Molecular Approaches Detect Early Signals of Programmed Cell Death in Hippolyte inermis Leach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Culture Practices
2.2. RNA Extraction and cDNA Synthesis
2.3. Identification of Genes
2.4. Gene Expression by Real-Time qPCR
2.5. Interactomic Analysis
2.6. Statistical Treatment of the Data
3. Results
3.1. Analysis of Sex Ratios
3.2. Evaluation of RNA Quantity and Quality
3.3. Gene Expression
3.4. Network Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murthy, M.; Ram, J.L. Invertebrates as model organisms for research on aging biology. Invertebr. Reprod. Dev. 2015, 59, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. Nobel Lecture “Nature’s gift to Science”. Biosci. Rep. 2003, 23, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Bauer, R.T. Remarkable Shrimps: Adaptations and Natural History of the Carideans, 3rd ed.; University of Oklahoma Press: Norman, OK, USA, 2004. [Google Scholar]
- Ankeny, R.; Leonelli, S. Model Organisms, 3rd ed.; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Ye, Z.; Bishop, T.; Wang, Y.; Shahriari, R.; Lynch, M. Evolution of sex determination in crustaceans. Mar. Life Sci. Technol. 2023, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Short, S.; Yang, G.; Guler, Y.; Green Etxabe, A.; Kille, P.; Ford, A.T. Crustacean intersexuality is feminization without demasculinization: Implications for environmental toxicology. Environ. Sci. Technol. 2014, 48, 13520–13529. [Google Scholar] [CrossRef] [PubMed]
- Grilo, T.F.; Rosa, R. Intersexuality in aquatic invertebrates: Prevalence and causes. Sci. Total. Environ. 2017, 592, 714–728. [Google Scholar] [CrossRef] [PubMed]
- Charniaux-Cotton, H. Androgenic gland of crustaceans. Gen. Comp. Endocrinol. 1962, 1, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Lu, B.; Lin, D.; Huang, H.; Chen, X.; Ye, H. Role of crustacean female sex hormone (CFSH) in sex differentiation in early juvenile mud crabs, Scylla paramamosain. Gen. Comp. Endocrinol. 2020, 289, 113–383. [Google Scholar] [CrossRef] [PubMed]
- Dandan, Z.; Tianyi, F.; Nan, M.; Rui, H.; Wentao, L.; Shucheng, S.; Zhaoxia, C. New insights for the regulatory feedback loop between type 1 crustacean female sex hormone (CFSH-1) and insulin-like androgenic gland hormone (IAG) in the Chinese mitten crab (Eriocheir sinensis). Front. Physiol. 2022, 13, 1054773. [Google Scholar] [CrossRef]
- Farhadi, A.; Cui, W.; Zheng, H.; Li, S.; Zhang, Y.; Ikhwanuddin, M.; Ma, H. The regulatory mechanism of sexual development in decapod crustaceans. Front. Mar. Sci. 2021, 8, 679687. [Google Scholar] [CrossRef]
- Harlioglu, M.M.; Farhadim, A. Androgenic hormones in crustacean aquaculture: A review. Turk. J. Zool. 2022, 46, 237–248. [Google Scholar] [CrossRef]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Calado, R.; Carvalho, L.; Rodrigues, A.C.; Abe, F.; Silva, A.L.P.; Soares, A.M.; Gravato, C. The physiological consequences of delaying metamorphosis in the marine ornamental shrimp Lysmata seticaudata and its implications for aquaculture. Aquaculture 2022, 546, 737391. [Google Scholar] [CrossRef]
