Expression and Functional Analysis of Immuno-Micro-RNAs mir-146a and mir-326 in Colorectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 2019, 20, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; An, J.; Liu, Z.; Zhang, F. Non-Coding RNAs in Colorectal Cancer: Their Functions and Mechanisms. Front. Oncol. 2022, 12, 783079. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Chen, S.; Luan, Z.; Fan, M.; Wang, Y.; Sun, G.; Dai, G. Immune function of colon cancer associated miRNA and target genes. Front. Immunol. 2023, 14, 1203070. [Google Scholar] [CrossRef] [PubMed]
- Paterson, M.R.; Kriegel, A. MiR-146a/b: A family with shared seeds and different roots. Physiol. Genom. 2017, 49, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Li, T.; Wang, L.; Wu, X.; Liu, J.; Xu, Y.; Wei, W. Multiple roles of microRNA-146a in immune responses and hepatocellular carcinoma. Oncol. Lett. 2019, 18, 5033–5042. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Vandenboom, T.G., 2nd; Wang, Z.; Kong, D.; Ali, S.; Philip, P.A.; Sarkar, F.H. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010, 70, 1486–1495. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Guan, S.; Liu, F.; Chen, X.; Han, L.; Wang, D.; Nesa, E.U.; Wang, X.; Bao, C.; Wang, N.; et al. Prognostic and diagnostic potential of miR-146a in oesophageal squamous cell carcinoma. Br. J. Cancer 2016, 114, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.L.; Chiang, A.; Chang, D.; Ying, S.Y. Loss of mir-146a function in hormone-refractory prostate cancer. RNA 2008, 14, 417–424. [Google Scholar] [CrossRef]
- Cui, J.Y.; She, K.; Tian, D.; Zhang, P.; Xin, X. miR-146a inhibits proliferation and enhances Chemosensitivity in epithelial ovarian cancer via reduction of SOD2. Oncol. Res. 2016, 23, 275–282. [Google Scholar] [CrossRef]
- Chen, G.; Umelo, I.A.; Lv, S.; Teugels, E.; Fostier, K.; Kronenberger, P.; Dewaele, A.; Sadones, J.; Geers, C.; De Greve, J. miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells. PLoS ONE 2013, 8, e60317. [Google Scholar] [CrossRef]
- Yao, Q.; Cao, Z.; Tu, C.; Zhao, Y.; Liu, H.; Zhang, S. MicroRNA-146a acts as a metastasis suppressor in gastric cancer by targeting WASF2. Cancer Lett. 2013, 335, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Iacona, J.R.; Lutz, C.S. miR-146a-5p: Expression, regulation, and functions in cancer. Wiley Interdiscip. Rev. RNA 2019, 10, e1533. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Song, J.; Ding, B.; Cui, Y.; Liang, J.; Han, S. miR-146a promotes cervical cancer cell viability via targeting IRAK1 and TRAF6. Oncol. Rep. 2018, 9, 3015–3024. [Google Scholar] [CrossRef] [PubMed]
- Noorolyai, S.; Baghbani, E.; Aghebati Maleki, L.; Baghbanzadeh Kojabad, A.; Shanehbansdi, D.; Khaze Shahgoli, V.; Mokhtarzadeh, A.; Baradaran, B. Restoration of miR-193a-5p and miR-146 a-5p Expression Induces G1 Arrest in Colorectal Cancer through Targeting of MDM2/p53. Adv. Pharm. Bull. 2020, 10, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Garo, L.P.; Ajay, A.K.; Fujiwara, M.; Gabriely, G.; Raheja, R.; Kuhn, C.; Kenyon, B.; Skillin, N.; Kadowaki-Saga, R.; Saxena, S.; et al. MicroRNA-146a limits tumorigenic inflammation in colorectal cancer. Nat. Commun. 2021, 12, 2419. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Yao, Q.; Zhan, C.; Le-Meng, Z.; Liu, H.; Cai, Y. MicroRNA-146a promote cell migration and invasion in human colorectal cancer via carboxypeptidase M/src-FAK pathway. Oncotarget 2017, 8, 22674–22684. [Google Scholar] [CrossRef] [PubMed]
