Cadmium Stress Signaling Pathways in Plants: Molecular Responses and Mechanisms
Abstract
:1. Introduction: Environmental Heavy Metal Contamination
2. Effects of Cd in Plants
3. Plant Responses to Cd Stress and Detoxification via PCn Production
4. Role of GSH in Mitigating Cd-Induced Abiotic Stress
5. Transporters Involved in Cd Remediation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.; Jiang, S.; Li, Z.; Yan, X.; Qin, Z.; Huang, R. Field Scale Remediation of Cd and Pb Contaminated Paddy Soil Using Three Mulberry (Morus alba L.) Cultivars. Ecol. Eng. 2019, 129, 38–44. [Google Scholar] [CrossRef]
- Bhattacharya, S. Protective Role of the Essential Trace Elements in the Obviation of Cadmium Toxicity: Glimpses of Mechanisms. Biol. Trace Elem. Res. 2022, 200, 2239–2246. [Google Scholar] [CrossRef]
- Yadav, M.; Gupta, R.; Sharma, R.K. Chapter 14-Green and Sustainable Pathways for Wastewater Purification. In Advances in Water Purification Techniques; Ahuja, S.B.T.-A., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 355–383. ISBN 978-0-12-814790-0. [Google Scholar]
- Lin, X.; Li, S.; Wei, Z.; Chen, Y.; Hei, L.; Wu, Q.-T. Indirect Application of Sludge for Recycling in Agriculture to Minimize Heavy Metal Contamination of Soil. Resour. Conserv. Recycl. 2021, 166, 105358. [Google Scholar] [CrossRef]
- Qin, X.; Xia, Y.; Hu, C.; Yu, M.; Shabala, S.; Wu, S.; Tan, Q.; Xu, S.; Sun, X. Ionomics Analysis Provides New Insights into the Co-Enrichment of Cadmium and Zinc in Wheat Grains. Ecotoxicol. Environ. Saf. 2021, 223, 112623. [Google Scholar] [CrossRef]
- Gu, Y.-G.; Li, Q.; Fang, J.; He, B.; Fu, H.; Tong, Z. Identification of Heavy Metal Sources in the Reclaimed Farmland Soils of the Pearl River Estuary in China Using a Multivariate Geostatistical Approach. Ecotoxicol. Environ. Saf. 2014, 105, 7–12. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. 2021 China Ecology and Environment Statement; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2022. [Google Scholar]
- Kim, E.; Hopke, P.; Edgerton, E. Improving Source Identification of Atlanta Aerosol Using Temperature Resolved Carbon Fractions in Positive Matrix Factorization. Atmos. Environ. 2004, 38, 3349–3362. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Source Analysis and Source-Oriented Risk Assessment of Heavy Metal Pollution in Agricultural Soils of Different Cultivated Land Qualities. J. Clean. Prod. 2022, 341, 130942. [Google Scholar] [CrossRef]
- Xiao, R.; Ali, A.; Wang, P.; Li, R.; Tian, X.; Zhang, Z. Comparison of the Feasibility of Different Washing Solutions for Combined Soil Washing and Phytoremediation for the Detoxification of Cadmium (Cd) and Zinc (Zn) in Contaminated Soil. Chemosphere 2019, 230, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Ekrami, E.; Pouresmaieli, M.; Hashemiyoon, E.; Noorbakhsh, N.; Mahmoudifard, M. Nanotechnology: A Sustainable Solution for Heavy Metals Remediation. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100718. [Google Scholar] [CrossRef]
- Chen, L.; Beiyuan, J.; Hu, W.; Zhang, Z.; Duan, C.; Cui, Q.; Zhu, X.; He, H.; Huang, X. Phytoremediation of Potentially Toxic Elements (PTEs) Contaminated Soils Using Alfalfa (Medicago sativa L.): A Comprehensive Review. Chemosphere 2022, 293, 133577. [Google Scholar] [CrossRef]
- Chaoua, S.; Boussaa, S.; Gharmali, A.; Boumezzough, A. Impact of Irrigation with Wastewater on Accumulation of Heavy Metals in Soil and Crops in the Region of Marrakech in Morocco. J. Saudi Soc. Agric. Sci. 2018, 18, 429–436. [Google Scholar] [CrossRef]
- Sanita’ di Toppi, L.; Gabbrielli, R. Response to Cadmium in Higher Plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- Ismael, M.A.; Elyamine, A.M.; Moussa, M.G.; Cai, M.; Zhao, X.; Hu, C. Cadmium in Plants: Uptake, Toxicity, and Its Interactions with Selenium Fertilizers. Metallomics 2019, 11, 255–277. [Google Scholar] [CrossRef] [PubMed]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Appl. Geochem. J. Int. Assoc. Geochemistry Cosmochem. 2019, 108, 104388. [Google Scholar] [CrossRef] [PubMed]
- Clemens, S.; Aarts, M.; Thomine, S.; Verbruggen, N. Plant Science: The Key to Preventing Slow Cadmium Poisoning. Trends Plant Sci. 2012, 18, 92. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, J.; Sabovljevic, A.; Sabovljevic, M. Bryophytes and Heavy Metals: A Review. Acta Bot. Croat. 2018, 77, 109–118. [Google Scholar] [CrossRef]
- Zhao, H.; Li, P.; He, X. Remediation of Cadmium Contaminated Soil by Modified Gangue Material: Characterization, Performance and Mechanisms. Chemosphere 2021, 290, 133347. [Google Scholar] [CrossRef]
- Alimba, C.G.; Gandhi, D.; Sivanesan, S.; Bhanarkar, M.D.; Naoghare, P.K.; Bakare, A.A.; Krishnamurthi, K. Chemical Characterization of Simulated Landfill Soil Leachates from Nigeria and India and Their Cytotoxicity and DNA Damage Inductions on Three Human Cell Lines. Chemosphere 2016, 164, 469–479. [Google Scholar] [CrossRef]
