] [CrossRef]
- Freda, S.N.; Priest, M.F.; Badong, D.; Xiao, L.; Liu, Y.; Kozorovitskiy, Y. Brainwide input-output architecture of paraventricular oxytocin and vasopressin neurons. bioRxiv 2022. [Google Scholar] [CrossRef]
- Manjila, S.B.; Betty, R.; Kim, Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front. Neurosci. 2022, 16, 1044736. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, R.; Neumann, I.D. Vasopressin and oxytocin release within the brain: A dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol. 2004, 25, 150–176. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, H.S.; Charlet, A.; Hoffmann, L.C.; Eliava, M.; Khrulev, S.; Cetin, A.H.; Osten, P.; Schwarz, M.K.; Seeburg, P.H.; Stoop, R.; et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 2012, 73, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Carcea, I.; Caraballo, N.L.; Marlin, B.J.; Ooyama, R.; Riceberg, J.S.; Mendoza Navarro, J.M.; Opendak, M.; Diaz, V.E.; Schuster, L.; Alvarado Torres, M.I.; et al. Oxytocin neurons enable social transmission of maternal behaviour. Nature 2021, 596, 553–557. [Google Scholar] [CrossRef]
- Ludwig, M.; Leng, G. Dendritic peptide release and peptide-dependent behaviours. Nat. Rev. Neurosci. 2006, 7, 126–136. [Google Scholar] [CrossRef] [PubMed]
- UvnäsMoberg, K.; Ekström-Bergström, A.; Buckley, S.; Massarotti, C.; Pajalic, Z.; Luegmair, K.; Kotlowska, A.; Lengler, L.; Olza, I.; Grylka-Baeschlin, S.; et al. Maternal plasma levels of oxytocin during breastfeeding—A systematic review. PLoS ONE 2020, 15, e0235806. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.; Stevens, S.W.; Adams, M.R. Plasma oxytocin during pregnancy and lactation in the cynomolgus monkey. Biol. Reprod. 1980, 23, 782–787. [Google Scholar] [CrossRef]
- Prevost, M.; Zelkowitz, P.; Tulandi, T.; Hayton, B.; Feeley, N.; Carter, C.S.; Joseph, L.; Pournajafi-Nazarloo, H.; Ping, E.Y.; Abenhaim, H.; et al. Oxytocin in pregnancy and the postpartum: Relations to labor and its management. Front. Public Health 2014, 2, 63777. [Google Scholar] [CrossRef]
- Levine, A.; Zagoory-Sharon, O.; Feldman, R.; Weller, A. Oxytocin during pregnancy and early postpartum: Individual patterns and maternal-fetal attachment. Peptides 2007, 28, 1162–1169. [Google Scholar] [CrossRef]
- Bozorgmehr, A.; Alizadeh, F.; Sadeghi, B.; Shahbazi, A.; Ofogh, S.N.; Joghataei, M.T.; Razian, S.; Heydari, F.; Ghadirivasfi, M. Oxytocin moderates risky decision-making during the Iowa gambling task: A new insight based on the role of oxytocin receptor gene polymorphisms and interventional cognitive study. Neurosci. Lett. 2019, 708, 134328. [Google Scholar] [CrossRef] [PubMed]
- Zak, P.J.; Kurzban, R.; Matzner, W.T. Oxytocin is associated with human trustworthiness. Horm. Behav. 2005, 48, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Winslow, J.T.; Insel, T.R. The social deficits of the oxytocin knockout mouse. Neuropeptides 2002, 36, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, M.; von Dawans, B.; Domes, G. Oxytocin, vasopressin, and human social behavior. Front. Neuroendocrinol. 2009, 30, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Cera, N.; Vargas-Cáceres, S.; Oliveira, C.; Monteiro, J.; Branco, D.; Pignatelli, D.; Rebelo, S. How relevant is the systemic oxytocin concentration for human sexual behavior? A systematic review. Sex. Med. 2021, 9, 100370. [Google Scholar] [CrossRef] [PubMed]
- Caruso, S.; Mauro, D.; Scalia, G.; Palermo, C.I.; Rapisarda AM, C.; Cianci, A. Oxytocin plasma levels in orgasmic and anorgasmic women. Gynecol. Endocrinol. 2018, 34, 69–72. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K. Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology 1998, 23, 819–835. [Google Scholar] [CrossRef]
