Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy
Abstract
:1. Introduction
2. Morphological Changes in Mtb during Dormancy
3. Regulatory Mechanism of Mtb during Dormancy
3.1. Lipid and Energy Metabolism
3.2. DosR
3.3. Wbl Family as Intracellular Redox Sensors
3.4. TA Systems
3.5. Sigma Factors
3.6. MprAB
3.7. Other Genes Associated with Dormancy
3.8. Temporal Regulation of Key Genes and Proteins during Dormancy
4. TB Vaccines Based on Antigens Associated with Dormancy
5. Drugs Associated with Dormancy
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Global Tuberculosis Report 2023; World Health Organization (WHO): Geneva, Switzerland, 2023.
- Houben, R.M.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med. 2016, 13, e1002152. [Google Scholar] [CrossRef]
- Shah, M.; Dorman, S.E. Latent Tuberculosis Infection. N. Engl. J. Med. 2021, 385, 2271–2280. [Google Scholar] [CrossRef]
- D’ettorre, G.; Karaj, S.; Piscitelli, P.; Maiorano, O.; Attanasi, C.; Tornese, R.; Carluccio, E.; Giannuzzi, P.; Greco, E.; Ceccarelli, G.; et al. Right to Occupational Safety: Prevalence of Latent Tuberculosis Infection in Healthcare Workers. A 1-Year Retrospective Survey Carried out at Hospital of Lecce (Italy). Epidemiologia 2023, 4, 454–463. [Google Scholar] [CrossRef]
- Stallings, C.L.; Glickman, M.S. Is Mycobacterium tuberculosis stressed out? A critical assessment of the genetic evidence. Microbes Infect. 2010, 12, 1091–1101. [Google Scholar] [CrossRef]
- Voskuil, M.I.; Schnappinger, D.; Visconti, K.C.; Harrell, M.I.; Dolganov, G.M.; Sherman, D.R.; Schoolnik, G.K. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 2003, 198, 705–713. [Google Scholar] [CrossRef]
- Peddireddy, V.; Doddam, S.N.; Ahmed, N. Mycobacterial Dormancy Systems and Host Responses in Tuberculosis. Front. Immunol. 2017, 8, 84. [Google Scholar] [CrossRef]
- Baker, J.J.; Dechow, S.J.; Abramovitch, R.B. Acid Fasting: Modulation of Mycobacterium tuberculosis Metabolism at Acidic pH. Trends Microbiol. 2019, 27, 942–953. [Google Scholar] [CrossRef]
- Sun, L.M.; Liu, H.M.; Ye, Y.Q.; Lei, Y.; Islam, R.; Tan, S.M.; Tong, R.S.; Miao, Y.B.; Cai, L.L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 28. [Google Scholar] [CrossRef]
- Shleeva, M.O.; Kudykina, Y.K.; Vostroknutova, G.N.; Suzina, N.E.; Mulyukin, A.L.; Kaprelyants, A.S. Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification. Tuberculosis 2011, 91, 146–154. [Google Scholar] [CrossRef]
- Raghunandanan, S.; Jose, L.; Gopinath, V.; Kumar, R.A. Comparative label-free lipidomic analysis of Mycobacterium tuberculosis during dormancy and reactivation. Sci. Rep. 2019, 9, 3660. [Google Scholar] [CrossRef]
- Gavas, S.; Quazi, S.; Karpinski, T.M. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Res. Lett. 2021, 16, 173. [Google Scholar] [CrossRef]
- Kalscheuer, R.; Palacios, A.; Anso, I.; Cifuente, J.; Anguita, J.; Jacobs, W.R.; Guerin, M.E.; Prados-Rosales, R. The Mycobacterium tuberculosis capsule: A cell structure with key implications in pathogenesis. Biochem. J. 2019, 476, 1995–2016. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Bacon, J.; Alderwick, L.J.; Allnutt, J.A.; Gabasova, E.; Watson, R.; Hatch, K.A.; Clark, S.O.; Jeeves, R.E.; Marriott, A.; et al. Non-Replicating Mycobacterium tuberculosis Elicits a Reduced Infectivity Profile with Corresponding Modifications to the Cell Wall and Extracellular Matrix. PLoS ONE 2014, 9, e87329. [Google Scholar]
- Li, W.; Yan, Z.; Zhang, N.; Zhang, Z.; Xiang, X. Novel role of PE_PGRS47 in the alteration of mycobacterial cell wall integrity and drug resistance. Arch. Microbiol. 2023, 205, 174. [Google Scholar] [CrossRef]
- Pandey, A.K.; Sassetti, C.M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. USA 2008, 105, 4376–4380. [Google Scholar] [CrossRef]
- De Carvalho, L.P.; Fischer, S.M.; Marrero, J.; Nathan, C.; Ehrt, S.; Rhee, K.Y. Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem. Biol. 2010, 17, 1122–1131. [Google Scholar] [CrossRef]
- Rhee, K.Y.; De Carvalho, L.P.; Bryk, R.; Ehrt, S.; Marrero, J.; Park, S.W.; Schnappinger, D.; Venugopal, A.; Nathan, C. Central carbon metabolism in Mycobacterium tuberculosis: An unexpected frontier. Trends Microbiol. 2011, 19, 307–314. [Google Scholar] [CrossRef]
- Ehrt, S.; Rhee, K. Mycobacterium tuberculosis metabolism and host interaction: Mysteries and paradoxes. Curr. Top. Microbiol. Immunol. 2013, 374, 163–188. [Google Scholar]
- Mashabela, G.T.; De Wet, T.J.; Warner, D.F. Mycobacterium tuberculosis Metabolism. Microbiol. Spectr. 2019, 7, 1107–1128. [Google Scholar] [CrossRef]
- Daniel, J.; Maamar, H.; Deb, C.; Sirakova, T.D.; Kolattukudy, P.E. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 2011, 7, e1002093. [Google Scholar] [CrossRef]
- Mckinney, J.D.; Honer Zu Bentrup, K.; Munoz-Elias, E.J.; Miczak, A.; Chen, B.; Chan, W.T.; Swenson, D.; Sacchettini, J.C.; Jacobs, W.R., Jr.; Russell, D.G. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 2000, 406, 735–738. [Google Scholar] [CrossRef]
- Peyron, P.; Vaubourgeix, J.; Poquet, Y.; Levillain, F.; Botanch, C.; Bardou, F.; Daffé, M.; Emile, J.F.; Marchou, B.; Cardona, P.J.; et al. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 2008, 4, e1000204. [Google Scholar] [CrossRef]
- Santucci, P.; Johansen, M.D.; Point, V.; Poncin, I.; Viljoen, A.; Cavalier, J.F.; Kremer, L.; Canaan, S. Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Sci. Rep. 2019, 9, 8667. [Google Scholar] [CrossRef]
- Gould, T.A.; Van De Langemheen, H.; Muñoz-Elías, E.J.; Mckinney, J.D.; Sacchettini, J.C. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol. Microbiol. 2006, 61, 940–947. [Google Scholar] [CrossRef]
- Bhusal, R.P.; Jiao, W.; Kwai BX, C.; Reynisson, J.; Collins, A.J.; Sperry, J.; Bashiri, G.; Leung, I.K.H. Acetyl-CoA-mediated activation of Mycobacterium tuberculosis isocitrate lyase 2. Nat. Commun. 2019, 10, 4639. [Google Scholar] [CrossRef]
- Blumenthal, A.; Trujillo, C.; Ehrt, S.; Schnappinger, D. Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo. PLoS ONE 2010, 5, e15667. [Google Scholar] [CrossRef]
- Puckett, S.; Trujillo, C.; Wang, Z.; Eoh, H.; Ioerger, T.R.; Krieger, I.; Sacchettini, J.; Schnappinger, D.; Rhee, K.Y.; Ehrt, S. Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2017, 114, e2225–e2232. [Google Scholar] [CrossRef]
- Quinonez, C.G.; Lee, J.J.; Lim, J.; Odell, M.; Lawson, C.P.; Anyogu, A.; Raheem, S.; Eoh, H. The Role of Fatty Acid Metabolism in Drug Tolerance of Mycobacterium tuberculosis. mBio 2022, 13, e0355921. [Google Scholar] [CrossRef]
- Gutka, H.J.; Wang, Y.; Franzblau, S.G.; Movahedzadeh, F. glpx Gene in Mycobacterium tuberculosis Is Required for In Vitro Gluconeogenic Growth and In Vivo Survival. PLoS ONE 2015, 10, e0138436. [Google Scholar] [CrossRef]