- Wang, R.; Lin, K.; Chen, H.; Qi, Z.; Liu, B.; Cao, F.; Chen, H.; Wu, F. Metabolome Analysis Revealed the Mechanism of Exogenous Glutathione to Alleviate Cadmium Stress in Maize (Zea mays L.) Seedlings. Plants 2021, 10, 105. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Xue, C.; Khan, A.; Zheng, X.; Cai, L. Risk Assessment of Lead and Cadmium Leaching from Solidified/Stabilized MSWI Fly Ash under Long-Term Landfill Simulation Test. Sci. Total Environ. 2022, 816, 151555. [Google Scholar] [CrossRef]
- Hölzle, I.; Somani, M.; Ramana, G.V.; Datta, M. Heavy Metals in Soil-like Material from Landfills–Resource or Contaminants? J. Clean. Prod. 2022, 369, 133136. [Google Scholar] [CrossRef]
- Alloway, B. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-94-007-4469-1. [Google Scholar]
- Naseem, S.; Hamza; Nawaz-Ul-Huda, S.; Erum, B.; ul-Haq, Q. Geochemistry of Cd in Groundwater of Winder, Balochistan and Suspected Health Problems. Environ. Earth Sci. 2013, 71, 1683–1690. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.; Qureshi, S.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Rehman, A.; Nazir, S.; Irshad, R.; Tahir, K.; Rehman, K.; Islam, R.; Wahab, Z. Toxicity of Heavy Metals in Plants and Animals and Their Uptake by Magnetic Iron Oxide Nanoparticles. J. Mol. Liq. 2020, 321, 114455. [Google Scholar] [CrossRef]
- Aoshima, K. Itai-Itai Disease: Renal Tubular Osteomalacia Induced by Environmental Exposure to Cadmium—Historical Review and Perspectives. Soil Sci. Plant Nutr. 2016, 62, 319–326. [Google Scholar] [CrossRef]
- Arain, M.B.; Kazi, T.G.; Baig, J.A.; Afridi, H.I.; Sarajuddin; Brehman, K.D.; Panhwar, H.; Arain, S.S. Co-Exposure of Arsenic and Cadmium through Drinking Water and Tobacco Smoking: Risk Assessment on Kidney Dysfunction. Environ. Sci. Pollut. Res. Int. 2015, 22, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Khan, S.; Khan, A.; Alam, M. Soil Contamination with Cadmium, Consequences and Remediation Using Organic Amendments. Sci. Total Environ. 2017, 601–602, 1591–1605. [Google Scholar] [CrossRef] [PubMed]
- Meysam Hoseini, S.; Zargari, F. Cadmium in Plants: A Review. Int. J. Farming Allied Sci. 2013, 2, 579–581. [Google Scholar]
- Li, Y.; Sun, M.; He, W.; Wang, H.; Pan, H.; Yang, Q.; Lou, Y.; Zhuge, Y. Effect of Phosphorus Supplementation on Growth, Nutrient Uptake, Physiological Responses, and Cadmium Absorption by Tall Fescue (Festuca arundinacea Schreb.) Exposed to Cadmium. Ecotoxicol. Environ. Saf. 2021, 213, 112021. [Google Scholar] [CrossRef]
- Meng, Y.; Jing, H.; Huang, J.; Shen, R.; Zhu, X. The Role of Nitric Oxide Signaling in Plant Responses to Cadmium Stress. Int. J. Mol. Sci. 2022, 23, 6901. [Google Scholar] [CrossRef]
- Rady, M.; Elrys, A.; Aboelmaati, M.; Desoky, E.-S. Interplaying Roles of Silicon and Proline Effectively Improve Salt and Cadmium Stress Tolerance in Phaseolus Vulgaris Plant. Plant Physiol. Biochem. 2019, 139, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Semida, W.; Hemida, K.; Rady, M. Sequenced Ascorbate-Proline-Glutathione Seed Treatment Elevates Cadmium Tolerance in Cucumber Transplants. Ecotoxicol. Environ. Saf. 2018, 154, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Zouari, M.; Ben Ahmed, C.; Zorrig, W.; Elloumi, N.; Rabhi, M.; Delmail, D.; Ben Rouina, B.; Labrousse, P.; Ben Abdallah, F. Exogenous Proline Mediates Alleviation of Cadmium Stress by Promoting Photosynthetic Activity, Water Status and Antioxidative Enzymes Activities of Young Date Palm (Phoenix dactylifera L.). Ecotoxicol. Environ. Saf. 2016, 128, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Javed, M.T.; Mushtaq, A.; Akram, M.S.; Mahmood, F.; Ahmed, T.; Noman, M.; Azeem, M. Microbe-Mediated Mitigation of Cadmium Toxicity in Plants. In Cadmium Toxicity and Tolerance in Plants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 427–449. ISBN 9780128148648. [Google Scholar]
- Sidhu, G.P.S.; Bali, A.; Kumar, V.; Bhardwaj, R. Mitigating Cadmium Toxicity in Plants by Phytohormones. In Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation; Hasanuzzaman, M., Prasad, M.N.V., Fujita, M., Eds.; Elsevier: London, UK, 2019; pp. 375–396. ISBN 978-0-12-814864-8. [Google Scholar]
- Hameed, A.; Rasool, S.; Azooz, M.M.; Hossain, M.A.; Ahanger, M.A.; Ahmad, P. Chapter 24-Heavy Metal Stress: Plant Responses and Signaling. In Plant Metal Interaction; Ahmad, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 557–583. ISBN 978-0-12-803158-2. [Google Scholar]
- Huang, Y.; Zhu, Z.; Wu, X.; Liu, Z.; Zou, J.; Chen, Y.; Su, N.; Cui, J. Lower Cadmium Accumulation and Higher Antioxidative Capacity in Edible Parts of Brassica campestris L. Seedlings Applied with Glutathione under Cadmium Toxicity. Environ. Sci. Pollut. Res. 2019, 26, 13235–13245. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhang, L.; Wang, L.; Zhou, C.; Shangguan, Y.; Yang, Y. Antioxidative Enzymes Activity and Thiol Metabolism in Three Leafy Vegetables under Cd Stress. Ecotoxicol. Environ. Saf. 2019, 173, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar Heavy Metal Uptake, Toxicity and Detoxification in Plants: A Comparison of Foliar and Root Metal Uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [PubMed]