- Manjon-Cabeza, M.E.; Cobos, V.; Munoz, J.E.G.; Raso, J.E.G. Structure and absolute growth of a population of Hippolyte inermis Leach 1815 (Decapoda: Caridea) from Zostera marina (L.) meadows (Malaga, southern Spain). Sci. Mar. 2009, 73, 377–386. [Google Scholar] [CrossRef]
- Gasch, A.P.; Payseur, B.A.; Pool, J.E. The power of natural variation for model organism biology. Trends Genet. 2016, 32, 147–154. [Google Scholar] [CrossRef]
- Anastasiadou, C.; Liasko, R.; Leonardos, I. Morphotype induced changes in the life history and population dynamics of an hippolytid shrimp. Sci. Rep. 2023, 13, 20581. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Fuenzalida, N.L.; Thiel, M.; Dupre, E.; Baeza, J.A. Is Hippolyte williamsi gonochoric or hermaphroditic? A multi-approach study and a review of sexual systems in Hippolyte shrimps. Mar. Biol. 2008, 155, 623–635. [Google Scholar] [CrossRef]
- Reverberi, G. La situazione sessuale di Hyppolyte viridis e le condizioni che la reggono. Bolletino Zool. 1950, 17, 91–94. [Google Scholar] [CrossRef]
- d’Udekem d’Acoz, C. The East Atlantic Ocean and the Mediterranean Sea, with a Checklist of All Species in the Genus, 3rd ed.; Nationaal Natuurhistorisch Museum: Rotterdam, The Netherlands, 1996. [Google Scholar]
- Zupo, V. Effect of microalgal food on the sex reversal of Hippolyte inermis (Crustacea: Decapoda). Mar. Ecol. Prog. Ser. 2000, 201, 251–259. [Google Scholar] [CrossRef]
- Xu, H.J.; Chen, Y.L.; Wang, Y.M.; Luo, J.Y.; Li, J.W.; Shen, S.Q.; Yang, J.S.; Ma, W.M. Full functional sex reversal achieved through silencing of MroDmrt11E gene in Macrobrachium rosenbergii: Production of all-male monosex freshwater prawn. Front. Endocrinol. 2022, 12, 772498. [Google Scholar] [CrossRef]
- Zupo, V. Strategies of sexual inversion in Hippolyte inermis Leach (Crustacea, Decapoda) from a Mediterranean seagrass meadow. J. Exp. Mar. Bio. Ecol. 1994, 178, 131–145. [Google Scholar] [CrossRef]
- Jüttner, F. Evidence that polyunsaturated aldehydes of diatoms are repellents for pelagic crustacean grazers. Aquat. Ecol. 2005, 39, 271–282. [Google Scholar] [CrossRef]
- Lauritano, C.; Borra, M.; Carotenuto, Y.; Biffali, E.; Miralto, A.; Procaccini, G.; Ianora, A. Molecular evidence of the toxic effects of diatom diets on gene expression patterns in copepods. PLoS ONE 2011, 6, e26850. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Wang, T.; Liu, N.; Dupont, S.; Beardall, J.; Boyd, P.W.; Riebesell, U.; Gao, K. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nat. Commun. 2015, 6, 8714. [Google Scholar] [CrossRef] [PubMed]
- Zupo, V.; Costantini, M.; Aflalo, E.D.; Levy, T.; Chalifa-Caspi, V.; Obayomi, O.; Mutalipassi, M.; Ruocco, N.; Glaviano, F.; Somma, E. Ferroptosis precedes apoptosis to facilitate specific death signalling by fatty acids. Proc. R. Soc. B 2023, 290, 20231327. [Google Scholar] [CrossRef] [PubMed]