- Tabak, B.A.; Leng, G.; Szeto, A.; Parker, K.J.; Verbalis, J.G.; Ziegler, T.E.; Lee, M.R.; Neumann, I.D.; Mendez, A.J. Advances in human oxytocin measurement: Challenges and proposed solutions. Mol. Psychiatry 2023, 28, 127–140. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nakano, Y.; Iwata, N.; Soejima, Y.; Suyama, A.; Hasegawa, T.; Otsuka, F. Oxytocin enhances progesterone production with upregulation of BMP-15 activity by granulosa cells. Biochem. Biophys. Res. Commun. 2023, 646, 103–109. [Google Scholar] [CrossRef]
- Saller, S.; Kunz, L.; Dissen, G.; Stouffer, R.; Ojeda, S.; Berg, D.; Berg, U.; Mayerhofer, A. Oxytocin receptors in the primate ovary: Molecular identity and link to apoptosis in human granulosa cells. Hum. Reprod. 2010, 25, 969–976. [Google Scholar] [CrossRef]
- Pinto, J.; Cera, N.; Pignatelli, D. Psychological symptoms and brain activity alterations in women with PCOS and their relation to the reduced quality of life: A narrative review. J. Endocrinol. Investig. 2024, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Scantamburlo, G.; Hansenne, M.; Fuchs, S.; Pitchot, W.; Maréchal, P.; Pequeux, C.; Ansseau, M.; Legros, J. Plasma oxytocin levels and anxiety in patients with major depression. Psychoneuroendocrinology 2007, 32, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Meisenberg, G. Short-term behavioral effects of neurohypophyseal peptides in mice. Peptides 1981, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Arletti, R.; Bertolini, A. Oxytocin acts as an antidepressant in two animal models of depression. Life Sci. 1987, 41, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.J.; Kenna, H.A.; Zeitzer, J.M.; Keller, J.; Blasey, C.M.; Amico, J.A.; Schatzberg, A.F. Preliminary evidence that plasma oxytocin levels are elevated in major depression. Psychiatry Res. 2010, 178, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Marbach, J.; Kimbro, S.; Andrade, D.C.; Jain, A.; Capozzi, E.; Mele, K.; Del Rio, R.; Kay, M.W.; Mendelowitz, D. Benefits of oxytocin administration in obstructive sleep apnea. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2017, 313, L825–L833. [Google Scholar] [CrossRef]
- Raymond, J.S.; Rehn, S.; Hoyos, C.M.; Bowen, M.T. The influence of oxytocin-based interventions on sleep-wake and sleep-related behaviour and neurobiology: A systematic review of preclinical and clinical studies. Neurosci. Biobehav. Rev. 2021, 131, 1005–1026. [Google Scholar] [CrossRef] [PubMed]
- Camerino, C. Low sympathetic tone and obese phenotype in oxytocin-deficient mice. Obesity 2009, 17, 980–984. [Google Scholar] [CrossRef]
- Takayanagi, Y.; Kasahara, Y.; Onaka, T.; Takahashi, N.; Kawada, T.; Nishimori, K. Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport 2008, 19, 951–955. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, H.; Zhang, H.; Dean, C.; Wu, Q.; Li, J.; Guariglia, S.; Meng, Q.; Cai, D. Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron 2011, 69, 523–535. [Google Scholar] [CrossRef]
- Camerino, C. The New Frontier in Oxytocin Physiology: The Oxytonic Contraction. Int. J. Mol. Sci. 2020, 21, 5144. [Google Scholar] [CrossRef] [PubMed]
- Elabd, C.; Basillais, A.; Beaupied, H.; Breuil, V.; Wagner, N.; Scheideler, M.; Zaragosi, L.-E.; Massiéra, F.; Lemichez, E.; Trajanoski, Z.; et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells 2008, 26, 2399–2407. [Google Scholar] [CrossRef]
- Knobloch, K.; Yoon, U.; Vogt, P.M. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement and publication bias. J. Cranio-Maxillofac. Surg. 2011, 39, 91–92. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 29, 372. [Google Scholar]