- Faizan, M.; Alam, P.; Rajput, V.; Faraz, A.; Afzal, S.; Ahmed, S.; Yu, F.-Y.; Minkina, T.; Hayat, S. Nanoparticle Mediated Plant Tolerance to Heavy Metal Stress: What We Know? Sustainability 2023, 15, 1446. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.; Izakovic, M.; Mazur, M. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur MFree Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef]
- Boonstra, J.; Post, J. Molecular Events Associated with Reactive Oxygen Species and Cell Cycle Progression in Mammalian Cells. Gene 2004, 337, 1–13. [Google Scholar] [CrossRef]
- Kumar, A.; Majeti, P. Plant-Lead Interactions: Transport, Toxicity, Tolerance, and Detoxification Mechanisms. Ecotoxicol. Environ. Saf. 2018, 166, 401–418. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Qi, J.; Dang, P.; Xia, T. Cadmium Activates ZmMPK3-1 and ZmMPK6-1 via Induction of Reactive Oxygen Species in Maize Roots. Biochem. Biophys. Res. Commun. 2019, 516, 747–752. [Google Scholar] [CrossRef]
- Berni, R.; Luyckx, M.; Xu, X.; Legay, S.; Sergeant, K.; Hausman, J.-F.; Lutts, S.; Cai, G.; Guerriero, G. Reactive Oxygen Species and Heavy Metal Stress in Plants: Impact on the Cell Wall and Secondary Metabolism. Environ. Exp. Bot. 2019, 161, 98–106. [Google Scholar] [CrossRef]
- Ma, Q.-J.; Sun, M.-H.; Lu, J.; Hu, D.-G.; Kang, H.; You, C.-X.; Hao, Y.-J. Phosphorylation of a Malate Transporter Promotes Malate Excretion and Reduces Cadmium Uptake in Apple. J. Exp. Bot. 2020, 71, 3437–3449. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singh, D.; Pandey, H.; Jatav, R.B.; Singh, V.; Pandey, D. An Overview of Roles of Enzymatic and Nonenzymatic Antioxidants in Plant BT-Antioxidant Defense in Plants: Molecular Basis of Regulation; Aftab, T., Hakeem, K.R., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 1–13. ISBN 978-981-16-7981-0. [Google Scholar]
- Metwally, A.; Safronova, V.I.; Belimov, A.A.; Dietz, K.-J. Genotypic Variation of the Response to Cadmium Toxicity in Pisum sativum L. J. Exp. Bot. 2005, 56, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Nada, E.; Ferjani, B.A.; Ali, R.; Bechir, B.R.; Imed, M.; Makki, B. Cadmium-Induced Growth Inhibition and Alteration of Biochemical Parameters in Almond Seedlings Grown in Solution Culture. Acta Physiol. Plant. 2007, 29, 57–62. [Google Scholar] [CrossRef]
- Fan, W.; Liu, C.; Cao, B.; Qin, M.; Long, D.; Xiang, Z.; Zhao, A. Genome-Wide Identification and Characterization of Four Gene Families Putatively Involved in Cadmium Uptake, Translocation and Sequestration in Mulberry. Front. Plant Sci. 2018, 9, 879. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wang, X.; Wei, T.; Zhou, R.; Muhammad, H.; Hua, L.; Ren, X.; Guo, J.; Ding, Y. Accumulation and Fixation of Cd by Tomato Cell Wall Pectin under Cd Stress. Environ. Exp. Bot. 2019, 167, 103829. [Google Scholar] [CrossRef]
- Song, J.; Feng, S.J.; Chen, J.; Zhao, W.T.; Yang, Z.M. A Cadmium Stress-Responsive Gene AtFC1 Confers Plant Tolerance to Cadmium Toxicity. BMC Plant Biol. 2017, 17, 187. [Google Scholar] [CrossRef]
- Astolfi, S.; Ortolani, M.R.; Catarcione, G.; Paolacci, A.R.; Cesco, S.; Pinton, R.; Ciaffi, M. Cadmium Exposure Affects Iron Acquisition in Barley (Hordeum vulgare) Seedlings. Physiol. Plant. 2014, 152, 646–659. [Google Scholar] [CrossRef]
- Bahmani, R.; Modareszadeh, M.; Kim, D.; Hwang, S. Overexpression of Tobacco UBQ2 Increases Cd Tolerance by Decreasing Cd Accumulation and Oxidative Stress in Tobacco and Arabidopsis. Environ. Exp. Bot. 2019, 166, 103805. [Google Scholar] [CrossRef]
- Yu, R.; Li, D.; Du, X.; Xia, S.; Liu, C.; Shi, G. Comparative Transcriptome Analysis Reveals Key Cadmium Transport-Related Genes in Roots of Two Pak Choi (Brassica rapa L. ssp. chinensis) Cultivars. BMC Genom. 2017, 18, 587. [Google Scholar] [CrossRef] [PubMed]
- Rui, H.; Zhang, X.; Shinwari, K.; Zheng, L.; Shen, Z.G. Comparative Transcriptomic Analysis of Two Vicia sativa L. Varieties with Contrasting Responses to Cadmium Stress Reveals the Important Role of Metal Transporters in Cadmium Tolerance. Plant Soil 2018, 423, 241–255. [Google Scholar] [CrossRef]
- Shu, X.; Zhang, K.; Zhang, Q.; Wang, W. Ecophysiological Responses of Jatropha curcas L. Seedlings to Simulated Acid Rain under Different Soil Types. Ecotoxicol. Environ. Saf. 2019, 185, 109705. [Google Scholar] [CrossRef] [PubMed]
- Milner, M.; Mitani-Ueno, N.; Yamaji, N.; Yokosho, K.; Craft, E.; Fei, Z.; Ebbs, S.; Zambrano, M.; Kochian, L. Root and Shoot Transcriptome Analysis of Two Ecotypes of Noccaea Caerulescens Uncovers the Role of NcNramp1 in Cd Hyperaccumulation. Plant J. 2014, 78, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, C.; Huang, S.; Chang, L.; Li, J.; Tang, H.; Dey, S.; Biswas, A.; Du, D.; Li, D.; et al. Key Cannabis Salt-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Varieties. Agronomy 2021, 11, 2338. [Google Scholar] [CrossRef]