- Zupo, V. Influence of diet on sex differentiation of Hippolyte inermis Leach (Decapoda: Natantia) in the field. Hydrobiologia 2001, 449, 131–140. [Google Scholar] [CrossRef]
- Raymond, T.B. Same sexual system but variable sociobiology: Evolution of protandric simultaneous hermaphroditism in Lysmata shrimps. Integr. Comp. Biol. 2006, 46, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Levy, T.; Zupo, V.; Mutalipassi, M.; Somma, E.; Ruocco, N.; Costantini, M.; Abehsera, S.; Manor, R.; Chalifa-Caspi, V.; Sagi, A.; et al. Protandric transcriptomes to uncover parts of the crustacean sex-differentiation puzzle. Front. Mar. Sci. 2021, 8, 745540. [Google Scholar] [CrossRef]
- Guerrero-Tortolero, D.A.; Campos-Ramos, R. Sex reversal and determination and sex control in shrimp and prawn. In Sex Control Aquaculture, 2nd ed.; Wang, H.P., Piferrer, F., Chen, S.L., Shen, Z.G., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2018; Volume 36, pp. 705–722. [Google Scholar]
- Pepi, M.; Heipieper, H.J.; Balestra, C.; Borra, M.; Biffali, E.; Casotti, R. Toxicity of diatom polyunsaturated aldehydes to marine bacterial isolates reveals their mode of action. Chemosphere 2017, 177, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Golstein, P.; Aubry, L.; Levraud, J.P. Cell-death alternative model organisms: Why and which? Nat. Rev. Mol. Cell Biol. 2003, 4, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Zupo, V.; Glaviano, F.; Caramiello, D.; Mutalipassi, M. Effect of five benthic diatoms on the survival and development of Paracentrotus lividus post-larvae in the laboratory. Aquaculture 2018, 495, 13–20. [Google Scholar] [CrossRef]
- D’Abramo, L.R.; New, M.B. Nutrition, feeds and feeding. In Freshwater Prawn Culture, 2nd ed.; New, M.B., Cotroni, W.V., Eds.; Blackwell Science: Oxford, UK, 2000; pp. 203–216. [Google Scholar]
- Mutalipassi, M.; Mazzella, V.; Zupo, V. Ocean acidification influences plant-animal interactions: The effect of Cocconeis scutellum parva on the sex reversal of Hippolyte inermis. PLoS ONE 2019, 14, e0218238. [Google Scholar] [CrossRef]
- Bertile, F.; Matallana-Surget, S.; Tholey, A.; Cristobal, S.; Armengaud, J. Diversifying the concept of model organisms in the age of -omics. Commun. Biol. 2023, 6, 1062. [Google Scholar] [CrossRef] [PubMed]
- Calado, R.; Vercesi, K.; Freitas, E.; Ricardo, F.; Santos, S.A.; Domingues, M.R.; Hayd, L. Larval nutritional stress affects trophic compensation of juvenile caridean shrimp Palaemon varians. Aquac. Rep. 2022, 24, 101140. [Google Scholar] [CrossRef]
- Harper, C.; Wolf, J.C. Morphologic effects of the stress response in fish. ILAR J. 2009, 50, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Lorenzon, S.; Francese, M.; Ferrero, E.A. Heavy metal toxicity and differential effects on the hyperglycemic stress response in the shrimp Palaemon elegans. Arch. Environ. Contam. Toxicol. 2000, 39, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Baeza, J.A. Sexual systems in shrimps (infraorder Caridea Dana, 1852), with special reference to the historical origin and adaptive value of protandric simultaneous hermaphroditism. In Transitions between Sexual Systems: Understanding The Mechanisms of, and Pathways between, Dioecy, Hermaphroditism and Other Sexual Systems, 2nd ed.; Leonard, J., Ed.; Springer: Cham, Switzerland; New York, NY, USA, 2018; pp. 269–310. [Google Scholar]