- Bryk, R.; Lima, C.D.; Erdjument-Bromage, H.; Tempst, P.; Nathan, C. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 2002, 295, 1073–1077. [Google Scholar] [CrossRef]
- Tian, J.; Bryk, R.; Shi, S.; Erdjument-Bromage, H.; Tempst, P.; Nathan, C. Mycobacterium tuberculosis appears to lack alpha-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol. Microbiol. 2005, 57, 859–868. [Google Scholar] [CrossRef]
- Dhiman, R.K.; Mahapatra, S.; Slayden, R.A.; Boyne, M.E.; Lenaerts, A.; Hinshaw, J.C.; Angala, S.K.; Chatterjee, D.; Biswas, K.; Narayanasamy, P.; et al. Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol. Microbiol. 2009, 72, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Sohaskey, C.D.; Kana, B.D.; Dawes, S.; North, R.J.; Mizrahi, V.; Gennaro, M.L. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc. Natl. Acad. Sci. USA 2005, 102, 15629–15634. [Google Scholar] [CrossRef]
- Dhar, N.; Mckinney, J.D. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc. Natl. Acad. Sci. USA 2010, 107, 12275–12280. [Google Scholar] [CrossRef]
- Gandotra, S.; Schnappinger, D.; Monteleone, M.; Hillen, W.; Ehrt, S. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat. Med. 2007, 13, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Gandotra, S.; Lebron, M.B.; Ehrt, S. The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxide. PLoS Pathog. 2010, 6, e1001040. [Google Scholar] [CrossRef]
- Deb, C.; Lee, C.M.; Dubey, V.S.; Daniel, J.; Abomoelak, B.; Sirakova, T.D.; Pawar, S.; Rogers, L.; Kolattukudy, P.E. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE 2009, 4, e6077. [Google Scholar] [CrossRef]
- Baek, S.H.; Li, A.H.; Sassetti, C.M. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 2011, 9, e1001065. [Google Scholar] [CrossRef]
- Nandakumar, M.; Nathan, C.; Rhee, K.Y. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat. Commun. 2014, 5, 4306. [Google Scholar] [CrossRef] [PubMed]
- Bhusal, R.P.; Bashiri, G.; Kwai, B.X.C.; Sperry, J.; Leung, I.K.H. Targeting isocitrate lyase for the treatment of latent tuberculosis. Drug Discov. Today 2017, 22, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Marrero, J.; Rhee, K.Y.; Schnappinger, D.; Pethe, K.; Ehrt, S. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc. Natl. Acad. Sci. USA 2010, 107, 9819–9824. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.; Subbarao, N. Designing novel inhibitors against cyclopropane mycolic acid synthase 3 (PcaA): Targeting dormant state of Mycobacterium tuberculosis. J. Biomol. Struct. Dyn. 2021, 39, 6339–6354. [Google Scholar] [CrossRef] [PubMed]
- Anandan, T.; Han, J.; Baun, H.; Nyayapathy, S.; Brown, J.T.; Dial, R.L.; Moltalvo, J.A.; Kim, M.S.; Yang, S.H.; Ronning, D.R.; et al. Phosphorylation regulates mycobacterial proteasome. J. Microbiol. 2014, 52, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Guzzo, M.B.; Li, Q.; Nguyen, H.V.; Boom, W.H.; Nguyen, L. The Pup-Proteasome System Protects Mycobacteria from Antimicrobial Antifolates. Antimicrob. Agents Chemother. 2021, 65, e01967-20. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Dang, G.; Wang, H.; Tang, Y.; Lv, M.; Liu, S.; Song, N. DosR’s multifaceted role on Mycobacterium bovis BCG revealed through multi-omics. Front. Cell. Infect. Microbiol. 2023, 13, 1292864. [Google Scholar] [CrossRef] [PubMed]
- Shaku, M.T.; Bishai, W.R. Mycobacterium tuberculosis: A Pathogen That Can Hold Its Breath a Long Time. Am. J. Respir. Crit. Care Med. 2022, 206, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Bartek, I.L.; Rutherford, R.; Gruppo, V.; Morton, R.A.; Morris, R.P.; Klein, M.R.; Visconti, K.C.; Ryan, G.J.; Schoolnik, G.K.; Lenaerts, A.; et al. The DosR regulon of M. tuberculosis and antibacterial tolerance. Tuberculosis 2009, 89, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; He, L.; Deng, W.; Xie, J. The Mycobacterium DosR regulon structure and diversity revealed by comparative genomic analysis. J. Cell. Biochem. 2013, 114, 1–6. [Google Scholar] [CrossRef]
- Galagan, J.E.; Minch, K.; Peterson, M.; Lyubetskaya, A.; Azizi, E.; Sweet, L.; Gomes, A.; Rustad, T.; Dolganov, G.; Glotova, I.; et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 2013, 499, 178–183. [Google Scholar] [CrossRef]
- Kumar, A.; Deshane, J.S.; Crossman, D.K.; Bolisetty, S.; Yan, B.S.; Kramnik, I.; Agarwal, A.; Steyn, A.J. Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J. Biol. Chem. 2008, 283, 18032–18039. [Google Scholar] [CrossRef]
- Mehra, S.; Foreman, T.W.; Didier, P.J.; Ahsan, M.H.; Hudock, T.A.; Kissee, R.; Golden, N.A.; Gautam, U.S.; Johnson, A.M.; Alvarez, X.; et al. The DosR Regulon Modulates Adaptive Immunity and Is Essential for Mycobacterium tuberculosis Persistence. Am. J. Respir. Crit. Care Med. 2015, 191, 1185–1196. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Sambandam, V.; Sardar, D.; Anishetty, S. In silico analysis of DosR regulon proteins of Mycobacterium tuberculosis. Gene 2012, 506, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Apiche, E.A.; Yee, E.; Damodaran, A.R.; Bhagi-Damodaran, A. Oxygen affinities of DosT and DosS sensor kinases with implications for hypoxia adaptation in Mycobacterium tuberculosis. J. Inorg. Biochem. 2024, 257, 112576. [Google Scholar] [CrossRef] [PubMed]
- Drumm, J.E.; Mi, K.; Bilder, P.; Sun, M.; Lim, J.; Bielefeldt-Ohmann, H.; Basaraba, R.; So, M.; Zhu, G.; Tufariello, J.M.; et al. Mycobacterium tuberculosis universal stress protein Rv2623 regulates bacillary growth by ATP-Binding: Requirement for establishing chronic persistent infection. PLoS Pathog. 2009, 5, e1000460. [Google Scholar] [CrossRef]
- Jain, R.K.; Nayak, A.R.; Husain, A.A.; Panchbhai, M.S.; Chandak, N.; Purohit, H.J.; Taori, G.M.; Daginawala, H.F.; Kashyap, R.S. Mycobacterial dormancy regulon protein Rv2623 as a novel biomarker for the diagnosis of latent and active tuberculous meningitis. Dis. Markers 2013, 35, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Tyagi, J.S. Cooperative binding of phosphorylated DevR to upstream sites is necessary and sufficient for activation of the Rv3134c-devRS operon in Mycobacterium tuberculosis: Implication in the induction of DevR target genes. J. Bacteriol. 2008, 190, 4301–4312. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.F.; Amir, M.; Gurram, R.K.; Khan, N.; Arora, A.; Rajagopal, K.; Agrewala, J.N. Latency-associated protein Acr1 impairs dendritic cell maturation and functionality: A possible mechanism of immune evasion by Mycobacterium tuberculosis. J. Infect. Dis. 2014, 209, 1436–1445. [Google Scholar] [CrossRef] [PubMed]
