Feasibility Trial Exploring Immune-Related Biomarkers Pertaining to Rapid Immune Surveillance and Cytokine Changes after Consuming a Nutraceutical Supplement Containing Colostrum- and Egg-Based Low-Molecular-Weight Peptides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Reagents
2.3. Consumable Test Products
2.4. Immune Cell Evaluation by Flow Cytometry
2.5. Serum Levels of Cytokines, Chemokines, and Growth Factors
2.6. Saliva Secretory IgA
2.7. Statistical Analysis
3. Results
3.1. Immune Surveillance
3.2. Increased Numbers of Immune Cells Expressing CD25 but Not CD69
3.3. Decreased Pro-Activating Cytokine Production
3.4. Immune Changes after 24 h
3.5. Saliva Secretory IgA and IgG
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chieppa, M.; Rescigno, M.; Huang, A.Y.; Germain, R.N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 2006, 203, 2841–2852. [Google Scholar] [CrossRef] [PubMed]
- Mikami, Y.; Tsunoda, J.; Kiyohara, H.; Taniki, N.; Teratani, T.; Kanai, T. Vagus nerve-mediated intestinal immune regulation: Therapeutic implications of inflammatory bowel diseases. Int. Immunol. 2022, 34, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Bekkering, S.; Domínguez-Andrés, J.; Joosten, L.A.B.; Riksen, N.P.; Netea, M.G. Trained Immunity: Reprogramming Innate Immunity in Health and Disease. Annu. Rev. Immunol. 2021, 39, 667–693. [Google Scholar] [CrossRef] [PubMed]
- Jensen, G.S.; Patel, D.; Benson, K.F. A novel extract from bovine colostrum whey supports innate immune functions. II. Rapid changes in cellular immune function in humans. Prev. Med. 2012, 54, S124–S129. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, C.H.; Burger, D.R.; Lawrence, H.S. Immunobiology of Transfer Factor; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Lawrence, H.S. The transfer in humans of delayed skin sensitivity to streptococcal M substance and to tuberculin with disrupted leucocytes. J. Clin. Investig. 1955, 34, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Playford, R.J.; Macdonald, C.E.; Johnson, W.S. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr. 2000, 72, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Isobe, N.; Matsukawa, S.; Kubo, K.; Ueno, K.; Sugino, T.; Nii, T.; Yoshimura, Y. Effects of oral administration of colostrum whey in peripartum goat on antimicrobial peptides in postpartum milk. Anim. Sci. J. 2020, 91, e13365. [Google Scholar] [CrossRef]
- Feng, Z.; Shen, Y.; Fan, G.; Li, T.; Wu, C.; Ye, Y. Unravelling the Proteomic Profiles of Bovine Colostrum and Mature Milk Derived from the First and Second Lactations. Foods 2023, 12, 4056. [Google Scholar] [CrossRef]
- Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef]
- Janusz, M.; Zabłocka, A. Colostrinin: A proline-rich polypeptide complex of potential therapeutic interest. Cell. Mol. Biol. 2013, 59, 4–11. [Google Scholar]
- Sokal, I.; Janusz, M.; Miecznikowska, H.; Kupryszewski, G.; Lisowski, J. Effect of colostrinin, an immunomodulatory proline-rich polypeptide from ovine colostrum, on sialidase and beta-galactosidase activities in murine thymocytes. Arch. Immunol. Ther. Exp. 1998, 46, 193–198. [Google Scholar]
- Viza, D.; Fudenberg, H.H.; Palareti, A.; Ablashi, D.; De Vinci, C.; Pizza, G. Transfer Factor: An overlooked potential for the prevention and treatment of infectious diseases. Folia. Biol. 2013, 59, 53–67. [Google Scholar]
- Pizza, G.; Viza, D.; De Vinci, C.; Palareti, A.; Cuzzocrea, D.; Fornarola, V.; Baricordi, R. Orally administered HSV-specific transfer factor (TF) prevents genital or labial herpes relapses. Biotherapy 1996, 9, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Pizza, G.; Chiodo, F.; Colangeli, V.; Gritti, F.; Raise, E.; Fudenberg, H.H.; De Vinci, C.; Viza, D. Preliminary observations using HIV-specific transfer factor in AIDS. Biotherapy 1996, 9, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Stelwagen, K.; Carpenter, E.; Haigh, B.; Hodgkinson, A.; Wheeler, T.T. Immune components of bovine colostrum and milk. J. Anim. Sci. 2009, 87 (Suppl. 13), 3–9. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Fulton, J.E.; Wong, E.A. Temporal expression of avian β defensin 10 and cathelicidins in the yolk sac tissue of broiler and layer embryos. Poult. Sci. 2023, 102, 102334. [Google Scholar] [CrossRef] [PubMed]