- Eckelbarger, K.J.; Hodgson, A.N. Invertebrates oogenesis-a review and synthesis: Comparative ovarian morphology, accessory cell function and the origins of yolk precursors. Invertebr. Reprod. Dev. 2021, 65, 71–140. [Google Scholar] [CrossRef]
- Bedoui, S.; Herold, M.J.; Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 2020, 21, 678–695. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Wei, Z.; Yang, W.; HUang, J.; Yang, Y.; Wang, J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 2022, 12, 985363. [Google Scholar] [CrossRef]
- Zhang, Y.; Hua, J.; Wang, Y. Application effect of aquaculture IOT system. Appl. Mech. Mater. 2013, 303, 1395–1401. [Google Scholar] [CrossRef]
- Yuan, J.; Kroemer, G. Alternative cell death mechanisms in development and beyond. Genes Dev. 2024, 24, 2592–2602. [Google Scholar] [CrossRef]
- Irikura, R.; Nishizawa, H.; Nakajima, K.; Yamanaka, M.; Chen, G.; Tanaka, K.; Onodera, M.; Matsumoto, M.; Igarashi, K. Ferroptosis model system by the re-expression of BACH1. J. Biochem. 2023, 174, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Broker, L.E.; Kruyt, F.A.E.; Giaccone, G. Cell death independent of caspases: A review. Clin. Cancer Res. 2005, 11, 3155–3162. [Google Scholar] [CrossRef] [PubMed]
- Gherardi, F.; Calloni, C. Protandrous hermaphroditism in the tropical shrimp Athanas indicus (Decapoda: Caridea), a symbiont of sea urchins. J. Crustac. Biol. 1993, 13, 675–689. [Google Scholar] [CrossRef]
- Bauer, R.T.; Holt, G.J. Simultaneous hermaphroditism in the marine shrimp Lysmata wurdemanni (Caridea: Hippolytidae): An undescribed sexual system in the decapos Crustacea. Mar. Biol. 1998, 132, 223–235. [Google Scholar] [CrossRef]
- Wolff, C.; Gerberding, M. Crustacea: Comparative aspects of early development. In Evolutionary Developmental Biology of Invertebrates, 2nd ed.; Wanninger, A., Ed.; Springer: Vienna, AT, Austria, 2015; pp. 39–61. [Google Scholar]
- Tomoyasu, Y. What crustaceans can tell us about the evolution of insect wings and other morphologically novel structures. Curr. Opin. Genet. Dev. 2021, 69, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Govind, P. Model organisms used in molecular biology or medical research. Int. Res. J. Pharm. 2011, 2, 62–65. [Google Scholar]
- Kao, D.; Lai, A.G.; Stamataki, E.; Rosic, S.; Konstantinides, N.; Jarvis, E.; Di Donfrancesco, A.; Pouchkina-Stancheva, N.; Sémon, M.; Grillo, M.; et al. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. eLife 2016, 5, e20062. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.A.; Patel, N.H. The amphipod crustacean Parhyale hawaiensis: An emerging comparative model of arthropod development, evolution, and regeneration. Wires Dev. Biol. 2019, 8, e355. [Google Scholar] [CrossRef] [PubMed]