- Geluk, A.; Lin, M.Y.; Van Meijgaarden, K.E.; Leyten, E.M.; Franken, K.L.; Ottenhoff, T.H.; Klein, M.R. T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent M. tuberculosis infection but not with M. bovis BCG vaccination. Infect. Immun. 2007, 75, 2914–2921. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Hu, X.; Shi, D.; Zhang, Y.; Sun, M.; Wang, J.; Mi, K.; Zhu, G. Universal stress protein Rv2624c alters abundance of arginine and enhances intracellular survival by ATP binding in mycobacteria. Sci. Rep. 2016, 6, 35462. [Google Scholar] [CrossRef]
- Doddam, S.N.; Peddireddy, V.; Yerra, P.; Sai Arun, P.P.; Qaria, M.A.; Baddam, R.; Sarker, N.; Ahmed, N. Mycobacterium tuberculosis DosR regulon gene Rv2004c contributes to streptomycin resistance and intracellular survival. Int. J. Med. Microbiol. 2019, 309, 151353. [Google Scholar] [CrossRef]
- Jiang, H.; Luo, T.L.; Kang, J.; Xu, Z.K.; Wang, L.M. Expression of Rv2031c-Rv2626c fusion protein in Mycobacterium smegmatis enhances bacillary survival and modulates innate immunity in macrophages. Mol. Med. Rep. 2018, 17, 7307–7312. [Google Scholar] [PubMed]
- Bashir, N.; Kounsar, F.; Mukhopadhyay, S.; Hasnain, S.E. Mycobacterium tuberculosis conserved hypothetical protein rRv2626c modulates macrophage effector functions. Immunology 2010, 130, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Black, G.F.; Thiel, B.A.; Ota, M.O.; Parida, S.K.; Adegbola, R.; Boom, W.H.; Dockrell, H.M.; Franken, K.L.; Friggen, A.H.; Hill, P.C.; et al. Immunogenicity of novel DosR regulon-encoded candidate antigens of Mycobacterium tuberculosis in three high-burden populations in Africa. Clin. Vaccine Immunol. 2009, 16, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wu, C.; Wang, X.; Xu, H.; Wu, Y.; Li, Y.; Jia, Y.; Wei, C.; He, W.; Wang, Y.; et al. The DosR antigen Rv1737c from Mycobacterium tuberculosis confers inflammation regulation in tuberculosis infection. Scand. J. Immunol. 2019, 89, e12729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, H.; Bai, Y.L.; Kang, J.; Xu, Z.K.; Wang, L.M. Construction and immunogenicity of the DNA vaccine of Mycobacterium Tuberculosis dormancy antigen rv1733c. Scand. J. Immunol. 2014, 79, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Coppola, M.; Van Den Eeden, S.J.; Wilson, L.; Franken, K.L.; Ottenhoff, T.H.; Geluk, A. Synthetic Long Peptide Derived from Mycobacterium tuberculosis Latency Antigen Rv1733c Protects against Tuberculosis. Clin. Vaccine Immunol. 2015, 22, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.M.; Liao, R.P.; Wisedchaisri, G.; Hol, W.G.; Sherman, D.R. Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J. Biol. Chem. 2004, 279, 23082–23087. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Majid, M.; Kunisch, R.; Rani, P.S.; Qureshi, I.A.; Lewin, A.; Hasnain, S.E.; Ahmed, N. Mycobacterium tuberculosis DosR regulon gene Rv0079 encodes a putative, ‘dormancy associated translation inhibitor (DATIN)’. PLoS ONE 2012, 7, e38709. [Google Scholar] [CrossRef] [PubMed]
- Garg, R.; Tripathi, D.; Kant, S.; Chandra, H.; Bhatnagar, R.; Banerjee, N. The conserved hypothetical protein Rv0574c is required for cell wall integrity, stress tolerance, and virulence of Mycobacterium tuberculosis. Infect. Immun. 2015, 83, 120–129. [Google Scholar] [CrossRef]
- Bunker, R.D.; Mandal, K.; Bashiri, G.; Chaston, J.J.; Pentelute, B.L.; Lott, J.S.; Kent, S.B.; Baker, E.N. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography. Proc. Natl. Acad. Sci. USA 2015, 112, 4310–4315. [Google Scholar] [CrossRef]
- Purkayastha, A.; Mccue, L.A.; Mcdonough, K.A. Identification of a Mycobacterium tuberculosis putative classical nitroreductase gene whose expression is coregulated with that of the acr aene within macrophages, in standing versus shaking cultures, and under low oxygen conditions. Infect. Immun. 2002, 70, 1518–1529. [Google Scholar] [CrossRef] [PubMed]
- Derrick, S.C.; Yabe, I.M.; Yang, A.; Kolibab, K.; Hollingsworth, B.; Kurtz, S.L.; Morris, S. Immunogenicity and protective efficacy of novel Mycobacterium tuberculosis antigens. Vaccine 2013, 31, 4641–4646. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sharma, M.; Chaudhry, A.; Sharma, S. Rv2626c and Rv2032 activate TH1 response and downregulate regulatory T cells in peripheral blood mononuclear cells of tuberculosis patients. Comp. Immunol. Microbiol. Infect. Dis. 2019, 62, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Boshoff, H.I.; Xu, X.; Tahlan, K.; Dowd, C.S.; Pethe, K.; Camacho, L.R.; Park, T.H.; Yun, C.S.; Schnappinger, D.; Ehrt, S.; et al. Biosynthesis and recycling of nicotinamide cofactors in mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli. J. Biol. Chem. 2008, 283, 19329–19341. [Google Scholar] [CrossRef] [PubMed]
- Bretl, D.J.; He, H.; Demetriadou, C.; White, M.J.; Penoske, R.M.; Salzman, N.H.; Zahrt, T.C. MprA and DosR coregulate a Mycobacterium tuberculosis virulence operon encoding Rv1813c and Rv1812c. Infect. Immun. 2012, 80, 3018–3033. [Google Scholar] [CrossRef] [PubMed]
- Sirakova, T.D.; Dubey, V.S.; Deb, C.; Daniel, J.; Korotkova, T.A.; Abomoelak, B.; Kolattukudy, P.E. Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. Microbiology 2006, 152 Pt 9, 2717–2725. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Son, W.S.; Ahn, D.H.; Im, H.; Ahn, H.C.; Lee, B.J. Solution structure of Rv0569, potent hypoxic signal transduction protein, from Mycobacterium tuberculosis. Tuberculosis 2014, 94, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Coates, A.R. Mycobacterium tuberculosis acg gene is required for growth and virulence in vivo. PLoS ONE 2011, 6, e20958. [Google Scholar] [CrossRef]
- Martin, M.; Devisch, A.; Boudehen, Y.M.; Barthe, P.; Gutierrez, C.; Turapov, O.; Aydogan, T.; Heriaud, L.; Gracy, J.; Neyrolles, O.; et al. A Mycobacterium tuberculosis Effector Targets Mitochondrion, Controls Energy Metabolism, and Limits Cytochrome c Exit. Microbiol. Spectr. 2023, 11, e0106623. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, X.; Bai, X.; Yang, Y.; Gong, W.; Wang, T.; Ling, Y.; Zhang, J.; Wang, L.; Wang, J.; et al. Immunogenicity and Therapeutic Effects of Latency-Associated Genes in a Mycobacterium Tuberculosis Reactivation Mouse Model. Hum. Gene Ther. Methods 2019, 30, 60–69. [Google Scholar] [CrossRef]
- Bush, M.J. The actinobacterial WhiB-like (Wbl) family of transcription factors. Mol. Microbiol. 2018, 110, 663–676. [Google Scholar] [CrossRef]