- Landis, J.R.; Koch, G.G. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 1977, 33, 363–374. [Google Scholar] [CrossRef]
- Amin, M.; Horst, N.; Wu, R.; Gragnoli, C. Oxytocin receptor (OXTR) is a risk gene for polycystic ovarian syndrome. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2634–2639. [Google Scholar] [PubMed]
- Jahromi, B.N.; Dabbaghmanesh, M.H.; Bakhshaie, P.; Parsanezhad, M.E.; Anvar, Z.; Alborzi, M.; Zarei, A.; Bakhshaei, M. Assessment of oxytocin level, glucose metabolism components and cutoff values for oxytocin and anti-mullerian hormone in infertile PCOS women. Taiwan. J. Obstet. Gynecol. 2018, 57, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Piróg, M.; Jach, R.; Ząbczyk, M.; Natorska, J. Increased Serum Levels of Phoenixin-14, Nesfatin-1 and Dopamine Are Associated with Positive Pregnancy Rate after Ovarian Stimulation. J. Clin. Med. 2023, 12, 6991. [Google Scholar] [CrossRef]
- Masrour, M.J.; Azad, Z. A comparison of the effects of human chorionic gonadotropin and oxytocin on ovulation in PCOS patients from 2015 until 2018. Acta Medica Mediterr. 2018, 34, 1757–1763. [Google Scholar]
- Ochsenkühn, R.; Pavlik, R.; Hecht, S.; von Schönfeldt, V.; Rogenhofer, N.; Thaler, C.J. The effect of nasal oxytocin on pregnancy rates following intrauterine insemination: Double-blind, randomized, clinical pilot study. Arch. Gynecol. Obstet. 2010, 281, 753–759. [Google Scholar] [CrossRef]
- Sajadi, M.; Noroozzadeh, M.; Bagheripour, F.; Tehrani, F.R. Contractions in the isolated uterus of a rat model of polycystic ovary syndrome compared to controls in adulthood. Int. J. Endocrinol. Metab. 2018, 16, e63135. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, T.; Matsuzaki, T.; Mayila, Y.; Kawakita, T.; Yanagihara, R.; Irahara, M. The effects of chronic oxytocin administration on body weight and food intake in DHT-induced PCOS model rats. Gynecol. Endocrinol. 2020, 36, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Noguchi, H.; Takeda, A.; Arakaki, R.; Uchishiba, M.; Imaizumi, J.; Minato, S.; Kamada, S.; Kagawa, T.; Yoshida, A.; et al. Changes in endogenous oxytocin levels and the effects of exogenous oxytocin administration on body weight changes and food intake in polycystic ovary syndrome model rats. Int. J. Mol. Sci. 2022, 23, 8207. [Google Scholar] [CrossRef] [PubMed]
- Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: Structure, function, and regulation. Physiol. Rev. 2001, 81, 629–683. [Google Scholar] [CrossRef] [PubMed]
- Akour, A.; Kasabri, V.; Bulatova, N.; Al Muhaissen, S.; Naffa, R.; Fahmawi, H.; Momani, M.; Zayed, A.; Bustanji, Y. Association of Oxytocin with Glucose Intolerance and Inflammation Biomarkers in Metabolic Syndrome Patients with and without Prediabetes. Rev. Diabet. Stud. 2018, 14, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Du, F.-M.; Kuang, H.-Y.; Duan, B.-H.; Liu, D.-N.; Yu, X.-Y. Associations of oxytocin with metabolic parameters in obese women of childbearing age. Endokrynol. Pol. 2019, 70, 417–422. [Google Scholar]
- Iwasa, T.; Matsuzaki, T.; Mayila, Y.; Yanagihara, R.; Yamamoto, Y.; Kawakita, T.; Kuwahara, A.; Irahara, M. Oxytocin treatment reduced food intake and body fat and ameliorated obesity in ovariectomized female rats. Neuropeptides 2019, 75, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Otgontsetseg, E.; Kato, T.; Kawakita, T.; Kasai, K.; Yoshida, K.; Iwasa, T.; Irahara, M. Effects of peripheral oxytocin administration on body weight, food intake, adipocytes, and biochemical parameters in peri- and postmenopausal female rats. Endocr. J. 2021, 68, 7–16. [Google Scholar]