- Calvo, L.; Birgaoanu, M.; Pettini, T.; Ronshaugen, M.; Griffiths-Jones, S. The embryonic transcriptome of Parhyale hawaiensis reveals different dynamics of microRNAs and mRNAs during the maternal-zygotic transition. Sci. Rep. 2022, 12, 174. [Google Scholar] [CrossRef]
- Ebeed, H.T.; El-Helely, A.A. Programmed cell death in plants: Insights into developmental and stress-induced cell death. Curr. Protein Pept. Sci. 2021, 22, 873–889. [Google Scholar] [CrossRef]
- Peng, F.; Liao, M.; Qin, R.; Zhu, S.; Peng, C.; Fu, L.; Chen, Y.; Han, B. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct. Target Ther. 2022, 7, 286. [Google Scholar] [CrossRef] [PubMed]
- Daneva, A.; Gao, Z.; Van Durme, M.; Nowack, M.K. Functions and regulation of programmed cell death in plant developmental. Annu. Rev. Cell. Dev. Biol. 2016, 32, 441–468. [Google Scholar] [CrossRef]
- Zupo, V.; Jüttner, F.; Maibam, C.; Butera, E.; Blom, J.F. Apoptogenic metabolites in fractions of the benthic diatom Cocconeis scutellum parva. Mar. Drugs 2014, 12, 547–567. [Google Scholar] [CrossRef] [PubMed]
- Katayama, H.; Kubota, N.; Hojo, H.; Okada, A.; Kotaka, S.; Tsutsui, N.; Ohira, T. Direct evidence for the function of crustacean insulin-like androgenic gland factor (IAG): Total chemical synthesis of IAG. Bioorganic Med. Chem. 2014, 22, 5783–5789. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Zhou, M.; Jiang, H.; Li, Y.; Wang, W. siRNA-mediated MrIAG silencing induces sex reversal in Macrobrachium rosenbergii. Mar. Biotechnol. 2020, 22, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Deline, M.; Keller, J.; Rothe, M.; Schunck, W.H.; Menzel, R.; Watts, J.L. Epoxides derived from dietary dihomo-gamma-linolenic acid induce germ cell death in C. elegans. Sci. Rep. 2015, 5, 15417. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Zhang, X.; Yuan, J.; Zhang, X.; Li, F. The role of insulin-like peptide in maintaining hemolymph glucose homeostasis in the pacific white shrimp Litopenaeus vannamei. Int. J. Mol. Sci. 2022, 23, 3268. [Google Scholar] [CrossRef] [PubMed]
- Antonova, Y.; Arik, A.J.; Moore, W.; Riehle, M.A.; Brown, M.R. Insulin-like peptides: Structure, signaling, and function. In Insect Endocrinology, 2nd ed.; Gilbert, L.I., Ed.; Academic Press: New York, NY, USA, 2012; pp. 63–69. [Google Scholar]
- Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef]
- Haeusler, R.; McGraw, T.; Accili, D. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol. 2018, 19, 31–44. [Google Scholar] [CrossRef]
- Katayama, H.; Nagasawa, H. Chemical synthesis of N-glycosylated insulin-like androgenic gland factor from the freshwater prawn Macrobrachium rosenbergii. J. Pept. Sci. 2019, 25, e3215. [Google Scholar] [CrossRef]
- Huang, M.; Lu, J.J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect. 2021, 11, 5–13. [Google Scholar] [CrossRef] [PubMed]
Duration (Days) | Experimental Phase | Density | Feed | No. of Replicates | Container | No. of Individuals/ Replicate | Purpose |
---|---|---|---|---|---|---|---|