- Smith, L.J.; Stapleton, M.R.; Fullstone, G.J.; Crack, J.C.; Thomson, A.J.; Le Brun, N.E.; Hunt, D.M.; Harvey, E.; Adinolfi, S.; Buxton, R.S.; et al. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster. Biochem. J. 2010, 432, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Kudhair, B.K.; Hounslow, A.M.; Rolfe, M.D.; Crack, J.C.; Hunt, D.M.; Buxton, R.S.; Smith, L.J.; Le Brun, N.E.; Williamson, M.P.; Green, J. Structure of a Wbl protein and implications for NO sensing by M. tuberculosis. Nat. Commun. 2017, 8, 2280. [Google Scholar] [CrossRef]
- Singh, A.; Guidry, L.; Narasimhulu, K.V.; Mai, D.; Trombley, J.; Redding, K.E.; Giles, G.I.; Lancaster, J.R., Jr.; Steyn, A.J. Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc. Natl. Acad. Sci. USA 2007, 104, 11562–11567. [Google Scholar] [CrossRef]
- Larsson, C.; Luna, B.; Ammerman, N.C.; Maiga, M.; Agarwal, N.; Bishai, W.R. Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1-7 in redox environments. PLoS ONE 2012, 7, e37516. [Google Scholar] [CrossRef]
- Barrientos, O.M.; Langley, E.; González, Y.; Cabello, C.; Torres, M.; Guzmán-Beltrán, S. Mycobacterium tuberculosis whiB3 and Lipid Metabolism Genes Are Regulated by Host Induced Oxidative Stress. Microorganisms 2022, 10, 1821. [Google Scholar] [CrossRef]
- Singh, A.; Crossman, D.K.; Mai, D.; Guidry, L.; Voskuil, M.I.; Renfrow, M.B.; Steyn, A.J. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog. 2009, 5, e1000545. [Google Scholar] [CrossRef]
- Geiman, D.E.; Raghunand, T.R.; Agarwal, N.; Bishai, W.R. Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob. Agents Chemother. 2006, 50, 2836–2841. [Google Scholar] [CrossRef] [PubMed]
- Rohde, K.H.; Abramovitch, R.B.; Russell, D.G. Mycobacterium tuberculosis invasion of macrophages: Linking bacterial gene expression to environmental cues. Cell Host Microbe 2007, 2, 352–364. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Chen, S.; Hu, Y. PhoPR Positively Regulates whiB3 Expression in Response to Low pH in Pathogenic Mycobacteria. J. Bacteriol. 2018, 200, e00766-17. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Rajmani, R.S.; Singh, A. Mycobacterium tuberculosis WhiB3 Responds to Vacuolar pH-induced Changes in Mycothiol Redox Potential to Modulate Phagosomal Maturation and Virulence. J. Biol. Chem. 2016, 291, 2888–2903. [Google Scholar] [CrossRef]
- Mehta, M.; Singh, A. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis and survival in response to reactive oxygen and nitrogen species. Free Radic. Biol. Med. 2019, 131, 50–58. [Google Scholar] [CrossRef]
- Chawla, M.; Parikh, P.; Saxena, A.; Munshi, M.; Mehta, M.; Mai, D.; Srivastava, A.K.; Narasimhulu, K.V.; Redding, K.E.; Vashi, N.; et al. Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol. Microbiol. 2012, 85, 1148–1165. [Google Scholar] [CrossRef]
- Chawla, M.; Mishra, S.; Anand, K.; Parikh, P.; Mehta, M.; Vij, M.; Verma, T.; Singh, P.; Jakkala, K.; Verma, H.N.; et al. Redox-dependent condensation of the mycobacterial nucleoid by WhiB4. Redox Biol. 2018, 19, 116–133. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, Y.; Cumming, B.M.; Lu, P.; Feng, L.; Deng, J.; Steyn, A.J.; Chen, S. Mycobacterial WhiB6 Differentially Regulates ESX-1 and the Dos Regulon to Modulate Granuloma Formation and Virulence in Zebrafish. Cell Rep. 2016, 16, 2512–2524. [Google Scholar] [CrossRef] [PubMed]
- Burian, J.; Ramon-Garcia, S.; Howes, C.G.; Thompson, C.J. WhiB7, a transcriptional activator that coordinates physiology with intrinsic drug resistance in Mycobacterium tuberculosis. Expert Rev. Anti-Infect. Ther. 2012, 10, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Burian, J.; Yim, G.; Hsing, M.; Axerio-Cilies, P.; Cherkasov, A.; Spiegelman, G.B.; Thompson, C.J. The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV). Nucleic Acids Res. 2013, 41, 10062–10076. [Google Scholar] [CrossRef]
- Wan, T.; Horová, M.; Khetrapal, V.; Li, S.; Jones, C.; Schacht, A.; Sun, X.; Zhang, L. Structural basis of DNA binding by the WhiB-like transcription factor WhiB3 in Mycobacterium tuberculosis. J. Biol. Chem. 2023, 299, 104777. [Google Scholar] [CrossRef] [PubMed]
- Casonato, S.; Cervantes Sanchez, A.; Haruki, H.; Rengifo Gonzalez, M.; Provvedi, R.; Dainese, E.; Jaouen, T.; Gola, S.; Bini, E.; Vicente, M.; et al. WhiB5, a transcriptional regulator that contributes to Mycobacterium tuberculosis virulence and reactivation. Infect. Immun. 2012, 80, 3132–3144. [Google Scholar] [CrossRef]
- Page, R.; Peti, W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 2016, 12, 208–214. [Google Scholar] [CrossRef]
- Sala, A.; Bordes, P.; Genevaux, P. Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins 2014, 6, 1002–1020. [Google Scholar] [CrossRef] [PubMed]
- Barth, V.C.; Zeng, J.M.; Vvedenskaya, I.O.; Ouyang, M.; Husson, R.N.; Woychik, N.A. Toxin-mediated ribosome stalling reprograms the Mycobacterium tuberculosis proteome. Nat. Commun. 2019, 10, 3035. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Inouye, M. Toxins of Prokaryotic Toxin-Antitoxin Systems with Sequence-Specific Endoribonuclease Activity. Toxins 2017, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Slayden, R.A.; Dawson, C.C.; Cummings, J.E. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog. Dis. 2018, 76, fty039. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Arora, G.; Singh, M.; Kidwai, S.; Narayan, O.P.; Singh, R. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat. Commun. 2015, 6, 6059. [Google Scholar] [CrossRef] [PubMed]
- Ramage, H.R.; Connolly, L.E.; Cox, J.S. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: Implications for pathogenesis, stress responses, and evolution. PLoS Genet. 2009, 5, e1000767. [Google Scholar] [CrossRef] [PubMed]
- Albrethsen, J.; Agner, J.; Piersma, S.R.; Højrup, P.; Pham, T.V.; Weldingh, K.; Jimenez, C.R.; Andersen, P.; Rosenkrands, I. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol. Cell. Proteom. 2013, 12, 1180–1191. [Google Scholar] [CrossRef]
- Korch, S.B.; Contreras, H.; Clark-Curtiss, J.E. Three Mycobacterium tuberculosis Rel toxin-antitoxin modules inhibit mycobacterial growth and are expressed in infected human macrophages. J. Bacteriol. 2009, 191, 1618–1630. [Google Scholar] [CrossRef]
- Provvedi, R.; Boldrin, F.; Falciani, F.; Palù, G.; Manganelli, R. Global transcriptional response to vancomycin in Mycobacterium tuberculosis. Microbiology 2009, 155 Pt 4, 1093–1102. [Google Scholar] [CrossRef]
- Singh, R.; Barry, C.E., 3rd; Boshoff, H.I. The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. J. Bacteriol. 2010, 192, 1279–1291. [Google Scholar] [CrossRef]