- Hincke, M.T.; Da Silva, M.; Guyot, N.; Gautron, J.; McKee, M.D.; Guabiraba-Brito, R.; Réhault-Godbert, S. Dynamics of Structural Barriers and Innate Immune Components during Incubation of the Avian Egg: Critical Interplay between Autonomous Embryonic Development and Maternal Anticipation. J. Innate Immun. 2019, 11, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Playford, R.J.; Choudhry, N.; Kelly, P.; Marchbank, T. Effects of Bovine Colostrum with or without Egg on In Vitro Bacterial-Induced Intestinal Damage with Relevance for SIBO and Infectious Diarrhea. Nutrients 2021, 13, 1024. [Google Scholar] [CrossRef] [PubMed]
- Vetvicka, V.; Vetvickova, J. Effects of Transfer Factor Supplementation on Immune Reactions in Mice. J. Nutr. Health Sci. 2019, 6, 301. [Google Scholar]
- Vetvicka, V.; Fernandez-Botran, R. Non-specific immunostimulatory effects of transfer factor. Int. Clin. Pathol. J. 2020, 8, 1–6. [Google Scholar]
- Vetvicka, V.; Vetvickova, J. Antigen-Specific Immunomodulatory Effects of Transfer Factor. Austin. J. Clin. Pathol. 2020, 7, 1062. [Google Scholar]
- Andersen, A.; Vieira-Brock, P.L.; Vaughan, B.; Vollmer, D. Method development for the analysis of PBMC-mediated killing of K562 cells by bovine colostrum. J. Immunol. Methods 2021, 499, 113175. [Google Scholar] [CrossRef] [PubMed]
- Thiel, A.; Glávits, R.; Murbach, T.S.; Endres, J.R.; Reddeman, R.; Hirka, G.; Vértesi, A.; Béres, E.; Szakonyiné, I.P. Toxicological evaluations of colostrum ultrafiltrate. Regul. Toxicol. Pharmacol. 2019, 104, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; McGarry, S.; Cruickshank, D.; Jensen, G.S. Rapid increase in immune surveillance and expression of NKT and γδT cell activation markers after consuming a nutraceutical supplement containing Aloe vera gel, extracts of Poria cocos and rosemary. A randomized placebo-controlled cross-over trial. PLoS ONE 2023, 18, e0291254. [Google Scholar] [CrossRef] [PubMed]
- Drapeau, C.; Benson, K.F.; James, J.; Jensen, G.S. Aloe macroclada from Madagascar Triggers Transient Bone Marrow Stem Cell Mobilization. J. Stem. Cell Res. Ther. 2015, 5, 287. [Google Scholar] [CrossRef]
- Dimitrov, S.; Lange, T.; Nohroudi, K.; Born, J. Number and function of circulating human antigen presenting cells regulated by sleep. Sleep 2007, 30, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Lefta, M.; Wolff, G.; Esser, K.A. Circadian rhythms, the molecular clock, and skeletal muscle. Curr. Top. Dev. Biol. 2011, 96, 231–271. [Google Scholar] [PubMed]
- Narasimamurthy, R.; Hatori, M.; Nayak, S.K.; Liu, F.; Panda, S.; Verma, I.M. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc. Natl. Acad. Sci. USA 2012, 109, 12662–12667. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.J. Adhesion molecules, catecholamines and leucocyte redistribution during and following exercise. Sports Med. 2003, 33, 261–284. [Google Scholar] [CrossRef]
- Dimitrov, S.; Benedict, C.; Heutling, D.; Westermann, J.; Born, J.; Lange, T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 2009, 113, 5134–5143. [Google Scholar] [CrossRef]
- Atanackovic, D.; Schnee, B.; Schuch, G.; Faltz, C.; Schulze, J.; Weber, C.S.; Schafhausen, P.; Bartels, K.; Bokemeyer, C.; Brunner-Weinzierl, M.C.; et al. Acute psychological stress alerts the adaptive immune response: Stress-induced mobilization of effector T cells. J. Neuroimmunol. 2006, 176, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Atanackovic, D.; Brunner-Weinzierl, M.C.; Kröger, H.; Serke, S.; Deter, H.C. Acute psychological stress simultaneously alters hormone levels, recruitment of lymphocyte subsets, and production of reactive oxygen species. Immunol. Investig. 2002, 31, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, G.; Anfossi, A.; De Ciucis, C.G.; Mecocci, S.; Carta, T.; Dei Giudici, S.; Fruscione, F.; Zinellu, S.; Vito, G.; Graham, S.P.; et al. Targeting Toll-Like Receptor 2: Polarization of Porcine Macrophages by a Mycoplasma-Derived Pam2cys Lipopeptide. Vaccines 2021, 9, 692. [Google Scholar] [CrossRef] [PubMed]