- Feng, Z.; Bartholomew, E.S.; Liu, Z.; Cui, Y.; Dong, Y.; Li, S.; Wu, H.; Ren, H.; Liu, X. Glandular Trichomes: New Focus on Horticultural Crops. Hortic. Res. 2021, 8, 158. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, Y.; Ma, X.; Guo, L.; He, Y.; Ren, Z.; Kuang, Z.; Zhang, X.; Zhang, Z. Analysis of Potential Strategies for Cadmium Stress Tolerance Revealed by Transcriptome Analysis of Upland Cotton. Sci. Rep. 2019, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Peng, H.; Xie, Y.; Wang, X.; Huang, R.; Chen, H.; Ji, X. The Role of Silicon in Cadmium Alleviation by Rice Root Cell Wall Retention and Vacuole Compartmentalization under Different Durations of Cd Exposure. Ecotoxicol. Environ. Saf. 2021, 226, 112810. [Google Scholar] [CrossRef] [PubMed]
- Ghuge, S.A.; Nikalje, G.C.; Kadam, U.S.; Suprasanna, P.; Hong, J.C. Comprehensive Mechanisms of Heavy Metal Toxicity in Plants, Detoxification, and Remediation. J. Hazard. Mater. 2023, 450, 131039. [Google Scholar] [CrossRef]
- Ahmad, J.; Ali, A.A.; Baig, M.A.; Iqbal, M.; Haq, I.; Irfan Qureshi, M. Chapter 8-Role of Phytochelatins in Cadmium Stress Tolerance in Plants. In Cadmium Toxicity and Tolerance in Plants; Hasanuzzaman, M., Prasad, M.N.V., Fujita, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 185–212. ISBN 978-0-12-814864-8. [Google Scholar]
- Hendrix, S.; Schröder, P.; Keunen, E.; Huber, C.; Cuypers, A. Chapter Six-Molecular and Cellular Aspects of Contaminant Toxicity in Plants: The Importance of Sulphur and Associated Signalling Pathways. In Phytoremediation; Cuypers, A., Vangronsveld, J., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 83, pp. 223–276. ISBN 0065-2296. [Google Scholar]
- Al Mahmud, J.; Hasanuzzaman, M.; Nahar, K.; Bhuyan, M.H.M.B.; Fujita, M. Insights into Citric Acid-Induced Cadmium Tolerance and Phytoremediation in Brassica juncea L.: Coordinated Functions of Metal Chelation, Antioxidant Defense and Glyoxalase Systems. Ecotoxicol. Environ. Saf. 2018, 147, 990–1001. [Google Scholar] [CrossRef]
- Peco, J.D.; Campos, J.A.; Romero-Puertas, M.C.; Olmedilla, A.; Higueras, P.; Sandalio, L.M. Characterization of Mechanisms Involved in Tolerance and Accumulation of Cd in Biscutella auriculata L. Ecotoxicol. Environ. Saf. 2020, 201, 110784. [Google Scholar] [CrossRef] [PubMed]
- Clemens, S.; Peršoh, D. Multi-Tasking Phytochelatin Synthases. Plant Sci. 2009, 177, 266–271. [Google Scholar] [CrossRef]
- Bellini, E.; Bandoni, E.; Giardini, S.; Sorce, C.; Spanò, C.; Bottega, S.; Fontanini, D.; Kola, A.; Valensin, D.; Bertolini, A.; et al. Glutathione and Phytochelatins Jointly Allow Intracellular and Extracellular Detoxification of Cadmium in the Liverwort Marchantia Polymorpha. Environ. Exp. Bot. 2023, 209, 105303. [Google Scholar] [CrossRef]
- Huang, L.; Li, W.C.; Tam, N.F.Y.; Ye, Z. Effects of Root Morphology and Anatomy on Cadmium Uptake and Translocation in Rice (Oryza sativa L.). J. Environ. Sci. 2019, 75, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.-J.; Wang, P. Arsenic and Cadmium Accumulation in Rice and Mitigation Strategies. Plant Soil 2020, 446, 1–21. [Google Scholar] [CrossRef]
- Bellini, E.; Varotto, C.; Borsò, M.; Rugnini, L.; Bruno, L.; Di Toppi, L.S. Eukaryotic and Prokaryotic Phytochelatin Synthases Differ Less in Functional Terms than Previously Thought: A Comparative Analysis of Marchantia Polymorpha and Geitlerinema Sp. PCC 7407. Plants 2020, 9, 914. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Barbaro, E.; Bellini, E.; Saba, A.; di Toppi, L.S.; Varotto, C. Ancestral Function of the Phytochelatin Synthase C-Terminal Domain in Inhibition of Heavy Metal-Mediated Enzyme Overactivation. J. Exp. Bot. 2020, 71, 6655–6669. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Leso, M.; Buti, M.; Bellini, E.; Bertoldi, D.; Saba, A.; Larcher, R.; Sanità di Toppi, L.; Varotto, C. Phytochelatin Synthase De-Regulation in Marchantia Polymorpha Indicates Cadmium Detoxification as Its Primary Ancestral Function in Land Plants and Provides a Novel Visual Bioindicator for Detection of This Metal. J. Hazard. Mater. 2022, 440, 129844. [Google Scholar] [CrossRef]
- Bhuyan, M.H.M.B.; Parvin, K.; Mohsin, S.M.; Mahmud, J.A.; Hasanuzzaman, M.; Fujita, M. Modulation of Cadmium Tolerance in Rice: Insight into Vanillic Acid-Induced Upregulation of Antioxidant Defense and Glyoxalase Systems. Plants 2020, 9, 188. [Google Scholar] [CrossRef]
- Degola, F.; De Benedictis, M.; Petraglia, A.; Massimi, A.; Fattorini, L.; Sorbo, S.; Basile, A.; Sanita’ di Toppi, L. A Cd/Fe/Zn-Responsive Phytochelatin Synthase Is Constitutively Present in the Ancient Liverwort Lunularia cruciata (L.) Dumort. Plant Cell Physiol. 2014, 55, 1884–1891. [Google Scholar] [CrossRef]