- Hudock, T.A.; Foreman, T.W.; Bandyopadhyay, N.; Gautam, U.S.; Veatch, A.V.; Lobato, D.N.; Gentry, K.M.; Golden, N.A.; Cavigli, A.; Mueller, M.; et al. Hypoxia Sensing and Persistence Genes Are Expressed during the Intragranulomatous Survival of Mycobacterium tuberculosis. Am. J. Respir. Cell. Mol. Biol. 2017, 56, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Korch, S.B.; Malhotra, V.; Contreras, H.; Clark-Curtiss, J.E. The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition. J. Microbiol. 2015, 53, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Venkataraman, B.; Vasudevan, M.; Gopinath Bankar, K. Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Sci. Rep. 2017, 7, 5868. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, P.; Misra, R.; Tyagi, A.K.; Singh, Y. The sigma factors of Mycobacterium tuberculosis: Regulation of the regulators. FEBS J. 2010, 277, 605–626. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Ravi, J.; Datta, P.; Chen, T.; Schnappinger, D.; Bassler, K.E.; Balazsi, G.; Gennaro, M.L. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis. Nat. Commun. 2016, 7, 11062. [Google Scholar] [CrossRef] [PubMed]
- Steyn, A.J.; Collins, D.M.; Hondalus, M.K.; Jacobs, W.R., Jr.; Kawakami, R.P.; Bloom, B.R. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc. Natl. Acad. Sci. USA 2002, 99, 3147–3152. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Coates, A.R. Transcription of two sigma 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis. J. Bacteriol. 1999, 181, 469–476. [Google Scholar] [CrossRef]
- Betts, J.C.; Lukey, P.T.; Robb, L.C.; Mcadam, R.A.; Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 2002, 43, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Calamita, H.; Ko, C.; Tyagi, S.; Yoshimatsu, T.; Morrison, N.E.; Bishai, W.R. The Mycobacterium tuberculosis SigD sigma factor controls the expression of ribosome-associated gene products in stationary phase and is required for full virulence. Cell. Microbiol. 2005, 7, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.; Hazra, R.; Dascher, C.C.; Husson, R.N. Transcription regulation by the Mycobacterium tuberculosis alternative sigma factor SigD and its role in virulence. J. Bacteriol. 2004, 186, 6605–6616. [Google Scholar] [CrossRef]
- Datta, P.; Shi, L.; Bibi, N.; Balazsi, G.; Gennaro, M.L. Regulation of central metabolism genes of Mycobacterium tuberculosis by parallel feed-forward loops controlled by sigma factor E (sigma(E)). J. Bacteriol. 2011, 193, 1154–1160. [Google Scholar] [CrossRef]
- Manganelli, R.; Voskuil, M.I.; Schoolnik, G.K.; Smith, I. The Mycobacterium tuberculosis ECF sigma factor sigmaE: Role in global gene expression and survival in macrophages. Mol. Microbiol. 2001, 41, 423–437. [Google Scholar] [CrossRef]
- Baruzzo, G.; Serafini, A.; Finotello, F.; Sanavia, T.; Cioetto-Mazzabò, L.; Boldrin, F.; Lavezzo, E.; Barzon, L.; Toppo, S.; Provvedi, R.; et al. Role of the Extracytoplasmic Function Sigma Factor SigE in the Stringent Response of Mycobacterium tuberculosis. Microbiol. Spectr. 2023, 11, e0294422. [Google Scholar] [CrossRef]
- Fernandes, N.D.; Wu, Q.L.; Kong, D.; Puyang, X.; Garg, S.; Husson, R.N. A mycobacterial extracytoplasmic sigma factor involved in survival following heat shock and oxidative stress. J. Bacteriol. 1999, 181, 4266–4274. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, D.; Schroeder, B.G.; Tyagi, S.; Yoshimatsu, T.; Scott, C.; Ko, C.; Carpenter, L.; Mehrotra, J.; Manabe, Y.C.; Fleischmann, R.D.; et al. Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberculosis mutant lacking alternative sigma factor, SigH. Proc. Natl. Acad. Sci. USA 2002, 99, 8330–8335. [Google Scholar] [CrossRef]
- Demaio, J.; Zhang, Y.; Ko, C.; Young, D.B.; Bishai, W.R. A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 1996, 93, 2790–2794. [Google Scholar] [CrossRef]
- Pisu, D.; Provvedi, R.; Espinosa, D.M.; Payan, J.B.; Boldrin, F.; Palu, G.; Hernandez-Pando, R.; Manganelli, R. The Alternative Sigma Factors SigE and SigB Are Involved in Tolerance and Persistence to Antitubercular Drugs. Antimicrob. Agents Chemother. 2017, 61, e01596-17. [Google Scholar] [CrossRef]
- Hurst-Hess, K.; Biswas, R.; Yang, Y.; Rudra, P.; Lasek-Nesselquist, E.; Ghosh, P. Mycobacterial SigA and SigB Cotranscribe Essential Housekeeping Genes during Exponential Growth. mBio 2019, 10, e00273-19. [Google Scholar] [CrossRef] [PubMed]
- Grosse-Siestrup, B.T.; Gupta, T.; Helms, S.; Tucker, S.L.; Voskuil, M.I.; Quinn, F.D.; Karls, R.K. A Role for Mycobacterium tuberculosis Sigma Factor C in Copper Nutritional Immunity. Int. J. Mol. Sci. 2021, 22, 2118. [Google Scholar] [CrossRef]
- Surendran, S.P.; Moon, M.J.; Park, R.; Jeong, Y.Y. Bioactive Nanoparticles for Cancer Immunotherapy. Int. J. Mol. Sci. 2018, 19, 3877. [Google Scholar] [CrossRef]
- Mallick Gupta, A.; Mandal, S. The C-terminal domain of M. tuberculosis ECF sigma factor I (SigI) interferes in SigI-RNAP interaction. J. Mol. Model. 2020, 26, 77. [Google Scholar] [CrossRef] [PubMed]
- Parish, T. Two-Component Regulatory Systems of Mycobacteria. Microbiol. Spectr. 2014, 2, mgm2-0010-2013. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lv, X.; Lin, Y.; Zhen, J.; Ruan, C.; Duan, W.; Li, Y.; Xie, J. Role of two-component regulatory systems in intracellular survival of Mycobacterium tuberculosis. J. Cell. Biochem. 2019, 120, 12197–12207. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Hovey, R.; Kane, J.; Singh, V.; Zahrt, T.C. MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. J. Bacteriol. 2006, 188, 2134–2143. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Vu, P.; Byrd, T.F.; Ghanny, S.; Soteropoulos, P.; Mukamolova, G.V.; Wu, S.; Samten, B.; Howard, S.T. Evidence for complex interactions of stress-associated regulons in an mprAB deletion mutant of Mycobacterium tuberculosis. Microbiology 2007, 153 Pt 4, 1229–1242. [Google Scholar] [CrossRef]
- Bretl, D.J.; Bigley, T.M.; Terhune, S.S.; Zahrt, T.C. The MprB extracytoplasmic domain negatively regulates activation of the Mycobacterium tuberculosis MprAB two-component system. J. Bacteriol. 2014, 196, 391–406. [Google Scholar] [CrossRef] [PubMed]
- Zahrt, T.C.; Deretic, V. Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc. Natl. Acad. Sci. USA 2001, 98, 12706–12711. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Samten, B.; Cao, G.; Wang, X.; Tvinnereim, A.R.; Chen, X.L.; Howard, S.T. MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response. J. Bacteriol. 2013, 195, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Namugenyi, S.B.; Aagesen, A.M.; Elliott, S.R.; Tischler, A.D. Mycobacterium tuberculosis PhoY Proteins Promote Persister Formation by Mediating Pst/SenX3-RegX3 Phosphate Sensing. mBio 2017, 8, e00494-17. [Google Scholar] [CrossRef]