- Clemen, R.; Arlt, K.; Miebach, L.; von Woedtke, T.; Bekeschus, S. Oxidized Proteins Differentially Affect Maturation and Activation of Human Monocyte-Derived Cells. Cells 2022, 11, 3659. [Google Scholar] [CrossRef] [PubMed]
- Carreira-Santos, S.; López-Sejas, N.; González-Sánchez, M.; Sánchez-Hernández, E.; Pera, A.; Hassouneh, F.; Durán, E.; Solana, R.; Casado, J.G.; Tarazona, R. Enhanced expression of natural cytotoxicity receptors on cytokine-induced memory-like natural killer cells correlates with effector function. Front. Immunol. 2023, 14, 1256404. [Google Scholar] [CrossRef] [PubMed]
- Jensen, G.S.; Yu, L.; Iloba, I.; Cruickshank, D.; Matos, J.R.; Newman, R.A. Differential Activities of the Botanical Extract PBI-05204 and Oleandrin on Innate Immune Functions under Viral Challenge Versus Inflammatory Culture Conditions. Molecules 2023, 28, 4799. [Google Scholar] [CrossRef] [PubMed]
- Benson, K.F.; Carter, S.G.; Patterson, K.M.; Patel, D.; Jensen, G.S. A novel extract from bovine colostrum whey supports anti-bacterial and anti-viral innate immune functions in vitro and in vivo: I. Enhanced immune activity in vitro translates to improved microbial clearance in animal infection models. Prev. Med. 2012, 54, S116–S123. [Google Scholar] [CrossRef]
- Han, X.; Vaughan, B.; Vollmer, D. Safety and Efficacy of a Multivitamin, Multimineral, Bovine Colostrum-Containing Supplement: An Open-label Pilot Intervention Trial in Healthy Adult Women and Men. Altern. Ther. Health Med. 2023, 29, 34–40. [Google Scholar]
Participant | Gender | Age | BMI |
---|---|---|---|
P001 | Male | 37.4 | 27.94 |
P002 | Male | 74.5 | 19.63 |
P003 | Male | 52.8 | 23.82 |
P004 | Female | 38.5 | 28.5 |
Average ± StDev | 50.8 ± 17.3 | 25 ± 4.1 | |
Range | 37.4–74.5 | 19.63–28.5 |
N | Baseline a | 1 h a | 2 h a | 24 h a | |
---|---|---|---|---|---|
CELMPs | 4 | 221.32 ± 38.18 | 129.64 ± 24.61 | 212.86 ± 42.34 | 225.67 ± 36.4 |
Placebo | 4 | 287.27 ± 68.89 | 187.15 ± 28.28 | 203.32 ± 46.86 | 250.5 ± 56.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Iloba, I.; Cruickshank, D.; Jensen, G.S. Feasibility Trial Exploring Immune-Related Biomarkers Pertaining to Rapid Immune Surveillance and Cytokine Changes after Consuming a Nutraceutical Supplement Containing Colostrum- and Egg-Based Low-Molecular-Weight Peptides. Curr. Issues Mol. Biol. 2024, 46, 6710-6724. https://doi.org/10.3390/cimb46070400
Yu L, Iloba I, Cruickshank D, Jensen GS. Feasibility Trial Exploring Immune-Related Biomarkers Pertaining to Rapid Immune Surveillance and Cytokine Changes after Consuming a Nutraceutical Supplement Containing Colostrum- and Egg-Based Low-Molecular-Weight Peptides. Current Issues in Molecular Biology. 2024; 46(7):6710-6724. https://doi.org/10.3390/cimb46070400
Chicago/Turabian StyleYu, Liu, Ifeanyi Iloba, Dina Cruickshank, and Gitte S. Jensen. 2024. "Feasibility Trial Exploring Immune-Related Biomarkers Pertaining to Rapid Immune Surveillance and Cytokine Changes after Consuming a Nutraceutical Supplement Containing Colostrum- and Egg-Based Low-Molecular-Weight Peptides" Current Issues in Molecular Biology 46, no. 7: 6710-6724. https://doi.org/10.3390/cimb46070400
APA StyleYu, L., Iloba, I., Cruickshank, D., & Jensen, G. S. (2024). Feasibility Trial Exploring Immune-Related Biomarkers Pertaining to Rapid Immune Surveillance and Cytokine Changes after Consuming a Nutraceutical Supplement Containing Colostrum- and Egg-Based Low-Molecular-Weight Peptides. Current Issues in Molecular Biology, 46(7), 6710-6724. https://doi.org/10.3390/cimb46070400