In Silico Approach: Anti-Tuberculosis Activity of Caespitate in the H37Rv Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein, Ligand, and Grid Box Preparation
2.2. MM/GBSA Calculations
2.3. Analysis of Pharmacokinetic Parameters (ADME and Ames)
3. Results
3.1. Molecular Docking Calculations
3.2. MM/GBSA Calculations
3.3. ADME and Ames
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2020. WHO. 2020. 1, CC BY-NC-SA 3.0 IGO. Available online: https://apps.who.int/iris/handle/10665/336069 (accessed on 24 February 2024).
- World Health Organization. Global Tuberculosis Report 2019. WHO. 2019. 1, CC BY-NC-SA 3.0 IGO. Available online: https://apps.who.int/iris/handle/10665/329368 (accessed on 24 February 2024).
- World Health Organization. Global Tuberculosis Report 2018. WHO. 2018. 56, CC BY-NC-SA 3.0 IGO. Available online: https://apps.who.int/iris/handle/10665/274453 (accessed on 24 February 2024).
- Organización Panamericana de la Salud. Tuberculosis en las Américas. Informe Regional 2021; CC BY-NC-SA 3.0 IGO; OPS: Washington, DA, USA, 2022. [Google Scholar]
- Seung, K.J.; Keshavjee, S.; Rich, M.L. Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harb. Perspect. Med. 2015, 5, a017863. [Google Scholar] [CrossRef] [PubMed]
- Caminero, J.A.; García-Basteiro, A.L.; Rendon, A. Multidrug-resistant tuberculosis. Lancet 2019, 394, 298. [Google Scholar] [CrossRef]
- Auckland Regional Public Health Service. Multi-drug Resistant Tuberculosis (MDR-TB). Fact. Sheet. 2018, 1116, 1. Available online: https://www.arphs.health.nz/assets/Uploads/Resources/Disease-and-illness/Multi-drug-Resistant-Tuberculosis-v0.2-20181116.pdf (accessed on 24 February 2024).
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; the International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Andries, K.; Verhasselt, P.; Guillemont, J.; Hinrich, G.W.H.; Neefs, J.; Winklerjef, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; et al. A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis. Science 2005, 307, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Ali, S.; Sheikh, K.; Amber, R. Review on antibacterial activity of Himalayan medicinal plants traditionally used to treat pneumonia and tuberculosis. J. Pharm. Pharmacol. 2019, 71, 1599–1625. [Google Scholar] [CrossRef]
- Gullo, V.P.; McAlpine, J.; Lam, K.S.; Baker, D.; Petersen, F. Drug discovery from natural products. J. Ind. Microbiol. Biotechnol. 2006, 33, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Mathegka, A.D.M. Antimicrobial Activity of Helicrisyum Species and the Isolation of a New Phloroglucinol from Helicrysum caespititium. Ph.D. Thesis, University of Pretoria, Johannesburg, South Africa, 2001. Available online: https://repository.up.ac.za/handle/2263/23672 (accessed on 24 February 2024).
- Mathegka, A.D.M.; Meyer, J.J.M.; Horn, M.M.; Drewes, S.E. An acylated phloroglucinol with antimicrobial properties from Helichrysum caespitium. Phytochemistry 2000, 53, 2. [Google Scholar] [CrossRef]
- Singh, I.P.; Bharate, S.B. Phloroglucinol compounds of natural origin. Nat. Prod. Rep. 2006, 23, 558–591. [Google Scholar] [CrossRef]
- Verotta, L. Are acylphloroglucinols lead structures for the treatment of degenerative diseases? Phytochem. Rev. 2002, 1, 389–407. [Google Scholar] [CrossRef]
- Mammino, L.; Kabanda, M.M. A study of the intramolecular hydrogen bond in acylphloroglucinols. J. Mol. Struct. (Theochem) 2009, 901, 210–219. [Google Scholar] [CrossRef]
- Mammino, L.; Kabanda, M.M. The geometric isomers of caespitate: A computational study in vacuo and in solution. Int. J. Biol. Biomed. 2012, 1, 114–133. [Google Scholar]