- Downing, K.J.; Mischenko, V.V.; Shleeva, M.O.; Young, D.I.; Young, M.; Kaprelyants, A.S.; Apt, A.S.; Mizrahi, V. Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro. Infect. Immun. 2005, 73, 3038–3043. [Google Scholar] [CrossRef]
- Arroyo, L.; Rojas, M.; Franken, K.L.; Ottenhoff, T.H.; Barrera, L.F. Multifunctional T Cell Response to DosR and Rpf Antigens Is Associated with Protection in Long-Term Mycobacterium tuberculosis-Infected Individuals in Colombia. Clin. Vaccine Immunol. 2016, 23, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Primm, T.P.; Andersen, S.J.; Mizrahi, V.; Avarbock, D.; Rubin, H.; Barry, C.E., 3rd. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J. Bacteriol. 2000, 182, 4889–4898. [Google Scholar] [CrossRef] [PubMed]
- Dutta, N.K.; Klinkenberg, L.G.; Vazquez, M.J.; Segura-Carro, D.; Colmenarejo, G.; Ramon, F.; Rodriguez-Miquel, B.; Mata-Cantero, L.; Porras-De Francisco, E.; Chuang, Y.M.; et al. Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence. Sci. Adv. 2019, 5, eaav2104. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, M.; Arora, G.; Kumar, S.; Tiwari, P.; Kidwai, S. Polyphosphate deficiency in Mycobacterium tuberculosis is associated with enhanced drug susceptibility and impaired growth in guinea pigs. J. Bacteriol. 2013, 195, 2839–2851. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Tiwari, P.; Arora, G.; Agarwal, S.; Kidwai, S.; Singh, R. Establishing Virulence Associated Polyphosphate Kinase 2 as a drug target for Mycobacterium tuberculosis. Sci. Rep. 2016, 6, 26900. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.M.; Belchis, D.A.; Karakousis, P.C. The polyphosphate kinase gene ppk2 is required for Mycobacterium tuberculosis inorganic polyphosphate regulation and virulence. mBio 2013, 4, e00039-13. [Google Scholar] [CrossRef] [PubMed]
- Sureka, K.; Dey, S.; Datta, P.; Singh, A.K.; Dasgupta, A.; Rodrigue, S.; Basu, J.; Kundu, M. Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol. Microbiol. 2007, 65, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Gosain, T.P.; Singh, M.; Sankhe, G.D.; Arora, G.; Kidwai, S.; Agarwal, S.; Chugh, S.; Saini, D.K.; Singh, R. Inorganic polyphosphate accumulation suppresses the dormancy response and virulence in Mycobacterium tuberculosis. J. Biol. Chem. 2019, 294, 10819–10832. [Google Scholar] [CrossRef] [PubMed]
- Gopi Reji, J.; LK, E.; Raghunandanan, S.; Pushparajan, A.R.; Kurthkoti, K.; Ajay Kumar, R. Rv1255c, a dormancy-related transcriptional regulator of TetR family in Mycobacterium tuberculosis, enhances isoniazid tolerance in Mycobacterium smegmatis. J. Antibiot. 2023, 76, 720–727. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Yang, X.; Wang, N.; Sampson, N.S. Uncovering the roles of Mycobacterium tuberculosis melH in redox and bioenergetic homeostasis: Implications for antitubercular therapy. mSphere 2024, 9, e0006124. [Google Scholar] [CrossRef]
- Rohde, K.H.; Veiga, D.F.; Caldwell, S.; Balazsi, G.; Russell, D.G. Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog. 2012, 8, e1002769. [Google Scholar] [CrossRef] [PubMed]
- Gengenbacher, M.; Kaufmann, S.H. Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiol. Rev. 2012, 36, 514–532. [Google Scholar] [CrossRef] [PubMed]
- Schubert, O.T.; Ludwig, C.; Kogadeeva, M.; Zimmermann, M.; Rosenberger, G.; Gengenbacher, M.; Gillet, L.C.; Collins, B.C.; Rost, H.L.; Kaufmann, S.H.; et al. Absolute Proteome Composition and Dynamics during Dormancy and Resuscitation of Mycobacterium tuberculosis. Cell Host Microbe 2015, 18, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.C.; Diwan, V.K.; Wheeler, J.G. Protective effect of BCG against tuberculous meningitis and miliary tuberculosis: A meta-analysis. Int. J. Epidemiol. 1993, 22, 1154–1158. [Google Scholar] [CrossRef] [PubMed]
- Mangtani, P.; Abubakar, I.; Ariti, C.; Beynon, R.; Pimpin, L.; Fine, P.E.; Rodrigues, L.C.; Smith, P.G.; Lipman, M.; Whiting, P.F.; et al. Protection by BCG vaccine against tuberculosis: A systematic review of randomized controlled trials. Clin. Infect. Dis. 2014, 58, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Andersen, P. Vaccine strategies against latent tuberculosis infection. Trends Microbiol. 2007, 15, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Schrager, L.K.; Vekemens, J.; Drager, N.; Lewinsohn, D.M.; Olesen, O.F. The status of tuberculosis vaccine development. Lancet Infect. Dis. 2020, 20, e28–e37. [Google Scholar] [CrossRef] [PubMed]
- Soleimanpour, S.; Farsiani, H.; Mosavat, A.; Ghazvini, K.; Eydgahi, M.R.; Sankian, M.; Sadeghian, H.; Meshkat, Z.; Rezaee, S.A. APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice. Appl. Microbiol. Biotechnol. 2015, 99, 10467–10480. [Google Scholar] [CrossRef] [PubMed]
- Khademi, F.; Derakhshan, M.; Yousefi-Avarvand, A.; Tafaghodi, M.; Soleimanpour, S. Multi-stage subunit vaccines against Mycobacterium tuberculosis: An alternative to the BCG vaccine or a BCG-prime boost? Expert Rev. Vaccines 2018, 17, 31–44. [Google Scholar] [CrossRef]
- Ottenhoff, T.H.; Kaufmann, S.H. Vaccines against tuberculosis: Where are we and where do we need to go? PLoS Pathog. 2012, 8, e1002607. [Google Scholar] [CrossRef]
- Bretl, D.J.; Demetriadou, C.; Zahrt, T.C. Adaptation to environmental stimuli within the host: Two-component signal transduction systems of Mycobacterium tuberculosis. Microbiol. Mol. Biol. Rev. 2011, 75, 566–582. [Google Scholar] [CrossRef]
- Kumari, P.; Sikri, K.; Kaur, K.; Gupta, U.D.; Tyagi, J.S. Sustained expression of DevR/DosR during long-term hypoxic culture of Mycobacterium tuberculosis. Tuberculosis 2017, 106, 33–37. [Google Scholar] [CrossRef]
- Gupta, R.K.; Thakur, T.S.; Desiraju, G.R.; Tyagi, J.S. Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. J. Med. Chem. 2009, 52, 6324–6334. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Taneja, N.K.; Dhingra, S.; Tyagi, J.S. DevR (DosR) mimetic peptides impair transcriptional regulation and survival of Mycobacterium tuberculosis under hypoxia by inhibiting the autokinase activity of DevS sensor kinase. BMC Microbiol. 2014, 14, 195. [Google Scholar] [CrossRef]
- Dhingra, S.; Kaur, K.; Taneja, N.K.; Tyagi, J.S. DevR (DosR) binding peptide inhibits adaptation of Mycobacterium tuberculosis under hypoxia. FEMS Microbiol. Lett. 2012, 330, 66–71. [Google Scholar] [CrossRef]
- Kumar, S.K.; Arya, S.; Aggarwal, A.; Kapoor, P.; Nath, A.; Misra, R.; Sinha, S. Immune responses to Mycobacterium tuberculosis membrane-associated antigens including alpha crystallin can potentially discriminate between latent infection and active tuberculosis disease. PLoS ONE 2020, 15, e0228359. [Google Scholar] [CrossRef]