- Maestrini, S.; Mele, C.; Mai, S.; Vietti, R.; Di Blasio, A.; Castello, L.; Surico, D.; Aimaretti, G.; Scacchi, M.; Marzullo, P. Plasma oxytocin concentration in pre-and postmenopausal women: Its relationship with obesity, body composition and metabolic variables. Obes. Facts 2018, 11, 429–439. [Google Scholar] [CrossRef]
- Korkmaz, H.; Deveci, C.D.; Üstün, Y.; Pehlivanoğlu, B. Comparison of plasma oxytocin level in women with natural and surgical menopause. Endocrine 2023, 82, 209–214. [Google Scholar] [CrossRef]
- Liu, N.; Yang, H.; Han, L.; Ma, M. Oxytocin in women’s health and disease. Front. Endocrinol. 2022, 13, 786271. [Google Scholar] [CrossRef] [PubMed]
- Breuil, V.; Panaia-Ferrari, P.; Fontas, E.; Roux, C.; Kolta, S.; Eastell, R.; Ben Yahia, H.; Faure, S.; Gossiel, F.; Benhamou, C.-L.; et al. Oxytocin, a new determinant of bone mineral density in post-menopausal women: Analysis of the OPUS cohort. J. Clin. Endocrinol. Metab. 2014, 99, E634–E641. [Google Scholar] [CrossRef] [PubMed]
- Carr, D.B.; Utzschneider, K.M.; Hull, R.L.; Kodama, K.; Retzlaff, B.M.; Brunzell, J.D.; Shofer, J.B.; Fish, B.E.; Knopp, R.H.; Kahn, S.E. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes 2004, 53, 2087–2094. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, C.M.; Lynch, N.A.; Nicklas, B.J.; Ryan, A.S.; Berman, D.M. Differences in adipose tissue metabolism between postmenopausal and perimenopausal women. J. Clin. Endocrinol. Metab. 2002, 87, 4166–4170. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, T.; Matsuzaki, T.; Yano, K.; Yanagihara, R.; Tungalagsuvd, A.; Munkhzaya, M.; Mayila, Y.; Kuwahara, A.; Irahara, M. The effects of chronic testosterone administration on body weight, food intake, and adipose tissue are changed by estrogen treatment in female rats. Horm. Behav. 2017, 93, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.Q.; Akishita, M.; Kim, S.; Ako, J.; Hashimoto, M.; Iijima, K.; Ohike, Y.; Watanabe, T.; Sudoh, N.; Toba, K.; et al. Estrogen receptor ß is involved in the anorectic action of estrogen. Int. J. Obes. 2002, 26, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Meli, R.; Pacilio, M.; Raso, G.M.; Esposito, E.; Coppola, A.; Nasti, A.; Di Carlo, C.; Nappi, C.; Di Carlo, R. Estrogen and raloxifene modulate leptin and its receptor in hypothalamus and adipose tissue from ovariectomized rats. Endocrinology 2004, 145, 3115–3121. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, B.T.; Zhu, L.; Stafford, J.M. Role of estrogens in the regulation of liver lipid metabolism. Sex Gend. Factors Affect. Metab. Homeost. Diabetes Obes. 2017, 1043, 227–256. [Google Scholar]
- Chang, H.H.; Chang, W.H.; Chi, M.H.; Peng, Y.C.; Huang, C.C.; Yang, Y.K.; Chen, P.S. The OXTR polymorphism stratified the correlation of oxytocin and glucose homeostasis in non-diabetic subjects. Diabetes Metab. Syndr. Obes. 2019, 12, 2707–2713. [Google Scholar] [CrossRef]
- Thibonnier, M.; Conarty, D.M.; Preston, J.A.; Plesnicher, C.L.; Dweik, R.A.; Erzurum, S.C. Human vascular endothelial cells express oxytocin receptors. Endocrinology 1999, 140, 1301–1309. [Google Scholar] [CrossRef]
- Gutkowska, J.; Jankowski, M.; Antunes-Rodrigues, J. The role of oxytocin in cardiovascular regulation. Braz. J. Med. Biol. Res. 2014, 47, 206–214. [Google Scholar] [CrossRef] [PubMed]
- De Melo, V.U.; Saldanha, R.R.; Dos Santos, C.R.; De Campos Cruz, J.; Lira, V.A.; Santana-Filho, V.J.; Michelini, L.C. Ovarian hormone deprivation reduces oxytocin expression in paraventricular nucleus preautonomic neurons and correlates with baroreflex impairment in rats. Front. Physiol. 2016, 7, 218530. [Google Scholar] [CrossRef] [PubMed]