25 | Larval rearing | 1 larva/ 10 mL | Artemia + Brachionus | 10 | Conical flasks | 80 | Production of post-larvae |
45 | Post-larval rearing | 1 post-larva/ 20 mL | Diatom + vs. Diatom − | 3 | Dishes | 25 | Identification of sex |
5 | Post-larval rearing | 1 post-larva/ 20 mL | Diatom + vs. Diatom − | 3 | Dishes | 25 | Molecular analyses |
Gene Type | Acronym | Gene | Primer | Sequence 5′>3′ | Fragment Length (bp) |
---|---|---|---|---|---|
Housekeeping | COI | Cytochrome oxidase subunit | Coi_Hi_F1 | CTGAAGAGGTATAGTAGGAAC | 204 |
Coi_Hi_R1 | CTCGGTGCCCCTGACATAGC | ||||
18S RNA | 18S ribosomal RNA | 18S_Hi_F1 | CATGCATGTGTCAGTACAGGC | 204 | |
18S_Hi_R1 | CTTATCATATGAGAATCCAACC | ||||
Apoptosis | ATFC | Activating transcription factor | ATFC_Hi_F1 | GGCTGGAGTTCTGACAGAGG | 189 |
ATFC_Hi_R1 | CAGCCCAGCTCTTCCAGATTG | ||||
CATB | Cathepsin B | CATB_Hi_F2 | GGATCTTGTGGATCATGCTGG | 198 | |
CATB_HI_R2 | GTTCCAGCCATCCGCCATTAC | ||||
Cyt-c | Cytochrome C | CYT_Hi_F1 | GTGCAGAGATGTGCTCAGTGC | 167 | |
CYT_Hi_R1 | ACATCCAGAGTGTCATCTGC | ||||
Dronc | Death receptor-associated nemesis-like | DRONC_Hi_F1 | GGCATCATTATGACAGATATGC | 201 | |
DRONC_Hi_F1 | GTGTGATGATATCATGTAGAGC | ||||
HTRA2 | High-temperature requirement A2 serine peptidase | HTRA2_Hi_F2 | GACACAATGAAGCCAGAGCC | 190 | |
HTRA2_Hi_R2 | CGCCATCAGTTCTCTGCTAG | ||||
TSPO | Translocator protein | TSPO_Hi_F1 | GCAGGTGGCAAATGAAATGGAG | 132 | |
TSPO_Hi_R1 | CTGGCGTCCTCCTAACTGGATG | ||||
Ferroptosis | GSHI | Gamma glutamylcysteine synthetase | GSH1_Hi_F1 | GCCGTGTGAAGTCCAGCTGA | 242 |
GSH1_Hi_R1 | CATTCACGGACATCTGACTAG | ||||
GPX4 | Glutathione peroxidase 4 | GPX4_Hi_F1 | GCTGAGAGTCTGAGAGACTG | 195 | |
GPX4_Hi_R1 | CTAGTCACTAAACGTCGTCGG | ||||
STEA3 | Sterile alpha-motif domain-containing protein 3 metalloreductase | STEA3_Hi_F1 | GAGCATATGCAGATAACGTG | 185 | |
STEA3_Hi_R1 | GGCTATTCCTGATGAGCATC | ||||
SAT | Spermidine/spermine N1-acetyltransferase | SAT_Hi_F1 | CTGTGGATGTGACTCAGAAG | 173 | |
SAT_Hi_R1 | GCAGATTCTTGCTGATGCGG | ||||
Insulin-like secretion | AC | Adenylyl cyclase | AC_Hi_F1 | GTGTCTTACGTGGCTGAGGC | 223 |
AC_Hi_R1 | CTGCGGTGGGTATAGTCTGC | ||||
CCKAR | Cholecystokinin A receptor | CCKAR_Hi_F3 | CCCTCCTGATACCTGAAGATG | 172 | |
CCKAR_Hi_R3 | GGATTCTCTGGTATTCTTGAC | ||||
M3R | Muscarinic acetylcholine receptor M3 | M3R_Hi_F1 | GGAGTCGATCTCAATGGATC | 184 | |
M3R_Hi_R1 | CTAGCAGTGTGGCGATGGAG | ||||
PLC | Phospholipase C | PLC_Hi_F1 | CTGTGTAGGTATTCACTCGTG | 173 | |
PLC_Hi_R1 | CACAGATGAATGAACTGACC | ||||
PCLO | Piccolo presynaptic cytomatrix protein | PCLO_Hi_F1 | GGCTGGTGATGGACGAAGAC | 226 | |
PCLO_Hi_R1 | CCGCGATCTGGAAACGTCAG | ||||
SNP25 | Synaptosome-associated protein 25 | SNP25_Hi_F1 | GCAGAGCTGAGTGCCGTAGC | 232 | |
SNP25_Hi_R1 | GCAACGATCCGAACTACTAC | ||||
VAMP3 | Vesicle-associated membrane protein 3 | VAMP3_Hi_F1 | CTAGTGCCAGTGACTGTGAC | 198 | |
VAMP3_Hi_R1 | CCACCTCATTCACCTCTCTC |
Pathway | Accession Number | Gene | H. inermis | Human |
---|---|---|---|---|