- Petraglia, A.; De Benedictis, M.; Degola, F.; Pastore, G.; Calcagno, M.; Ruotolo, R.; Mengoni, A.; Sanita’ di Toppi, L. The Capability to Synthesize Phytochelatins and the Presence of Constitutive and Functional Phytochelatin Synthases Are Ancestral (Plesiomorphic) Characters for Basal Land Plants. J. Exp. Bot. 2014, 65, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Fontanini, D.; Andreucci, A.; Castiglione, M.; Basile, A.; Sorbo, S.; Petraglia, A.; Degola, F.; Bellini, E.; Bruno, L.; Varotto, C.; et al. The Phytochelatin Synthase from Nitella Mucronata (Charophyta) Plays a Role in the Homeostatic Control of Iron(II)/(III). Plant Physiol. Biochem. 2018, 127, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Bellini, E.; Betti, C.; Sanità di Toppi, L. Responses to Cadmium in Early-Diverging Streptophytes (Charophytes and Bryophytes): Current Views and Potential Applications. Plants 2021, 10, 770. [Google Scholar] [CrossRef] [PubMed]
- Maresca, V.; Sorbo, S.; Loppi, S.; Funaro, F.; Del Prete, D.; Basile, A. Biological Effects from Environmental Pollution by Toxic Metals in the “Land of Fires” (Italy) Assessed Using the Biomonitor Species Lunularia cruciata L. (Dum). Environ. Pollut. 2020, 265, 115000. [Google Scholar] [CrossRef] [PubMed]
- Fasani, E.; Li, M.; Varotto, C.; Furini, A.; DalCorso, G. Metal Detoxification in Land Plants: From Bryophytes to Vascular Plants. STATE of the Art and Opportunities. Plants 2022, 11, 237. [Google Scholar] [CrossRef] [PubMed]
- Bellini, E.; Maresca, V.; Betti, C.; Castiglione, M.R.; Fontanini, D.; Capocchi, A.; Sorce, C.; Borsò, M.; Bruno, L.; Sorbo, S.; et al. The Moss Leptodictyum riparium Counteracts Severe Cadmium Stress by Activation of Glutathione Transferase and Phytochelatin Synthase, but Slightly by Phytochelatins. Int. J. Mol. Sci. 2020, 21, 1583. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Loppi, S.; Monaci, F.; Paoli, L.; Vannini, A.; Sorbo, S.; Maresca, V.; Fusaro, L.; Karam, E.; Lentini, M.; et al. In-Field and in-Vitro Study of the Moss Leptodictyum riparium as Bioindicator of Toxic Metal Pollution in the Aquatic Environment: Ultrastructural Damage, Oxidative Stress and HSP70 Induction. PLoS ONE 2018, 13, e0195717. [Google Scholar] [CrossRef] [PubMed]
- Landi, S.; Esposito, S. Nitrate Uptake Affects Cell Wall Synthesis and Modeling. Front. Plant Sci. 2017, 8, 1376. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Prasad, S.M. Effects of 28-Homobrassinoloid on Key Physiological Attributes of Solanum Lycopersicum Seedlings under Cadmium Stress: Photosynthesis and Nitrogen Metabolism. Plant Growth Regul. 2017, 82, 161–173. [Google Scholar] [CrossRef]
- Lentini, M.; De Lillo, A.; Paradisone, V.; Liberti, D.; Landi, S.; Esposito, S. Early Responses to Cadmium Exposure in Barley Plants: Effects on Biometric and Physiological Parameters. Acta Physiol. Plant. 2018, 40, 178. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, J.; Tao, L.; Cao, Z.; Tang, W.; Zhang, J.; Yu, X.; Fu, G.; Zhang, X.; Lu, Y. Regulatory Mechanisms of Nitrogen (N) on Cadmium (Cd) Uptake and Accumulation in Plants: A Review. Sci. Total Environ. 2020, 708, 135186. [Google Scholar] [CrossRef]
- Ben Azaiez, F.E.; Ayadi, S.; Capasso, G.; Landi, S.; Paradisone, V.; Jallouli, S.; Hammami, Z.; Chamekh, Z.; Zouari, I.; Trifa, Y.; et al. Salt Stress Induces Differentiated Nitrogen Uptake and Antioxidant Responses in Two Contrasting Barley Landraces from MENA Region. Agronomy 2020, 10, 1426. [Google Scholar] [CrossRef]
- Jallouli, S.; Ayadi, S.; Landi, S.; Capasso, G.; Santini, G.; Chamekh, Z.; Zouari, I.; Ben Azaiez, F.E.; Trifa, Y.; Esposito, S. Physiological and Molecular Osmotic Stress Responses in Three Durum Wheat (Triticum Turgidum ssp Durum) Genotypes. Agronomy 2019, 9, 550. [Google Scholar] [CrossRef]
- Lee, H.J.; Abdula, S.E.; Jang, D.W.; Park, S.-H.; Yoon, U.-H.; Jung, Y.J.; Kang, K.K.; Nou, I.S.; Cho, Y.-G. Overexpression of the Glutamine Synthetase Gene Modulates Oxidative Stress Response in Rice after Exposure to Cadmium Stress. Plant Cell Rep. 2013, 32, 1521–1529. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Kaur, N.; Pati, P.K. Phytohormones: Key Players in the Modulation of Heavy Metal Stress Tolerance in Plants. Ecotoxicol. Environ. Saf. 2021, 223, 112578. [Google Scholar] [CrossRef]
- Maresca, V.; Bellini, E.; Landi, S.; Capasso, G.; Cianciullo, P.; Carraturo, F.; Pirintsos, S.; Sorbo, S.; Sanità di Toppi, L.; Esposito, S.; et al. Biological Responses to Heavy Metal Stress in the Moss Leptodictyum riparium (Hedw.) Warnst. Ecotoxicol. Environ. Saf. 2022, 229, 113078. [Google Scholar] [CrossRef]
- Meister, A. Glutathione Metabolism. Methods Enzymol. 1995, 251, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, M.; Lim, B.; Wirtz, M.; Hell, R.; Cobbett, C.S.; Meyer, A.J. Restricting Glutathione Biosynthesis to the Cytosol Is Sufficient for Normal Plant Development. Plant J. 2008, 53, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Belin, C.; Bashandy, T.; Cela, J.; Delorme-Hinoux, V.; Riondet, C.; Reichheld, J.P. A Comprehensive Study of Thiol Reduction Gene Expression under Stress Conditions in Arabidopsis thaliana. Plant. Cell Environ. 2015, 38, 299–314. [Google Scholar] [CrossRef]
- Xiang, C.; Oliver, D.J. Glutathione Metabolic Genes Coordinately Respond to Heavy Metals and Jasmonic Acid in Arabidopsis. Plant Cell 1998, 10, 1539–1550. [Google Scholar] [CrossRef]