- Choleris, E.; Gustafsson, J.Å.; Korach, K.S.; Muglia, L.J.; Pfaff, D.W.; Ogawa, S. An estrogen-dependent four-gene micronet regulating social recognition: A study with oxytocin and estrogen receptor-α and-β knockout mice. Proc. Natl. Acad. Sci. USA 2003, 100, 6192–6197. [Google Scholar] [CrossRef]
- Sharma, D.; Handa, R.J.; Uht, R.M. The ERβ ligand 5α-androstane, 3β, 17β-diol (3β-diol) regulates hypothalamic oxytocin (Oxt) gene expression. Endocrinology 2012, 153, 2353–2361. [Google Scholar] [CrossRef] [PubMed]
- Hutz, R.J.; Dierschke, D.J.; Wolf, R.C. Estradiol-induced follicular atresia in rhesus monkeys is not prevented by exogenous gonadotropins. Am. J. Primatol. 1991, 23, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K.; Judd, H.L.; Magoffin, D.A. A mechanism for the suppression of estrogen production in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1996, 81, 3686–3691. [Google Scholar] [PubMed]
- Naessen, T.; Kushnir, M.M.; Chaika, A.; Nosenko, J.; Mogilevkina, I.; Rockwood, A.L.; Carlstrom, K.; Bergquist, J.; Kirilovas, D. Steroid profiles in ovarian follicular fluid in women with and without polycystic ovary syndrome, analyzed by liquid chromatography-tandem mass spectrometry. Fertil. Steril. 2010, 94, 2228–2233. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, S.; Cohen-Tannoudji, J.; Guigon, C.J. Estradiol Signaling at the Heart of Folliculogenesis: Its Potential Deregulation in Human Ovarian Pathologies. Int. J. Mol. Sci. 2022, 23, 512. [Google Scholar] [CrossRef] [PubMed]
- Blanks, A.M.; Vatish, M.; Allen, M.J.; Ladds, G.; de Wit, N.C.; Slater, D.M.; Thornton, S. Paracrine oxytocin and estradiol demonstrate a spatial increase in human intrauterine tissues with labor. J. Clin. Endocrinol. Metab. 2003, 88, 3392–3400. [Google Scholar] [CrossRef]
- Enge, S.; Klusmann, H.; Ditzen, B.; Knaevelsrud, C.; Schumacher, S. Menstrual cycle-related fluctuations in oxytocin concentrations: A systematic review and meta-analysis. Front. Neuroendocrinol. 2019, 52, 144–155. [Google Scholar] [CrossRef]
- Tachibana, A.; Yamamoto, Y.; Noguchi, H.; Takeda, A.; Tamura, K.; Aoki, H.; Minato, S.; Uchishiba, M.; Yamamoto, S.; Kamada, S.; et al. Changes in Serum Oxytocin Levels under Physiological and Supraphysiological Gonadal Steroid Hormone Conditions in Women of Reproductive Age: A Preliminary Study. Nutrients 2022, 14, 5350. [Google Scholar] [CrossRef] [PubMed]
- Franik, G.; Maksym, M.; Owczarek, A.J.; Chudek, J.; Madej, P.; Olszanecka-Glinianowicz, M. Estradiol/testosterone and estradiol/androstenedione indexes and nutritional status in PCOS women–A pilot study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 242, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Burns, P.D.; Mendes Jr, J.O.; Yemm, R.S.; Clay, C.M.; Nelson, S.E.; Hayes, S.H.; Silvia, W.J. Cellular mechanisms by which oxytocin mediates ovine endometrial prostaglandin F2α synthesis: Role of Gi proteins and mitogen-activated protein kinases. Biol. Reprod. 2001, 65, 1150–1155. [Google Scholar] [CrossRef] [PubMed]
- Mechsner, S.; Bartley, J.; Loddenkemper, C.; Salomon, D.S.; Starzinski-Powitz, A.; Ebert, A.D. Oxytocin receptor expression in smooth muscle cells of peritoneal endometriotic lesions and ovarian endometriotic cysts. Fertil. Steril. 2005, 83, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
- Roushangar, L.; Soleimani Rad, J.; Nikpou, P.; Sayahmeli, M. Effect of oxytocin injection on folliculogenesis, ovulation and endometrial growth in mice. Int. J. Reprod. Biomed. 2009, 7, 91–95. [Google Scholar]
- Sayyah-Melli, M.; Ouladsahebmadarek, E.; Tagavi, S.; Mostafa-Garabaghi, P.; Alizadeh, M.; Ghojazadeh, M.; Kazemi-Shishvan, M. Effect of oxytocin (OT) and OT plus human chorionic gonadotropin (hCG), in cycles induced by letrozole or clomiphene citrate (CC). Afr. J. Pharm. 2012, 6, 2112–2118. [Google Scholar]
