SRSF3 Knockdown Inhibits Lipopolysaccharide-Induced Inflammatory Response in Macrophages
Abstract
:1. Introduction
2. Materials and Methods
2.1. ApoE−/− Mouse Model for Atherosclerosis Analysis
2.2. Immunohistochemical and Immunofluorescence Staining
2.3. Cell Culture
2.4. Transfection and RNA Interference
2.5. RT-qPCR Analysis
2.6. Immunoblotting
2.7. ELISA
2.8. Statistical Analysis
3. Results
3.1. SRSF3 Is Highly Expressed in the Macrophages of Atherosclerotic Plaques
3.2. The Expression of SRSF3 Is Upregulated in Lipopolysaccharide-Stimulated RAW-264.7 Cell Line
3.3. Inhibition of SRSF3 Downregulates Lipopolysaccharide-Induced Expression of Inflammatory Cytokines in RAW-264.7 Cell Line
3.4. Knockdown of SRSF3 Downregulates Lipopolysaccharide-Stimulated NFκB Signaling Pathway Activation in RAW-264.7 Cell Line
3.5. SRSF3 Regulates the Alternative Splicing of MD2 in Lipopolysaccharide-Stimulated RAW-264.7 Cell Line
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anko, M.L. Regulation of gene expression programmes by serine-arginine rich splicing factors. Semin. Cell Dev. Biol. 2014, 32, 11–21. [Google Scholar] [CrossRef] [PubMed]
- More, D.A.; Kumar, A. SRSF3: Newly discovered functions and roles in human health and diseases. Eur. J. Cell Biol. 2020, 99, 151099. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Gong, Q.; Lin, Z.; Wang, Y.; Li, M.; Wang, L.; Ding, H.; Li, P. Emerging roles of SRSF3 as a therapeutic target for cancer. Front. Oncol. 2020, 10, 577636. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Garner, B.; Halliday, G.M.; Kwok, J.B. Srp20 regulates TrkB pre-mRNA splicing to generate TrkB-Shc transcripts with implications for Alzheimer’s disease. J. Neurochem. 2012, 123, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Sanchez, P.; Villalba-Orero, M.; Lopez-Olaneta, M.M.; Larrasa-Alonso, J.; Sanchez-Cabo, F.; Marti-Gomez, C.; Camafeita, E.; Gomez-Salinero, J.M.; Ramos-Hernandez, L.; Nielsen, P.J.; et al. Loss of SRSF3 in cardiomyocytes leads to decapping of contraction-related mRNAs and severe systolic dysfunction. Circ. Res. 2019, 125, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Das, M.; Sauceda, C.; Ellies, L.G.; Kuo, K.; Parwal, P.; Kaur, M.; Jih, L.; Bandyopadhyay, G.K.; Burton, D.; et al. Degradation of splicing factor SRSF3 contributes to progressive liver disease. J. Clin. Investig. 2019, 129, 4477–4491. [Google Scholar] [CrossRef]
- Boutej, H.; Rahimian, R.; Thammisetty, S.S.; Beland, L.C.; Lalancette-Hebert, M.; Kriz, J. Diverging mRNA and Protein Networks in Activated Microglia Reveal SRSF3 Suppresses Translation of highly upregulated innate immune transcripts. Cell Rep. 2017, 21, 3220–3233. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, P.; Chen, Y.F.; Chen, Y.F.; Chung, L.C.; Tamilselvi, S.; Shen, C.Y.; Day, C.H.; Chen, R.J.; Viswanadha, V.P.; Kuo, W.W.; et al. The multifaceted link between inflammation and human diseases. J. Cell. Physiol. 2018, 233, 6458–6471. [Google Scholar] [CrossRef] [PubMed]
- Galdiero, M.R.; Marone, G.; Mantovani, A. Cancer Inflammation and Cytokines. Cold Spring Harb. Perspect. Biol. 2018, 10, a028662. [Google Scholar] [CrossRef]
- Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Bianchi, R.; Crisci, M.; D’Acierno, L.; Giordano, R.; et al. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Curr. Atheroscler. Rep. 2014, 16, 435. [Google Scholar] [CrossRef]
- Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis—From experimental insights to the clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Raggi, P.; Genest, J.; Giles, J.T.; Rayner, K.J.; Dwivedi, G.; Beanlands, R.S.; Gupta, M. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 2018, 276, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Back, M.; Yurdagul, A., Jr.; Tabas, I.; Oorni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol. 2019, 16, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Orecchioni, M.; Ley, K. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat. Rev. Immunol. 2022, 22, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Oishi, Y.; Manabe, I. Macrophages in inflammation, repair and regeneration. Int. Immunol. 2018, 30, 511–528. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, L.A.; Golenbock, D.; Bowie, A.G. The history of Toll-like receptors—Redefining innate immunity. Nat. Rev. Immunol. 2013, 13, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.P.; Carmody, R.J. NF-kappaB and the transcriptional control of inflammation. Int. Rev. Cell Mol. Biol. 2018, 335, 41–84. [Google Scholar] [PubMed]
- Carpenter, S.; Ricci, E.P.; Mercier, B.C.; Moore, M.J.; Fitzgerald, K.A. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 2014, 14, 361–376. [Google Scholar] [CrossRef]
- Lee, F.F.Y.; Alper, S. Alternative pre-mRNA splicing as a mechanism for terminating Toll-like Receptor signaling. Front. Immunol. 2022, 13, 1023567. [Google Scholar] [CrossRef]
- Ohta, S.; Bahrun, U.; Tanaka, M.; Kimoto, M. Identification of a novel isoform of MD-2 that downregulates lipopolysaccharide signaling. Biochem. Biophys. Res. Commun. 2004, 323, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Gray, P.; Michelsen, K.S.; Sirois, C.M.; Lowe, E.; Shimada, K.; Crother, T.R.; Chen, S.; Brikos, C.; Bulut, Y.; Latz, E.; et al. Identification of a novel human MD-2 splice variant that negatively regulates lipopolysaccharide-induced TLR4 signaling. J. Immunol. 2010, 184, 6359–6366. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Huang, B.; Shi, Z.; Han, J.; Wang, Y.; Huangfu, J.; Wu, W. SRSF1 and SRSF9 RNA binding proteins promote Wnt signalling-mediated tumorigenesis by enhancing beta-catenin biosynthesis. EMBO Mol. Med. 2013, 5, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Fu, W.; Zheng, L.; Wang, Y.; Liang, G. Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases. Drug Discov. Today 2018, 23, 1187–1202. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, N.D.; Jung, J.K.; Lee, C.K.; Han, S.B.; Kim, Y. Myeloid differentiation 2 as a therapeutic target of inflammatory disorders. Pharmacol. Ther. 2012, 133, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Agostini, F.; Zanzoni, A.; Klus, P.; Marchese, D.; Cirillo, D.; Tartaglia, G.G. catRAPID omics: A web server for large-scale prediction of protein-RNA interactions. Bioinformatics 2013, 29, 2928–2930. [Google Scholar] [CrossRef] [PubMed]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, T.; Prange, K.H.M.; Glass, C.K.; de Winther, M.P.J. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat. Rev. Cardiol. 2020, 17, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Di Benedetto, P.; Ruscitti, P.; Vadasz, Z.; Toubi, E.; Giacomelli, R. Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases. Autoimmun. Rev. 2019, 18, 102369. [Google Scholar] [CrossRef]