- Mammino, L.; Kabanda, M.M. Model Structures for the Study of Acylated Phloroglucinols and Computational Study of the Caespitate Molecule. J. Mol. Struct. (Theochem) 2007, 805, 39–52. [Google Scholar] [CrossRef]
- Giordanetto, F.; Tyrchan, C.; Ulander, J. Intramolecular Hydrogen Bond Expectations in Medicinal Chemistry. ACS Med. Chem. Lett. 2017, 8, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Alex, A.; Millan, D.S.; Perez, M.; Wakenhut, F.; Whitlock, G.A. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. Med. Chem. Commun. 2011, 2, 669–674. [Google Scholar] [CrossRef]
- Laurence, C.; Berthelot, M. Observations on the strength of hydrogen bonding. Perspect. Drug Discov. Des. 2000, 18, 39–60. [Google Scholar] [CrossRef]
- McDonagh, A.F.; Lightner, D.A. Influence of Conformation and Intramolecular Hydrogen Bonding on the Acyl Glucuronidation and Biliary Excretion of Acetylenic Bis-Dipyrrinones Related to Bilirubin. J. Med. Chem. 2007, 50, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.J.M.; Lall, N.; Mathekga, A.D.M. In vitro inhibition of drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis by Helichrysum caespititium. S. Afr. J. Bot. 2002, 68, 90–93. [Google Scholar] [CrossRef]
- Brennan, P.J. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 2003, 83, 91–97. [Google Scholar] [CrossRef]
- Soltero-Higgin, M.; Carlson, E.E.; Gruber, T.D.; Kiessling, L.L. A unique catalytic mechanism for UDP-galactopyranose mutase. Nat. Struct. Mol. Biol. 2004, 11, 539–543. [Google Scholar] [CrossRef]
- Marrakchi, H.; Lanéelle, G.; Quémard, A.K. InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology 2000, 146, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Marrakchi, H.; Ducasse, S.; Labesse, G.; Montrozier, H.; Margeat, E.; Emorine, L.; Charpentier, X.; Daffé, M.; Quémard, A.K. MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II. Microbiology 2002, 148, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Ducasse-Cabanot, S.; Cohen-Gonsaud, M.; Marrakchi, H.; Nguyen, M.; Zerbib, D.; Bernadou, J.; Daffé, M.; Labesse, G.; Quémard, A. In vitro inhibition of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA by isoniazid. Antimicrob. Agents Chemother. 2004, 48, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.J.; Boechi, L.; McCammon, A.J.; Sobrado, P. Structure, mechanism, and dynamics of UDP-galactopyranose mutase. Arch. Biochem. Biophys. 2014, 544, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Weston, A.; Stern, R.J.; Lee, R.E.; Nassau, P.M.; Monsey, D.; Martin, S.L.; Scherman, M.S.; Besra, G.S.; Duncan, K.; McNeil, M.R. Biosynthetic origin of mycobacterial cell wall galactofuranosyl residues. Tuber. Lung Dis. 1998, 8, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Richards, M.R.; Lowary, T.L. Chemistry and Biology of Galactofuranose-Containing Polysaccharides. ChemBioChem 2009, 10, 1920–1938. [Google Scholar] [CrossRef] [PubMed]
- Nassau, P.M.; Martin, S.L.; Brown, R.E.; Weston, A.; Monsey, D.; McNeil, M.R.; Duncan, K. Galactofuranose biosynthesis in Escherichia coli K-12: Identification and cloning of UDP-galactopyranose mutase. J. Bacteriol. 1996, 178, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.A.R.; Staines, A.G.; McMahon, S.A.; McNeil, M.R.; Whitfield, C.; Naismith, J.H. UDP-galactopyranose mutase has a novel structure and mechanism. Nat. Struct. Mol. Biol. 2001, 8, 858–863. [Google Scholar] [CrossRef]
- Besra, G.S.; Khoo, K.-H.; McNeil, M.R.; Dell, A.; Morris, H.R.; Brennan, P.J. A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry 1995, 34, 4257–4266. [Google Scholar] [CrossRef]