- Prabhavathi, M.; Pathakumari, B.; Raja, A. IFN-gamma/TNF-alpha ratio in response to immuno proteomically identified human T-cell antigens of Mycobacterium tuberculosis—The most suitable surrogate biomarker for latent TB infection. J. Infect. 2015, 71, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Crane, D.D.; Simpson, R.M.; Zhu, Y.Q.; Hickey, M.J.; Sherman, D.R.; Barry, C.E. The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc. Natl. Acad. Sci. USA 1998, 95, 9578–9583. [Google Scholar] [CrossRef] [PubMed]
- Belay, M.; Legesse, M.; Mihret, A.; Bekele, Y.; Ottenhoff, T.H.; Franken, K.L.; Bjune, G.; Abebe, F. Pro- and anti-inflammatory cytokines against Rv2031 are elevated during latent tuberculosis: A study in cohorts of tuberculosis patients, household contacts and community controls in an endemic setting. PLoS ONE 2015, 10, e0124134. [Google Scholar] [CrossRef]
- Davidow, A.; Kanaujia, G.V.; Shi, L.; Kaviar, J.; Guo, X.; Sung, N.; Kaplan, G.; Menzies, D.; Gennaro, M.L. Antibody profiles characteristic of Mycobacterium tuberculosis infection state. Infect. Immun. 2005, 73, 6846–6851. [Google Scholar] [CrossRef]
- Copland, A.; Diogo, G.R.; Hart, P.; Harris, S.; Tran, A.C.; Paul, M.J.; Singh, M.; Cutting, S.M.; Reljic, R. Mucosal Delivery of Fusion Proteins with Bacillus subtilis Spores Enhances Protection against Tuberculosis by Bacillus Calmette-Guerin. Front. Immunol. 2018, 9, 346. [Google Scholar] [CrossRef]
- Yuan, X.; Teng, X.; Jing, Y.; Ma, J.; Tian, M.; Yu, Q.; Zhou, L.; Wang, R.; Wang, W.; Li, L.; et al. A live attenuated BCG vaccine overexpressing multistage antigens Ag85B and HspX provides superior protection against Mycobacterium tuberculosis infection. Appl. Microbiol. Biotechnol. 2015, 99, 10587–10595. [Google Scholar] [CrossRef]
- Liang, Z.; Li, H.; Qu, M.; Liu, Y.; Wang, Y.; Wang, H.; Dong, Y.; Chen, Y.; Ge, X.; Zhou, X. Intranasal bovine β-defensin-5 enhances antituberculosis immunity in a mouse model by a novel protein-based respiratory mucosal vaccine. Virulence 2022, 13, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Hoff, S.T.; Shi, Z.; Tait, D.; Kromann, I.; Ruhwald, M.; Rutkowski, K.T.; Shepherd, B.; Hokey, D.; Ginsberg, A.M.; Hanekom, W.A. Dose Optimization of H56:IC31 Vaccine for Tuberculosis-Endemic Populations. A Double-Blind, Placebo-controlled, Dose-Selection Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 220–231. [Google Scholar]
- Penn-Nicholson, A.; Tameris, M.; Smit, E.; Day, T.A.; Musvosvi, M.; Jayashankar, L.; Vergara, J.; Mabwe, S.; Bilek, N.; Geldenhuys, H.; et al. Safety and immunogenicity of the novel tuberculosis vaccine ID93 + GLA-SE in BCG-vaccinated healthy adults in South Africa: A randomised, double-blind, placebo-controlled phase 1 trial. Lancet Respir. Med. 2018, 6, 287–298. [Google Scholar] [CrossRef]
- Pandey, K.; Singh, S.; Bhatt, P.; Medha Sharma, M.; Chaudhry, A.; Sharma, S. DosR proteins of Mycobacterium tuberculosis upregulate effector T cells and down regulate T regulatory cells in TB patients and their healthy contacts. Microb. Pathog. 2019, 126, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Van Der Meeren, O.; Hatherill, M.; Nduba, V.; Wilkinson, R.J.; Muyoyeta, M.; Van Brakel, E.; Ayles, H.M.; Henostroza, G.; Thienemann, F.; Scriba, T.J.; et al. Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N. Engl. J. Med. 2018, 379, 1621–1634. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kumar, M.M.; Singh, D.; Bisht, D.; Sharma, S. Drug targets in dormant Mycobacterium tuberculosis: Can the conquest against tuberculosis become a reality? Infect. Dis. 2018, 50, 81–94. [Google Scholar] [CrossRef]
- Von Both, U.; Gerlach, P.; Ritz, N.; Bogyi, M.; Brinkmann, F.; Thee, S. Management of childhood and adolescent latent tuberculous infection (LTBI) in Germany, Austria and Switzerland. PLoS ONE 2021, 16, e0250387. [Google Scholar] [CrossRef]
- Sharan, R.; Ganatra, S.R.; Singh, D.K.; Cole, J.; Foreman, T.W.; Thippeshappa, R.; Peloquin, C.A.; Shivanna, V.; Gonzalez, O.; Day, C.L.; et al. Isoniazid and rifapentine treatment effectively reduces persistent M. tuberculosis infection in macaque lungs. J. Clin. Investig. 2022, 132, e161564. [Google Scholar] [CrossRef]
- Ei, P.W.; Mon, A.S.; Htwe, M.M.; Win, S.M.; Aye, K.T.; San, L.L.; Zaw, N.N.; Nyunt, W.W.; Myint, Z.; Lee, J.S.; et al. Pyrazinamide resistance and pncA mutations in drug resistant Mycobacterium tuberculosis clinical isolates from Myanmar. Tuberculosis 2020, 125, 102013. [Google Scholar] [CrossRef] [PubMed]
- Dutta, N.K.; Karakousis, P.C. PA-824 is as effective as isoniazid against latent tuberculosis infection in C3HeB/FeJ mice. Int. J. Antimicrob. Agents 2014, 44, 564–566. [Google Scholar] [CrossRef]
- Lanoix, J.P.; Betoudji, F.; Nuermberger, E. Novel regimens identified in mice for treatment of latent tuberculosis infection in contacts of patients with multidrug-resistant tuberculosis. Antimicrob. Agents Chemother. 2014, 58, 2316–2321. [Google Scholar] [CrossRef] [PubMed]
- Sterling, T.R.; Njie, G.; Zenner, D.; Cohn, D.L.; Reves, R.; Ahmed, A.; Menzies, D.; Horsburgh, C.R., Jr.; Crane, C.M.; Burgos, M.; et al. Guidelines for the Treatment of Latent Tuberculosis Infection: Recommendations from the National Tuberculosis Controllers Association and CDC, 2020. MMWR Recomm. Rep. 2020, 69, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shleider Carnero Canales, C.; Marquez Cazorla, J.; Furtado Torres, A.H.; Monteiro Filardi, E.T.; Di Filippo, L.D.; Costa, P.I.; Roque-Borda, C.A.; Pavan, F.R. Advances in Diagnostics and Drug Discovery against Resistant and Latent Tuberculosis Infection. Pharmaceutics 2023, 15, 2409. [Google Scholar] [CrossRef] [PubMed]
- Sidrônio MG, S.; Castelo Branco, A.; Abbadi, B.L.; Macchi, F.; Silveira, M.D.; Lock, G.A.; Costa, T.D.; De Araújo, D.M.; Cibulski, S.; Bizarro, C.V.; et al. Effects of tafenoquine against active, dormant and resistant Mycobacterium tuberculosis. Tuberculosis 2021, 128, 102089. [Google Scholar] [CrossRef] [PubMed]
- Antil, M.; Gupta, V. Lessons Learnt and the Way forward for Drug Development against Isocitrate Lyase from Mycobacterium tuberculosis. Protein Pept. Lett. 2022, 29, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- Khabibullina, N.F.; Kutuzova, D.M.; Burmistrova, I.A.; Lyadova, I.V. The Biological and Clinical Aspects of a Latent Tuberculosis Infection. Trop. Med. Infect. Dis. 2022, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Biketov, S.; Potapov, V.; Ganina, E.; Downing, K.; Kana, B.D.; Kaprelyants, A. The role of resuscitation promoting factors in pathogenesis and reactivation of Mycobacterium tuberculosis during intra-peritoneal infection in mice. BMC Infect. Dis. 2007, 7, 146. [Google Scholar] [CrossRef]