- Wachter, A.; Wolf, S.; Steininger, H.; Bogs, J.; Rausch, T. Differential Targeting of GSH1 and GSH2 Is Achieved by Multiple Transcription Initiation: Implications for the Compartmentation of Glutathione Biosynthesis in the Brassicaceae. Plant J. 2005, 41, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lenherr, E.D.; Gromes, R.; Wang, S.; Wirtz, M.; Hell, R.; Peskan-Berghöfer, T.; Scheffzek, K.; Rausch, T. Plant Glutathione Biosynthesis Revisited: Redox-Mediated Activation of Glutamylcysteine Ligase Does Not Require Homo-Dimerization. Biochem. J. 2019, 476, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.J.; Sowden, R.G.; Jarvis, P. Abiotic Stress-Induced Chloroplast Proteome Remodelling: A Mechanistic Overview. J. Exp. Bot. 2018, 69, 2773–2781. [Google Scholar] [CrossRef] [PubMed]
- Kopriva, S.; Rennenberg, H. Control of Sulphate Assimilation and Glutathione Synthesis: Interaction with N and C Metabolism. J. Exp. Bot. 2004, 55, 1831–1842. [Google Scholar] [CrossRef] [PubMed]
- Strohm, M.; Jouanin, L.; Kunert, K.J.; Pruvost, C.; Polle, A.; Foyer, C.H.; Rennenberg, H. Regulation of Glutathione Synthesis in Leaves of Transgenic Poplar (Populus tremula X P. alba) Overexpressing Glutathione Synthetase. Plant J. 1995, 7, 141–145. [Google Scholar] [CrossRef]
- Gill, S.S.; Anjum, N.A.; Hasanuzzaman, M.; Gill, R.; Trivedi, D.K.; Ahmad, I.; Pereira, E.; Tuteja, N. Glutathione and Glutathione Reductase: A Boon in Disguise for Plant Abiotic Stress Defense Operations. Plant Physiol. Biochem. 2013, 70, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Sairam, R.K.; Saxena, D.C. Oxidative Stress and Antioxidants in Wheat Genotypes: Possible Mechanism of Water Stress Tolerance. J. Agron. Crop Sci. 2000, 184, 55–61. [Google Scholar] [CrossRef]
- Romero-Puertas, M.C.; Corpas, F.J.; Sandalio, L.M.; Leterrier, M.; Rodríguez-Serrano, M.; Del Río, L.A.; Palma, J.M. Glutathione Reductase from Pea Leaves: Response to Abiotic Stress and Characterization of the Peroxisomal Isozyme. New Phytol. 2006, 170, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Marty, L.; Siala, W.; Schwarzländer, M.; Fricker, M.D.; Wirtz, M.; Sweetlove, L.J.; Meyer, Y.; Meyer, A.J.; Reichheld, J.-P.; Hell, R. The NADPH-Dependent Thioredoxin System Constitutes a Functional Backup for Cytosolic Glutathione Reductase in Arabidopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 9109–9114. [Google Scholar] [CrossRef]
- Kataya, A.R.A.; Reumann, S. Arabidopsis Glutathione Reductase 1 Is Dually Targeted to Peroxisomes and the Cytosol. Plant Signal. Behav. 2010, 5, 171–175. [Google Scholar] [CrossRef]
- Delorme-Hinoux, V.; Bangash, S.A.K.; Meyer, A.J.; Reichheld, J.-P. Nuclear Thiol Redox Systems in Plants. Plant Sci. 2016, 243, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation Techniques for Heavy Metal-Contaminated Soils: Principles and Applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Zia ur Rehman, M.; Rinklebe, J.; Tsang, D.C.W.; Bashir, A.; Maqbool, A.; Tack, F.M.G.; Ok, Y.S. Cadmium Phytoremediation Potential of Brassica Crop Species: A Review. Sci. Total Environ. 2018, 631–632, 1175–1191. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.-B.; He, J.; Polle, A.; Rennenberg, H. Heavy Metal Accumulation and Signal Transduction in Herbaceous and Woody Plants: Paving the Way for Enhancing Phytoremediation Efficiency. Biotechnol. Adv. 2016, 34, 1131–1148. [Google Scholar] [CrossRef] [PubMed]
- Krämer, U. Metal Hyperaccumulation in Plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef] [PubMed]
- Meighan, M.M.; Fenus, T.; Karey, E.; MacNeil, J. The Impact of EDTA on the Rate of Accumulation and Root/Shoot Partitioning of Cadmium in Mature Dwarf Sunflowers. Chemosphere 2011, 83, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Di Lonardo, S.; Capuana, M.; Arnetoli, M.; Gabbrielli, R.; Gonnelli, C. Exploring the Metal Phytoremediation Potential of Three Populus alba L. Clones Using an in Vitro Screening. Environ. Sci. Pollut. Res. 2011, 18, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Marmiroli, M.; Visioli, G.; Maestri, E.; Marmiroli, N. Correlating SNP Genotype with the Phenotypic Response to Exposure to Cadmium in Populus spp. Environ. Sci. Technol. 2011, 45, 4497–4505. [Google Scholar] [CrossRef] [PubMed]
- Pietrini, F.; Zacchini, M.; Iori, V.; Pietrosanti, L.; Bianconi, D.; Massacci, A. Screening of Poplar Clones for Cadmium Phytoremediation Using Photosynthesis, Biomass and Cadmium Content Analyses. Int. J. Phytoremediation 2010, 12, 105–120. [Google Scholar] [CrossRef]
- Wu, F.; Yang, W.; Zhang, J.; Zhou, L. Cadmium Accumulation and Growth Responses of a Poplar (Populus deltoids x Populus nigra) in Cadmium Contaminated Purple Soil and Alluvial Soil. J. Hazard. Mater. 2010, 177, 268–273. [Google Scholar] [CrossRef]
- Redjala, T.; Zelko, I.; Sterckeman, T.; Legué, V.; Lux, A. Relationship between Root Structure and Root Cadmium Uptake in Maize. Environ. Exp. Bot. 2011, 71, 241–248. [Google Scholar] [CrossRef]