- Evans, J.C.; Trujillo, C.; Wang, Z.; Eoh, H.; Ehrt, S.; Schnappinger, D.; Boshoff, H.I.; Rhee, K.Y.; Barry, C.E., 3rd; Mizrahi, V. Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of Mycobacterium tuberculosis. ACS Infect. Dis. 2016, 2, 958–968. [Google Scholar] [CrossRef]
- Chiarelli, L.R.; Mori, G.; Orena, B.S.; Esposito, M.; Lane, T.; Lopes Ribeiro, A.L.J.; Degiacomi, G.; Zemanová, J.; Szádocka, S.; Huszár, S.; et al. A multitarget approach to drug discovery inhibiting Mycobacterium tuberculosis PyrG and PanK. Sci. Rep. 2018, 8, 3187. [Google Scholar] [CrossRef] [PubMed]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr. Computational methods in drug discovery. Pharmacol. Rev. 2013, 66, 334–395. [Google Scholar] [CrossRef] [PubMed]
- Prokop, J.W.; Leeper, T.C.; Duan, Z.H.; Milsted, A. Amino acid function and docking site prediction through combining disease variants, structure alignments, sequence alignments, and molecular dynamics: A study of the HMG domain. BMC Bioinform. 2010, 13, S3. [Google Scholar] [CrossRef] [PubMed]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Moreno-Ceballos, A.; Castro, M.E.; Caballero, N.A.; Mammino, L.; Melendez, F.J. Implicit and Explicit Solvent Effects on the Global Reactivity and the Density Topological Parameters of the Preferred Conformers of Caespitate. Computation 2024, 12, 5. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Shilpi, J.A.; Ali, M.T.; Sanjib, S.; Shihab, H.; Alexander, I.G.; Seidel, V. Molecular docking studies on InhA, MabA and PanK enzymes from Mycobacterium tuberculosis of ellagic acid derivatives from Ludwigia adscendens and Trewia nudiflora. In Silico Pharmacol. 2015, 3, 10. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Goodsell, D.; Halliday, R.; Huey, R.; Hart, W.; Belew, R.; Olson, A. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Shi, Y.; Colombo, C.; Kuttiyatveetil, J.R.A.; Zalatar, N.; van Straaten, K.E.; Mohan, S.; Sanders, D.A.R.; Pinto, B.M. A Second, Druggable Binding Site in UDP-Galactopyranose Mutase from Mycobacterium tuberculosis? ChemBioChem 2016, 17, 2264. [Google Scholar] [CrossRef] [PubMed]
- Bjorkelid, C.; Bergfors, T.; Raichurkar, A.K.; Mukherjee, K.; Malolanarasimhan, K.; Bandodkar, B.; Jones, T.A. Structural and biochemical characterization of compounds inhibiting Mycobacterium tuberculosis pantothenate kinase. J. Biol. Chem. 2013, 288, 18260–18270. [Google Scholar] [CrossRef] [PubMed]
- Rozwarski, D.A.; Vilchèze, C.; Sugantino, M.; Bittman, R.; Sacchettini, J.C. Crystal Structure of the Mycobacterium tuberculosis Enoyl-ACP Reductase, InhA, in Complex with NAD+ and a C16 Fatty Acyl Substrate. J. Biol. Chem. 1999, 274, 15582–15589. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shaw, D.E.; Shelley, M.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed]
- Prime, Version 3.1; Schrödinger, LLC: New York, NY, USA, 2012.
- Schrödinger Release 2018: QikProp; Schrödinger, LLC: New York, NY, USA, 2018.
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 2012, 52, 3099–3105. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Li, J.; Malcomber, S.; Moore, C.; Scott, A.; White, A.; Carmichael, P. Integrated in silico approaches for the prediction of Ames test mutagenicity. J. Comput. Aided Mol. Des. 2012, 26, 1017–1033. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Seto, N.O.L.; Cai, Y.; Leinala, E.K.; Borisova, S.N.; Palcic, M.M.; Evans, S.V. The Influence of an Intramolecular Hydrogen Bond in Differential Recognition of Inhibitory Acceptor Analogs by Human ABO(H) Blood Group A and B Glycosyltransferases. J. Biol. Chem. 2003, 278, 49191–49195. [Google Scholar] [CrossRef]