Gene Name | Reported/Predicted Function of the Encoded Protein |
---|---|
Rv3130c (tgs1) | Mediates the formation of TAG [21], reduces growth and sensitivity to antituberculosis drugs [38,39]. |
Rv0467 (icl) | Encodes isocitrate lyase and facilitates the persistence of Mtb [22], involved in antibiotic tolerance [40], mycobacterial glyoxylate and methylisocitrate cycles [41]. |
Rv1837c (GlcB) | Encodes malate synthase which is essential for Mtb survival during the acute and chronic phases of infection [28]. |
Rv0211 (pckA) | Encodes phosphoenolpyruvate carboxykinase, catalyzing the first committed step of gluconeogenesis which is critical for Mtb to establish and maintain infection [42]. |
Rv1099c (glpX) | Encodes fructose 1, 6-bisphosphatase which is a key gluconeogenic enzyme for growth and survival of Mtb [30]. |
Rv3499c (mce4) | Encodes a cholesterol import system which helps Mtb to acquire carbon and energy from host membranes [16]. |
Rv0470c (pcaA) | A mycolic acid cyclopropane synthetase, associated with persistence and virulence of Mtb [43]. |
Rv2215 (dlaT) | Participates in the constitution of pyruvate dehydrogenase [32]. |
Rv0534c (menA) | Involved in the synthesis of menaquinone which is critical for maintaining mycobacterial viability [33]. |
Rv1620c (cydC) | Contributes to the generation of Mtb persistence [35]. |
Rv2109c (PrcA) | Encodes a gated proteasome, phosphorylation of proteasome affects the proteasome complex formation contributing to the survival of Mtb [44], protects Mycobacteria from antimicrobial antifolates [45]. |
Rv2110c (PrcB) | Encodes a gated proteasome, protects Mycobacteria from antimicrobial antifolates [45]. |
Gene Name | Reported/Predicted Function of the Encoded Protein |
---|---|
Rv2623 (TB31.7) | Regulates mycobacterial growth by ATP-binding activity [55], acts as a biomarker for the diagnosis of latent and active tuberculous meningitis [56]. |
Rv3134c | Mediates the expression of DosR target genes [57]. |
Rv2031c (HspX) | Helps Mtb adapt to low-oxygen conditions, inhibits the maturation and differentiation of dendritic cells [58], is a TB vaccine candidate antigen [59]. |
Rv2624c | Enhances intracellular survival by ATP binding in Mycobacteria [60]. |
Rv2004c | Involved in partial drug resistance, intracellular survival, and adaptation of bacilli to stress conditions [61]. |
Rv2626c | Highly expressed under conditions of hypoxia or NO-induced stress [62], modulates macrophage effector functions, is a TB vaccine candidate antigen [63]. |
Rv1735c | Possesses immunogenicity, is a TB vaccine candidate antigen [64]. |
Rv1733c | A pathogenic antigen, highly expressed during LTBI, controls the balance between nitrate and nitrite [65], is a TB vaccine candidate antigen [66,67]. |
Rv3132c (DosS), Rv2027c (DosT), Rv3133c (DosR) | Regulates DosR regulon, encodes sensor kinases involved in the Mtb genetic response to hypoxia and NO via their autophosphorylation and phospho-transfer properties [68]. |
Rv0079 | A dormancy-associated translation inhibitor (DATIN) [69]. |
Rv0574c | Modulates poly-α-l-glutamine content in the cell wall to maintain cell integrity in a hostile host environment [70]. |
Rv1738 | Contributes to the shutdown of ribosomal protein synthesis during the onset of non-replicating persistence of Mtb [71]. |
Rv2032 (acg) | A nitroreductase [72], is a TB vaccine candidate antigen [73,74]. |
Rv0573c (pncB2) | Plays a role in cofactor salvage involved in biosynthesis and recycling of nicotinamide [75]. |
Rv1812c | Associated with Mtb virulence [76]. |
Rv3130c (tgs1) | Involved in accumulation of TAG under stress [77]. |
Rv0569 | Contributes to signaling transduction in hypoxic conditions [78]. |
Rv2030c | Is dispensable for virulence and growth [79]. |
Rv1813c | Associated with Mtb virulence [76], manipulates the host metabolism by targeting mitochondria [80], is a TB vaccine candidate antigen [81]. |
Gene Name | Reported/Predicted Function of the Encoded Protein |
---|---|
Rv3219 (WhiB1) | A NO-responsive transcription factor [83,84]. |
Rv3416 (WhiB3) | Responds to the dormancy signals NO and O2 [85] and maintains redox homeostasis and survival [93], modulates phagosome maturation and virulence [92], and interacts with the principal sigma factor [99]. |
Rv3681c (WhiB4) | An intracellular redox sensor, controls the oxidative stress response in Mtb [94,95]. |
Rv0022c (WhiB5) | A transcriptional regulator, associated with virulence and reactivation [100]. |
Rv3862c (WhiB6) | A redox-sensitive transcriptional activator of ESX-1 genes, regulates the ESX-1 and DosR regulons to modulate granuloma formation and virulence in zebrafish [96]. |
Rv3197A (WhiB7) | A transcriptional activator, regulates thiol redox balance [97]. |
Gene Name | Reported/Predicted Function of the Encoded Protein |
---|---|
Rv2703 (SigA) | Promotes attachment of the RNA polymerase to specific initiation sites, cotranscribes essential housekeeping genes [129]. |
Rv2710 (SigB) | Controls the regulons of stationary phase of Mtb [118], involved in tolerance to antitubercular drugs and persistence [128]. |
Rv2069 (SigC) | Prevents copper starvation [130]. |
Rv1221 (SigE) | Involved in tolerance to antitubercular drugs and persistence [128]. |
Rv3223c (SigH) | Responds to oxidative, nitrosative, and heat stresses in Mtb [125]. |
Rv3414c (SigD) | Regulates RpfC associated with the revival of dormant mycobacteria [120,121]. |
Rv3286c (SigF) | Helps Mtb to adapt to host defenses and persist [127]. |
Rv0182 (SigG) | Involved in the SOS response in Mtb [131]. |
Rv1189 (SigI) | Interferes in SigI-RNAP interaction [132]. |
Rv3328c (SigJ) | Controls sensitivity of the bacterium to hydrogen peroxide [115]. |
Rv0445 (SigK) | Positively regulates the expression of two antigenic proteins, MPB70 and MPB83 [115]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, H.; Dai, D.; He, J.; Liang, Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Curr. Issues Mol. Biol. 2024, 46, 5825-5844. https://doi.org/10.3390/cimb46060348
Liu Y, Li H, Dai D, He J, Liang Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Current Issues in Molecular Biology. 2024; 46(6):5825-5844. https://doi.org/10.3390/cimb46060348
Chicago/Turabian StyleLiu, Yiduo, Han Li, Dejia Dai, Jiakang He, and Zhengmin Liang. 2024. "Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy" Current Issues in Molecular Biology 46, no. 6: 5825-5844. https://doi.org/10.3390/cimb46060348
APA StyleLiu, Y., Li, H., Dai, D., He, J., & Liang, Z. (2024). Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Current Issues in Molecular Biology, 46(6), 5825-5844. https://doi.org/10.3390/cimb46060348