- Thakur, S.; Singh, L.; Wahid, Z.; Siddiqui, M.; Atnaw, S.; Md Din, M.F. Plant-Driven Removal of Heavy Metals from Soil: Uptake, Translocation, Tolerance Mechanism, Challenges, and Future Perspectives. Environ. Monit. Assess. 2016, 188, 206. [Google Scholar] [CrossRef] [PubMed]
- Kumar Yadav, K.; Gupta, N.; Kumar, A.; Reece, L.M.; Singh, N.; Rezania, S.; Ahmad Khan, S. Mechanistic Understanding and Holistic Approach of Phytoremediation: A Review on Application and Future Prospects. Ecol. Eng. 2018, 120, 274–298. [Google Scholar] [CrossRef]
- Laghlimi, M.; Baghdad, B.; EL Hadi, H.; Bouabdli, A. Phytoremediation Mechanisms of Heavy Metal Contaminated Soils: A Review. Open J. Ecol. 2015, 5, 375–388. [Google Scholar] [CrossRef]
- Fahr, M.; Laplaze, L.; Bendaou, N.; Hocher, V.; EL Mzibri, M.; Bogusz, D.; Smouni, A. Effect of Lead on Root Growth. Front. Plant Sci. 2013, 4, 175. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Kumar, S.; Chadd, R.P.; Kumar, A. Trace Elements in Soil-Vegetables Interface: Translocation, Bioaccumulation, Toxicity and Amelioration–A Review. Sci. Total Environ. 2019, 651, 2927–2942. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of Zinc Absorption in Plants: Uptake, Transport, Translocation and Accumulation. Rev. Environ. Sci. Bio/Technol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Kim, R.-Y.; Yoon, J.-K.; Kim, T.-S.; Yang, J.; Owens, G.; Kim, K.-R. Bioavailability of Heavy Metals in Soils: Definitions and Practical Implementation—A Critical Review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Prasad, M.N. V Exogenous Citrate and Malate Alleviate Cadmium Stress in Oryza Sativa L.: Probing Role of Cadmium Localization and Iron Nutrition. Ecotoxicol. Environ. Saf. 2018, 166, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhao, X.; Sun, X.; Tan, Q.; Tang, Y.; Nie, Z.; Hu, C. Xylem Transport and Gene Expression Play Decisive Roles in Cadmium Accumulation in Shoots of Two Oilseed Rape Cultivars (Brassica napus). Chemosphere 2015, 119, 1217–1223. [Google Scholar] [CrossRef]
- Hall, J.L. Cellular Mechanisms for Heavy Metal Detoxification and Tolerance. J. Exp. Bot. 2002, 53, 1–11. [Google Scholar] [CrossRef]
- Kumar, A.; Dubey, A.; Kumar, V.; Ansari, M.; Narayan, S.M.; Kumar, S.; Meenakshi; Pandey, V.; Shirke, P.; Pande, V.; et al. Over-Expression of Chickpea Glutaredoxin (CaGrx) Provides Tolerance to Heavy Metals by Reducing Metal Accumulation and Improved Physiological and Antioxidant Defence System. Ecotoxicol. Environ. Saf. 2020, 192, 110252. [Google Scholar] [CrossRef] [PubMed]
- Cointry, V.; Vert, G. The Bifunctional Transporter-receptor IRT1 at the Heart of Metal Sensing and Signaling. New Phytol. 2019, 223, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Narayan, O.; Verma, N.; Jogawat, A.; Dua, M.; Johri, A. Role of Sulphate Transporter (PiSulT) of Endophytic Fungus Serendipita Indica in Plant Growth and Development. bioRxiv 2020. [Google Scholar] [CrossRef]
- Narayan, O.; Verma, N.; Jogawat, A.; Dua, M.; Johri, A. Sulfur Transfer from the Endophytic Fungus Serendipita Indica Improves Maize Growth and Requires the Sulfate Transporter SiSulT. Plant Cell 2021, 33, 1268–1285. [Google Scholar] [CrossRef] [PubMed]
- Yadav, B.; Jogawat, A.; Lal, S.K.; Lakra, N.; Mehta, S.; Shabek, N.; Narayan, O. Plant Mineral Transport Systems and the Potential for Crop Improvement. Planta 2021, 253, 45. [Google Scholar] [CrossRef] [PubMed]
- Dubeaux, G.; Julie, N.; Zelazny, E.; Vert, G. Metal Sensing by the IRT1 Transporter-Receptor Orchestrates Its Own Degradation and Plant Metal Nutrition. Mol. Cell 2018, 69, 953–964.e5. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Huang, L.; Su, N.; Shabala, L.; Wang, H.; Huang, X.; Wen, R.; Yu, M.; Cui, J.; Shabala, S. Calcium-Dependent Hydrogen Peroxide Mediates Hydrogen-Rich Water-Reduced Cadmium Uptake in Plant Roots. Plant Physiol. 2020, 183, 1331–1344. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.; Ishimaru, Y.; Senoura, T.; Shimo, H.; Ishikawa, S.; Arao, T.; Nakanishi, H.; Nishizawa, N. The OsNRAMP1 Iron Transporter Is Involved in Cd Accumulation in Rice. J. Exp. Bot. 2011, 62, 4843–4850. [Google Scholar] [CrossRef]
- Lang, M.; Hao, M.; Fan, Q.; Wang, W.; Mo, S.; Zhao, W.; Zhou, J. Functional Characterization of BjCET3 and BjCET4, Two New Cation-Efflux Transporters from Brassica juncea L. J. Exp. Bot. 2011, 62, 4467–4480. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Zheng, L.; Li, Y.; Zhou, X.; Li, J.; Gu, D.; Xu, E.; Lu, Y.; Chen, X.; et al. The Intracellular Transporter AtNRAMP6 Is Involved in Fe Homeostasis in Arabidopsis. Front. Plant Sci. 2019, 10, 1124. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Lu, Y.; Zhang, X.; Yang, G.; Chao, D.; Wang, Z.; Shi, M.; Chen, J.; Chao, D.-Y.; Li, R.; et al. The ABC Transporter ABCG36 Is Required for Cadmium Tolerance in Rice. J. Exp. Bot. 2019, 70, 5909–5918. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Y.; Peng, Z.; Li, J.; Huang, W.; Liu, Y.; Wang, X.; Xie, S.; Sun, L.; Han, E.; et al. Ectopic Expression of Poplar ABC Transporter PtoABCG36 Confers Cd Tolerance in Arabidopsis thaliana. Int. J. Mol. Sci. 2019, 20, 3293. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Bovet, L.; Maeshima, M.; Martinoia, E.; Lee, Y. The ABC Transporter AtPDR8 Is a Cadmium Extrusion Pump Conferring Heavy Metal Resistance. Plant J. 2007, 50, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, P.; Zanella, L.; De Paolis, A.; Di Litta, D.; Cecchetti, V.; Falasca, G.; Barbieri, M.; Altamura, M.M.; Costantino, P.; Cardarelli, M. Cadmium-Inducible Expression of the ABC-Type Transporter AtABCC3 Increases Phytochelatin-Mediated Cadmium Tolerance in Arabidopsis. J. Exp. Bot. 2015, 66, 3815–3829. [Google Scholar] [CrossRef]