Apoptosis | Hippolyte_Body_TRINITY_DN6519_c0_g1 | Activating transcription factor | ATFC | ATF4 |
Hippolyte_Body_TRINITY_DN5045_c0_g2 | Cathepsin B | CATB | CTSB | |
Hippolyte_Body_TRINITY_DN6311_c0_g4 | Cytochrome C | Cyt-c | CYC | |
Hippolyte_Body_TRINITY_DN112258_c0_g1 | Death receptor-associated nemesis-like | Dronc | CASP9 | |
Hippolyte_Body_TRINITY_DN5290_c0_g1 | High-temperature requirement A2 serine peptidase | HTRA2 | HTRA2 | |
Hippolyte_Body_TRINITY_DN11687_c0_g1 | Translocator protein | TSPO | TSPO | |
Ferroptosis | Hippolyte_Body_TRINITY_DN4632_c1_g1 | Gamma glutamylcysteine synthetase | GSHI | GSX1 |
Hippolyte_Body_TRINITY_DN7730_c5_g1 | Glutathione peroxidase 4 | GPX4 | GPX4 | |
Hippolyte_Body_TRINITY_DN28134_c0_g1 | Six-transmembrane epithelial antigen of prostate 3 | STEA3 | STEAP3 | |
Hippolyte_Body_TRINITY_DN6660_c0_g1 | Spermidine/spermine N1-acetyltransferase | SAT | SAT | |
Insulin-like secretion | Hippolyte_Body_TRINITY_DN3141_c0_g1 | Adenylyl cyclase | AC | ADCY1 |
Hippolyte_Body_TRINITY_DN83923_c0_g1 | Cholecystokinin A receptor | CCKAR | CCKAR | |
Hippolyte_Body_TRINITY_DN80437_c0_g1 | Muscarinic acetylcholine receptor M3 | M3R | CHRM3 | |
Hippolyte_Body_TRINITY_DN22546_c0_g1 | Phospholipase C | PLC | PLCL1 | |
Hippolyte_Body_TRINITY_DN186639_c0_g1 | Piccolo presynaptic cytomatrix protein | PCLO | PCLO | |
Hippolyte_Body_TRINITY_DN5531_c0_g1 | Synaptosome-associated protein 25 | SNP25 | SNAP25 | |
Hippolyte_Body_TRINITY_DN21906_c0_g1 | Vesicle-associated membrane protein 3 | VAMP3 | VAMP3 |
PL5 Replicate | ng/μL | A260/280 | A260/230 | |
---|---|---|---|---|
RNeasy Mini Kit | 1 | 60.9 | 1.99 | 0.32 |
2 | 84.5 | 2.03 | 0.82 | |
3 | 161.6 | 2.08 | 0.55 | |
4 | 176.8 | 2.02 | 0.93 | |
PureLink™ RNA Mini Kit | 1 | 29.9 | 2.03 | 1.47 |
2 | 58.4 | 2.12 | 0.48 | |
3 | 87 | 2.13 | 2.07 | |
4 | 146.7 | 2.11 | 2.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glaviano, F.; Esposito, R.; Somma, E.; Sagi, A.; Aflalo, E.D.; Costantini, M.; Zupo, V. Molecular Approaches Detect Early Signals of Programmed Cell Death in Hippolyte inermis Leach. Curr. Issues Mol. Biol. 2024, 46, 6169-6185. https://doi.org/10.3390/cimb46060368
Glaviano F, Esposito R, Somma E, Sagi A, Aflalo ED, Costantini M, Zupo V. Molecular Approaches Detect Early Signals of Programmed Cell Death in Hippolyte inermis Leach. Current Issues in Molecular Biology. 2024; 46(6):6169-6185. https://doi.org/10.3390/cimb46060368
Chicago/Turabian StyleGlaviano, Francesca, Roberta Esposito, Emanuele Somma, Amir Sagi, Eliahu D. Aflalo, Maria Costantini, and Valerio Zupo. 2024. "Molecular Approaches Detect Early Signals of Programmed Cell Death in Hippolyte inermis Leach" Current Issues in Molecular Biology 46, no. 6: 6169-6185. https://doi.org/10.3390/cimb46060368
APA StyleGlaviano, F., Esposito, R., Somma, E., Sagi, A., Aflalo, E. D., Costantini, M., & Zupo, V. (2024). Molecular Approaches Detect Early Signals of Programmed Cell Death in Hippolyte inermis Leach. Current Issues in Molecular Biology, 46(6), 6169-6185. https://doi.org/10.3390/cimb46060368