- Chen, W.; Schilperoort, M.; Cao, Y.; Shi, J.; Tabas, I.; Tao, W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat. Rev. Cardiol. 2022, 19, 228–249. [Google Scholar] [CrossRef]
- Ostareck, D.H.; Ostareck-Lederer, A. RNA-Binding proteins in the control of LPS-induced macrophage response. Front. Genet. 2019, 10, 31. [Google Scholar] [CrossRef]
- Hashimoto, S.; Kishimoto, T. Roles of RNA-binding proteins in immune diseases and cancer. Semin. Cancer Biol. 2022, 86 Pt 3, 310–324. [Google Scholar] [CrossRef]
- Jia, R.; Zheng, Z.M. Oncogenic SRSF3 in health and diseases. Int. J. Biol. Sci. 2023, 19, 3057–3076. [Google Scholar] [CrossRef]
- O’Connor, B.P.; Danhorn, T.; De Arras, L.; Flatley, B.R.; Marcus, R.A.; Farias-Hesson, E.; Leach, S.M.; Alper, S. Regulation of toll-like receptor signaling by the SF3a mRNA splicing complex. PLoS Genet. 2015, 11, e1004932. [Google Scholar] [CrossRef]
- Lin, J.; Hu, Y.; Nunez, S.; Foulkes, A.S.; Cieply, B.; Xue, C.; Gerelus, M.; Li, W.; Zhang, H.; Rader, D.J.; et al. Transcriptome-wide analysis reveals modulation of human macrophage inflammatory phenotype through alternative splicing. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1434–1447. [Google Scholar] [CrossRef]
Mouse Gene | Forward Primers (5′-3′) | Reverse Primers (5′-3′) |
---|---|---|
SRSF3 | CTCCTGGCTTTGCTTTCGTC | CCCACGATTCCGACTTCTCT |
GAPDH | CAGCCTCGTCCCGTAGACA | CGCTCCTGGAAGATGGTGAT |
IL1β | CCCTGCAGCTGGAGAGTGTGGA | TGTGCTCTGCTTGTGAGGTGCTG |
IL6 | CTGCAAGAGACTTCCATCCAGTT | GAAGTAGGGAAGGCCGTGG |
TNFα | ATGAGCACAGAAAGCATGATC | TACAGGCTTGTCACTCGAATT |
MD2 variant | TTGTGCATGTTGAGTTCATTCCAAGAGGAAAC | CCTTACGCTTCGGCAACTCTATGGAGTTGAC |
MD2B variant | GATTTGTGCATGTTGAGTTCATTCCAAAGTTGCC | CCCTCGAAAGAGAATGGTATTGATGTATTCACAGTC |
MD2 (RT-PCR) | TGGTTCTGCAACTCCTCCGA | GCAACACATCTGTAATGGCCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Wang, Y.; Zhang, L.; He, T.; Shi, W.; Guo, X.; Wang, Y. SRSF3 Knockdown Inhibits Lipopolysaccharide-Induced Inflammatory Response in Macrophages. Curr. Issues Mol. Biol. 2024, 46, 6237-6247. https://doi.org/10.3390/cimb46060372
Fu Y, Wang Y, Zhang L, He T, Shi W, Guo X, Wang Y. SRSF3 Knockdown Inhibits Lipopolysaccharide-Induced Inflammatory Response in Macrophages. Current Issues in Molecular Biology. 2024; 46(6):6237-6247. https://doi.org/10.3390/cimb46060372
Chicago/Turabian StyleFu, Yu, Yanjing Wang, Luyao Zhang, Tianliu He, Weiye Shi, Xueling Guo, and Yingze Wang. 2024. "SRSF3 Knockdown Inhibits Lipopolysaccharide-Induced Inflammatory Response in Macrophages" Current Issues in Molecular Biology 46, no. 6: 6237-6247. https://doi.org/10.3390/cimb46060372
APA StyleFu, Y., Wang, Y., Zhang, L., He, T., Shi, W., Guo, X., & Wang, Y. (2024). SRSF3 Knockdown Inhibits Lipopolysaccharide-Induced Inflammatory Response in Macrophages. Current Issues in Molecular Biology, 46(6), 6237-6247. https://doi.org/10.3390/cimb46060372