- Sarkhel, S.; Desiraju, R.G. N−H…O, O−H…O, and C−H…O hydrogen bonds in protein–ligand complexes: Strong and weak interactions in molecular recognition. Proteins Struct. Funct. Bioinform. 2003, 54, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Fish, R.H.; Jaouen, G. Bioorganometallic Chemistry: Structural Diversity of Organometallic Complexes with Bioligands and Molecular Recognition Studies of Several Supramolecular Hosts with Biomolecules, Alkali-Metal Ions, and Organometallic Pharmaceuticals. Organometallics 2003, 22, 2166–2177. [Google Scholar] [CrossRef]
- Duffy, F.J.; Devocelle, M.; Shields, D.C. Computational approaches to developing short cyclic peptide modulators of protein–protein interactions. In Computational Peptidology; Springer: New York, NY, USA, 2015; pp. 241–271. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef] [PubMed]
- Van Straaten, K.E.; Kuttiyatveetil, J.R.A.; Sevrain, C.M.; Villaume, S.A.; Jiménez-Barbero, J.; Linclau, B.; Vincent, S.P.; Sanders, D.A.R. Structural Basis of Ligand Binding to UDP-Galactopyranose Mutase from Mycobacterium tuberculosis Using Substrate and Tetrafluorinated Substrate Analogues. J. Am. Chem. Soc. 2015, 137, 1230–1244. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.K.; Landge, S.; Ravishankar, S.; Patil, V.; Shinde, V.; Tantry, S.; Kale, M.; Raichurkar, A.; Menasinakai, S.; Mudugal, N.V.; et al. Assessment of Mycobacterium tuberculosis pantothenate kinase vulnerability through target knockdown and mechanistically diverse inhibitors. Antimicrob. Agents Chemother. 2014, 58, 3312–3326. [Google Scholar] [CrossRef] [PubMed]
- Kruer, M. Pantothenate kinase-associated neurodegeneration. In Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease, 5th ed.; Academic Press: London, UK, 2015; pp. 473–481. [Google Scholar] [CrossRef]
- Nordlie, S.M.H.; Hadziahmetovic, U.; Padilla-Lopez, S.; Kruer, M.C. Pantothenate kinase–associated neurodegeneration. In Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease, 6th ed.; Academic Press: London, UK, 2020; pp. 633–641. [Google Scholar] [CrossRef]
- Rosado, L.A.; Caceres, R.A.; De Azevedo, W.F., Jr.; Basso, L.A.; Santos, D.S. Role of serine140 in the mode of action of Mycobacterium tuberculosis beta-ketoacyl-ACP reductase (MabA). BMC Res. Notes 2012, 5, 526. [Google Scholar] [CrossRef] [PubMed]
- Pitaloka, D.A.E.; Ramadhan, D.S.F.; Arfan; Chaidir, L.; Fakih, T.M. Docking-Based Virtual Screening and Molecular Dynamics Simulations of Quercetin Analogs as Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors of Mycobacterium tuberculosis. Sci. Pharm. 2021, 89, 20. [Google Scholar] [CrossRef]
- Hassan, S.T.S.; Šudomová, M.; Berchová-Bímová, K.; Gowrishankar, S.; Rengasamy, K.R.R. Antimycobacterial, Enzyme Inhibition, and Molecular Interaction Studies of Psoromic Acid in Mycobacterium tuberculosis: Efficacy and Safety Investigations. J. Clin. Med. 2018, 7, 226. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Katsuro, K.; Yoshiki, T.; Koichi, O. Purification and Properties of Pantothenate Kinase from Brevibacterium ammoniagenes IFO 12071. Agr. Biol. Chem. 1973, 37, 2863–2870. Available online: https://www.jstage.jst.go.jp/article/bbb1961/37/12/37_12_2863/_pdf (accessed on 14 March 2024). [CrossRef]
- Yang, K.; Eyobo, Y.; Brand, L.A.; Martynowski, D.; Tomchick, D.; Strauss, E.; Zhang, H. Crystal structure of a type III pantothenate kinase: Insight into the mechanism of an essential coenzyme A biosynthetic enzyme universally distributed in bacteria. J. Bacteriol. 2006, 188, 5532–5540. [Google Scholar] [CrossRef]