- Soloff, M.S.; Alexandrova, M.; Fernstrom, M.J. Oxytocin receptors: Triggers for parturition and lactation? Science 1979, 204, 1313–1315. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, H.; Gull, B.; Kishimoto, K.; Kataoka, M.; Nilsson, L.; O Janson, P.; Stener-Victorin, E.; Hellström, M. Uterine morphology and peristalsis in women with polycystic ovary syndrome. Acta Radiol. 2012, 53, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.I.; Zai, C.C.; Abu, Z.; Nowrouzi, B.; Beitchman, J.H. The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression. Genes Brain Behav. 2012, 11, 545–551. [Google Scholar] [CrossRef]
- Montag, C.; Brockmann, E.M.; Bayerl, M.; Rujescu, D.; Müller, D.J.; Gallinat, J. Oxytocin and oxytocin receptor gene polymorphisms and risk for schizophrenia: A case-control study. World J. Biol. Psychiatry 2013, 14, 500–508. [Google Scholar] [CrossRef]
- Correll, C.U.; Schooler, N.R. Negative Symptoms in Schizophrenia: A Review and Clinical Guide for Recognition, Assessment, and Treatment. Neuropsychiatr. Dis. Treat. 2020, 16, 519–534. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ocakoğlu, F.T.; Köse, S.; Özbaran, B.; Onay, H. The oxytocin receptor gene polymorphism -rs237902- is associated with the severity of autism spectrum disorder: A pilot study. Asian J. Psychiatr. 2018, 31, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Dinsdale, N.L.; Crespi, B.J. Revisiting the wandering womb: Oxytocin in endometriosis and bipolar disorder. Horm. Behav. 2017, 96, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Katsigianni, M.; Karageorgiou, V.; Lambrinoudaki, I.; Siristatidis, C. Maternal polycystic ovarian syndrome in autism spectrum disorder: A systematic review and meta-analysis. Mol. Psychiatry 2019, 24, 1787–1797. [Google Scholar] [CrossRef] [PubMed]
- Hergüner, S.; Harmancı, H.; Hergüner, A.; Toy, H. Autistic traits in women with polycystic ovary syndrome. Res. Autism Spectr. Disord. 2012, 6, 1019–1022. [Google Scholar] [CrossRef]
- Miller, S.A. PICO Worksheet and Search Strategy; US National Center for Dental Hygiene Research: Los Angeles, CA, USA, 2001. [Google Scholar]
Polycystic Ovary Syndrome |
1. Polycystic ovary syndrome [MeSHTerms] |
2. Polycystic [All Fields] |
3. Ovary [All Fields] |
4. Syndrome [All Fields] |
5. Polycystic ovary syndrome [All Fields] |
OR/1-2; 4-1 |
AND/3-4; 1-10 |
Oxytocin |
6. Oxytocin [MeSH Terms] |
7. Oxytocin [All Fields] |
8. Oxytocin s [All Fields] |
9. Oxytocin [All Fields] |
10. Oxytocins [All Fields] |
OR/6-10 |
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Source | Country | Subjects | Age | Design | Assessment | Treatment | Results |
---|---|---|---|---|---|---|---|
Amin et al., 2023 [56] | Italy | 212 women | - | Population genetics study | Single nucleotide polymorphisms (SNPs) within OXTR. | - | Out of 22 OXTR-risk variants tested, three independent variants were significantly linked to/in LD with PCOS. Three intronic variants were linked to PCOS. One intronic variant and a synonymous variant were both linked and associated with PCOS. All variants are novel and have not been previously associated with PCOS or any PCOS-related phenotype. Three of the variants were found to confer risk for PCOS, intersected with a repressed chromatin state in the ovaries. |