- Song, W.-Y.; Park, J.; Mendoza Cozatl, D.; Grotemeyer, M.; Shim, D.; Hörtensteiner, S.; Geisler, M.; Weder, B.; Rea, P.; Rentsch, D.; et al. Arsenic Tolerance in Arabidopsis Is Mediated by Two ABCC-Type Phytochelatin Transporters. Proc. Natl. Acad. Sci. USA 2010, 107, 21187–21192. [Google Scholar] [CrossRef] [PubMed]
- Neri, A.; Traversari, S.; Andreucci, A.; Francini, A.; Sebastiani, L. The Role of Aquaporin Overexpression in the Modulation of Transcription of Heavy Metal Transporters under Cadmium Treatment in Poplar. Plants 2021, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, M.; Pedas, P.; Stokholm, M.; Vincze, E.; Mills, R.; Borg, S.; Møller, A.; Schjoerring, J.; Williams, L.; Baekgaard, L.; et al. Barley HvHMA1 Is a Heavy Metal Pump Involved in Mobilizing Organellar Zn and Cu and Plays a Role in Metal Loading into Grains. PLoS ONE 2012, 7, e49027. [Google Scholar] [CrossRef]
- Eren, E.; Argüello, J. Arabidopsis HMA2, a Divalent Heavy Metal-Transporting PIB-Type ATPase, Is Involved in Cytoplasmic Zn2+ Homeostasis. Plant Physiol. 2004, 136, 3712–3723. [Google Scholar] [CrossRef]
- Sinclair, S.; Senger, T.; Talke, I.; Cobbett, C.; Haydon, M.; Kraemer, U. Systemic Upregulation of MTP2- and HMA2-Mediated Zn Partitioning to the Shoot Supplements Local Zn Deficiency Responses of Arabidopsis. Plant Cell 2018, 30, 2463–2479. [Google Scholar] [CrossRef]
- Morel-Rouhier, M.; Crouzet, J.; Gravot, A.; Auroy, P.; Leonhardt, N.; Vavasseur, A.; Richaud, P. AtHMA3, a P1B-ATPase Allowing Cd/Zn/Co/Pb Vacuolar Storage in Arabidopsis. Plant Physiol. 2008, 149, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Yamaji, N. Overexpression of OsHMA3 Enhances Cd Tolerance and Expression of Zn Transporter Genes in Rice. J. Exp. Bot. 2014, 65, 6013–6021. [Google Scholar] [CrossRef] [PubMed]
- Satoh-Nagasawa, N.; Mori, M.; Nakazawa, N.; Kawamoto, T.; Nagato, Y.; Sakurai, K.; Takahashi, H.; Watanabe, A.; Akagi, H. Mutations in Rice (Oryza sativa) Heavy Metal ATPase 2 (OsHMA2) Restrict the Translocation of Zinc and Cadmium. Plant Cell Physiol. 2012, 53, 213–224. [Google Scholar] [CrossRef] [PubMed]
- De caroli, M.; Furini, A.; Dalcorso, G.; Rojas, M.; Di Sansebastiano, G. Endomembrane Reorganization Induced by Heavy Metals. Plants 2020, 9, 482. [Google Scholar] [CrossRef]
- Sanita’ di Toppi, L.; Bruno, L.; Bruni, R.; Ligrone, R.; Ferrarese, A.; Paoli, L.; Lingua, G. Interazioni Piante-Ambiente; PICCIN: Padova, Italy, 2018; ISBN 978-88-299-2870-5. [Google Scholar]
Subfamily | Name | Subcellular Localization | Substrate |
---|---|---|---|
IRT | IRT1 | Plasma membrane | Fe, Co, Mn, Zn, Cd |
SOS | SOS2L1 * | Plasma membrane | Malate and malic acid |
ALMT | ALMT14 * | Plasma membrane | Malate and malic acid |
CET | BjCET3 | Plasma membrane | Zn, Co, Ni, Cd |
BjCET4 | |||
RAMP | OsNRAMP1 | Plasma membrane | Fe, Cd |
AtNRAMP6 | Golgi | Fe, Mn, Cd | |
ABCG (PDR) | PtABCG36 | Plasma membrane | Pb, Cd |
AtPDR8 | |||
ABCC | AtABCC1 | Tonoplast | PCn and its complexes with As, Mn, Zn, Cd |
AtABCC2 | |||
AtABCC3 | |||
HMA | HvHMA1 | Chloroplast | Zn, Cd |
PaHMA2 | Plasma membrane | ||
AtHMA2 | Zn, Cd | ||
AtHMA3 | Tonoplast | Zn, Co, Pb, Cd | |
ZIP | OsZIP1 | Endoplasmic reticulum and plasma membrane | Zn, Cu, Cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitelli, V.; Giamborino, A.; Bertolini, A.; Saba, A.; Andreucci, A. Cadmium Stress Signaling Pathways in Plants: Molecular Responses and Mechanisms. Curr. Issues Mol. Biol. 2024, 46, 6052-6068. https://doi.org/10.3390/cimb46060361
Vitelli V, Giamborino A, Bertolini A, Saba A, Andreucci A. Cadmium Stress Signaling Pathways in Plants: Molecular Responses and Mechanisms. Current Issues in Molecular Biology. 2024; 46(6):6052-6068. https://doi.org/10.3390/cimb46060361
Chicago/Turabian StyleVitelli, Valentina, Agnese Giamborino, Andrea Bertolini, Alessandro Saba, and Andrea Andreucci. 2024. "Cadmium Stress Signaling Pathways in Plants: Molecular Responses and Mechanisms" Current Issues in Molecular Biology 46, no. 6: 6052-6068. https://doi.org/10.3390/cimb46060361
APA StyleVitelli, V., Giamborino, A., Bertolini, A., Saba, A., & Andreucci, A. (2024). Cadmium Stress Signaling Pathways in Plants: Molecular Responses and Mechanisms. Current Issues in Molecular Biology, 46(6), 6052-6068. https://doi.org/10.3390/cimb46060361