- Beis, K.; Srikannathasan, V.; Liu, H.; Fullerton, S.W.B.; Bamford, V.A.; Sanders, D.A.R.; Whitfield, C.; McNeil, M.R.; Naismith, J.H. Crystal Structures of Mycobacteria tuberculosis and Klebsiella pneumoniae UDP-Galactopyranose Mutase in the Oxidised State and Klebsiella pneumoniae UDP-Galactopyranose Mutase in the (Active) Reduced State. J. Mol. Biol. 2005, 348, 971–982. [Google Scholar] [CrossRef]
Enzyme | Glide Score | Vina Score | ||
---|---|---|---|---|
CG | CS | CG | CS | |
UGM | −9.2 | −9.2 | −8.7 | −8.8 |
PanK | −8.0 | −8.0 | −7.3 | −7.0 |
MabA | −6.7 | −6.7 | −7.0 | −7.2 |
InhA | −6.3 | −6.3 | −5.9 | −6.5 |
Enzyme | Glide Score | Vina Score |
---|---|---|
UGM | −5.7 | −9.3 |
PanK | −7.2 | −9.0 |
MabA | −5.9 | −7.5 |
InhA | −5.5 | −7.1 |
Protein | Nature of Interactions | Interaction with Amino Acid Residues |
---|---|---|
UGM | π–donor Hydrogen bond | Arg180 |
π–alkyl | Tyr366 | |
PanK | van der Waals | Phe254 |
Hydrogen Bond | Tyr257 | |
π–alkyl | Tyr235 | |
van der Waals | Asn277 | |
π–π | Tyr182 | |
MabA | van der Waals | Tyr153 |
van der Waals | Ser140 | |
van der Waals | Lys157 | |
van der Waals | NAP | |
InhA | van der Waals | Arg254 |
Hydrogen bond | NAD |
Enzyme | MM/GBSA- ΔG-Bind Energy | MM/GBSA- ΔG-Bind-Coulomb | MM/GBSA- ΔG-Bind (NS) | MM/GBSA- ΔG-Bind (NS)-Coulomb | ||||
---|---|---|---|---|---|---|---|---|
V | G | V | G | V | G | V | G | |
UGM | −53.2 | −84.5 | −8.9 | −24.8 | −61.7 | −92.1 | −6.9 | −23.8 |
PanK | −56.5 | −54.9 | −4.5 | −28.6 | −60.4 | −65.0 | −4.49 | −28.5 |
Enzyme | ΔG Bind Hbond | ΔG Bind Lipo | ΔG Bind Solv GB | ΔG Bind vdW | ||||
---|---|---|---|---|---|---|---|---|
V | G | V | G | V | G | V | G | |
UGM | −1.9 | −2.78 | −36.1 | −42.71 | 20.4 | 21.86 | −31.3 | −44.05 |
PanK | −0.9 | −1.54 | −22.6 | −31.03 | 14.6 | 30.63 | −22.9 | −32.03 |
Pharmacological Property | CG | CS | Pharmacological Property | CG | CS |
---|---|---|---|---|---|
MW a | 322.4 | 322.4 | QplogBB f | −1.2 | −1.3 |
Donor HB b | 1.0 | 1.0 | QplogS g | −4.1 | −4.0 |
Acceptor HB c | 4.3 | 4.3 | Rule of Five | 0.0 | 0.0 |
SASA d | 595.4 | 589.0 | #metab h | 7.0 | 7.0 |
QPlogPo/w e | 3.2 | 3.2 | %Human Oral Absortion i | 94.8 | 93.9 |
QPloghERG j | −4.5 | −4.7 | AMES Toxicity k | Non-toxic AMES/0.58 | Non-toxic AMES/0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Ceballos, A.; Caballero, N.A.; Castro, M.E.; Perez-Aguilar, J.M.; Mammino, L.; Melendez, F.J. In Silico Approach: Anti-Tuberculosis Activity of Caespitate in the H37Rv Strain. Curr. Issues Mol. Biol. 2024, 46, 6489-6507. https://doi.org/10.3390/cimb46070387
Moreno-Ceballos A, Caballero NA, Castro ME, Perez-Aguilar JM, Mammino L, Melendez FJ. In Silico Approach: Anti-Tuberculosis Activity of Caespitate in the H37Rv Strain. Current Issues in Molecular Biology. 2024; 46(7):6489-6507. https://doi.org/10.3390/cimb46070387
Chicago/Turabian StyleMoreno-Ceballos, Andrea, Norma A. Caballero, María Eugenia Castro, Jose Manuel Perez-Aguilar, Liliana Mammino, and Francisco J. Melendez. 2024. "In Silico Approach: Anti-Tuberculosis Activity of Caespitate in the H37Rv Strain" Current Issues in Molecular Biology 46, no. 7: 6489-6507. https://doi.org/10.3390/cimb46070387
APA StyleMoreno-Ceballos, A., Caballero, N. A., Castro, M. E., Perez-Aguilar, J. M., Mammino, L., & Melendez, F. J. (2024). In Silico Approach: Anti-Tuberculosis Activity of Caespitate in the H37Rv Strain. Current Issues in Molecular Biology, 46(7), 6489-6507. https://doi.org/10.3390/cimb46070387