Jahromi et al., 2018 [57] | Iran | 161 women (PCOS = 80; Non-PCOS = 81) | 20–35 years | Case-control | OT, AMH, BMI, LH, T, FSH, TSH, prolactin, and DHEAS. Fasting blood sugar, fasting insulin, blood sugar 2 h after 75 g glucose, insulin 2 h after 75 g glucose, and HOMA-IR. | - | The mean OT level was lower in the case group. The mean BMI, AMH, HOMA-IR, fasting insulin, and insulin 2 h after 75 g glucose were higher in the PCOS group. OT was negatively correlated to AMH when evaluated for all participants or only among controls. OT was also negatively correlated to HOMA-IR among all participants. There was not a significant relationship between OT and BMI. The calculated cutoff value for OT was 125 ng/L and for AMH was 3.6 ng/mL in the PCOS group. |
Piróg et al., 2023 [58] | Poland | 56 infertile women with PCOS, 18 pregnant | 31.89 ± 4.59 years | Case-control | Assessment before ovarian stimulation (OS) and before hCG administration. Assessments of PNX-14, NES-1, DA, and OT serum levels were performed. Other tests: LH, FSH, estradiol, PRL, AMH, and BMI. | In the whole cohort of patients, OT levels were weakly associated with BMI (r = 0.26, p = 0.048) and FSH (r = 0.47, p = 0.0002). Pregnant group: positive correlations between baseline OT and PRL (r = 0.47; p = 0.04), as well as OT and NES-1 (r = 0.55; p = 0.02). OT level increases were associated with positive pregnancy rates. In the post-OS, in pregnant PCOS, OT was 2.7 times lower than for non-pregnant women. | |
Masrour et al., 2018 [59] | Iran | 150 women | 19–39 (29 ± 4.48) years | Clinical trial | OT, HCG, FSH, prolactin, follicle number, and progesterone. | The three groups at random received: 100 mg clomiphene-citrate + 8 units of OT; 100 mg clomiphene-citrate + 10,000 units of HCG; 100 mg clomiphene citrate + 8 units of OT + 10,000 units of HCG. | There was no major difference among the groups regarding the ovulation rate or the number of follicles, nor were there any significant side effects observed in any groups. |
Ochsenkühn et al., 2010 [60] | Germany | 86 women | 18–42 (34.2 ± 4.3) years | Randomized, double-blind, placebo-controlled clinical pilot study | Follicle number, double endometrial width, estradiol, LH, and progesterone. To assess male fertility: Semen parameters (native sperm concentration, progressive motility, normal sperm morphology, semen volume, and total progressive motile sperm count). | 132 homologous IUI cycles with nasal application of placebo or eight IU OT following IUI. | In 132 IUI cycles of 86 women, 17 pregnancies were achieved, accounting for a pregnancy rate of 12.9% per IUI cycle. The pregnancy rates were 13.4% per IUI cycle in the placebo group, and 12.3% per IUI cycle in the OT group. As such, the difference was not statistically significant. No relevant side effects were observed in both groups. |
Sajadi et al., 2018 [61] | Iran | 14 female rats (PCOS = 7; Control = 7) | 75–95 days | Randomized clinical trial | CCh; OT. | Rats in the experimental group were subcutaneously injected with 5 m/g of free testosterone on gestational day 20; controls received solvent. The contractions of isolated uterus in offspring of both groups were recorded by the power lab system, after exposure to CCh and OT. | Uterine contractions were more irregular in PCOS rats than controls, after exposure to both contractile agonists. |
Isawa et al., 2019 [62] | Japan | Female rats: Seven PCOS–OT rats: DHT-treated rats (PCOS) receiving 380 μg/day OT. Six PCOS–saline rats: without OT treatment, treated with saline solution. Seven saline rats: non-DHT-treated rats with only saline treatment. | 26 days | Randomized clinical trial | Serum levels of AST, ALT, and LDH. Histological analysis of ovaries and adipocytes. Hypothalamic mRNA levels of NPY, POMC, OT, and OXTR. | At 8 weeks, seven PCOS rats were implanted with OT (380μg/day)-filled minipumps which supplied 12 μL/day for 14 days. Six PCOS rats and seven control rats were implanted with saline-filled minipumps. | Body weight changes were significant between PCOS–OT and PCOS–saline rats, with PCOS rats being lighter. The mean visceral fat weight of the PCOS–OT rats did not differ from that of the saline-control rats. No difference in the number of cystic follicles was seen between the PCOS–OT and PCOS–saline rats. No difference in hypothalamic mRNA expression of NPY, POMC, OT, and OXTR among the three groups. No difference in AST and ALT among the three groups. LDH levels were higher in PCOS–saline rats than in the other two groups. |
Yamamoto et al., 2022 [63] | Japan | 16 female rats (PCOSChronic = 8; ControlCronic = 8; PCOSAcute = 8; ControlAcute =8) | 28 days | Randomized clinical trial | OT, serum level. Hypothalamic mRNA levels of NPY, POMC, OT, OXTR, prepro-orexin, and agouti-related protein. Visceral fat mRNA expression of OT and OXTR | At 10 weeks after the surgical day, all rats were injected with saline for seven consecutive days, then injected with OT (1200 µg/kg, 0.4 to 0.5 mL injection volume) for the following seven consecutive days. | The serum OT level was lower in PCOS model rats than in control rats, whereas the hypothalamic OT mRNA expression level did not differ between them. Acute intraperitoneal administration of OT during the dark phase reduced the body weight gain and food intake in PCOS model rats. However, these effects were not observed in control rats. In contrast, chronic administration of OT decreased the food intake in both the PCOS model rats and control rats. |
Source | Assessment of BMI/BW | Effect of OT Administration on BMI/BW | Association of BMI/BW and OT Serum Levels |
---|---|---|---|
Amin et al., 2023 [56] | No | - | Risk variants in the OXTR gene pose an increased risk for obesity (BMI > 30). |
Jahromi et al., 2018 [57] | Yes | - | The mean oxytocin level was lower and the mean BMI was higher in PCOS. More PCOS women had a BMI > 25 than controls. However, the relationship between BMI and oxytocin was not significant. |
Piróg et al., 2023 [58] | Yes | - | BMI levels were assessed both for pregnant and non-pregnant women. No between group differences in BMI. OT levels were weakly associated with BMI (r = 0.26, p = 0.048). |
Masrour et al., 2018 [59] | No | - | - |
Ochsenkühn et al., 2010 [60] | No | - | - |
Sajadi et al., 2018 [61] | No | - | - |
Isawa et al., 2019 [62] | Yes | The PCOS–OT group was significantly lighter than the PCOS-saline group. BW changes seen in the PCOS–OT group were significantly smaller than in the PCOS–saline group. BW was not quantified in the text. | - |
Yamamoto et al., 2022 [63] | Yes | Exogenous administration of OT during the dark phase reduced BW gain only in PCOS model rats, and seven days of OT administration showed no significant differences between PCOS and control rats. | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cera, N.; Pinto, J.; Pignatelli, D. The Role of Oxytocin in Polycystic Ovary Syndrome: A Systematic Review. Curr. Issues Mol. Biol. 2024, 46, 5223-5241. https://doi.org/10.3390/cimb46060313
Cera N, Pinto J, Pignatelli D. The Role of Oxytocin in Polycystic Ovary Syndrome: A Systematic Review. Current Issues in Molecular Biology. 2024; 46(6):5223-5241. https://doi.org/10.3390/cimb46060313
Chicago/Turabian StyleCera, Nicoletta, Joana Pinto, and Duarte Pignatelli. 2024. "The Role of Oxytocin in Polycystic Ovary Syndrome: A Systematic Review" Current Issues in Molecular Biology 46, no. 6: 5223-5241. https://doi.org/10.3390/cimb46060313
APA StyleCera, N., Pinto, J., & Pignatelli, D. (2024). The Role of Oxytocin in Polycystic Ovary Syndrome: A Systematic Review. Current Issues in Molecular Biology, 46(6), 5223-5241. https://doi.org/10.3390/cimb46060313