- Khorrami, S.; Zavaran Hosseini, A.; Mowla, S.J.; Soleimani, M.; Rakhshani, N.; Malekzadeh, R. MicroRNA-146a induces immune suppression and drug-resistant colorectal cancer cells. Tumor Biol. 2017, 39, 1010428317698365. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.-L.; Jiang, J.-K.; Yang, S.-H.; Huang, T.-S.; Lan, H.-Y.; Teng, H.-W.; Yang, C.-Y.; Tsai, Y.-P.; Lin, C.-H.; Yang, M.-H. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat. Cell Biol. 2014, 16, 268–280. [Google Scholar] [CrossRef]
- Runtsch, M.C.; Hu, R.; Alexander, M.; Wallace, J.; Kagele, D.; Petersen, C.; Valentine, J.F.; Welker, N.C.; Bronner, M.P.; Chen, X.; et al. MicroRNA-146a constrains multiple parameters of intestinal immunity and increases susceptibility to DSS colitis. Oncotarget 2015, 6, 28556–28572. [Google Scholar] [CrossRef]
- Monteys, A.M.; Spengler, R.M.; Wan, J.; Tecedor, L.; Lennox, K.A.; Xing, Y.; Davidson, B.L. Structure and activity of putative intronic miRNA promoters. RNA 2010, 16, 495–505. [Google Scholar] [CrossRef]
- Santos-Zas, I.; Lodeiro, M.; Gurriarán-Rodríguez, U.; Bouzo-Lorenzo, M.; Mosteiro, C.S.; Casanueva, F.F.; Casabiell, X.; Pazos, Y.; Camiña, J.P. β-Arrestin signal complex plays a critical role in adipose differentiation. Int. J. Biochem. Cell Biol. 2013, 45, 1281–1292. [Google Scholar] [CrossRef]
- Po, A.; Begalli, F.; Abballe, L.; Alfano, V.; Besharat, Z.M.; Catanzaro, G.; Vacca, A.; Napolitano, M.; Tafani, M.; Giangaspero, F.; et al. β-Arrestin1/miR-326 Transcription Unit Is Epigenetically Regulated in Neural Stem Cells Where It Controls Stemness and Growth Arrest. Stem Cells Int. 2017, 2017, 5274171. [Google Scholar] [CrossRef]
- Luttrell, L.M.; Lefkowitz, R.J. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Sci. 2002, 115 Pt 3, 455–465. [Google Scholar] [CrossRef]
- Song, Q.; Ji, Q.; Li, Q. The role and mechanism of β-arrestins in cancer invasion and metastasis (Review). Int. J. Mol. Med. 2018, 41, 631–639. [Google Scholar] [CrossRef]
- Jeker, L.T.; Bluestone, J.A. MicroRNA regulation of T-cell differentiation and function. Immunol. Rev. 2013, 253, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Huang, C.; Li, S.; Yang, C.; Xi, Y.; Wang, L.; Zhang, F.; Fu, Y.; Li, D. Hsa-miR- 326 targets CCND1 and inhibits non-small cell lung cancer development. Oncotarget 2016, 7, 8. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, B.; Kong, Y.; Ma, F.; Hua, Y. miR-326 Inhibits Gastric Cancer Cell Growth Through Downregulating NOB. Oncol. Res. 2017, 25, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Wu, H.; Xia, J.; Li, Y.; Zhang, Y.; Huang, K.; Wagar, N.; Yoon, Y.; Cho, H.T.; Scala, S.; et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol. 2010, 79, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Bo, L.; Hui-Yang, J.; Tao, Y. Enzalutamide-Induced Upregulation of PCAT6 Promotes Prostate Cancer Neuroendocrine Differentiation by Regulating miR-326/HNRNPA2B1 Axis. Front. Oncol. 2021, 11, 650054. [Google Scholar]
- Wang, L.; Guo, J.; Li, F. Research progress of miRNA-326 in malignant tumors. J. Gastroenterol. Res. Pract. 2023, 3, 1133. [Google Scholar]
- Pan, Y.J.; Wan, J.; Wang, C.B. MiR-326: Promising Biomarker for Cancer. Cancer Manag. Res. 2019, 11, 10411–10418. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Hui, H.; Wang, L.J.; Wang, H.; Liu, Q.F.; Han, S.X. MicroRNA-326 functions as a tumor suppressor in colorectal cancer by targeting the nin one binding protein. Oncol. Rep. 2015, 33, 2309–2318. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Huertes, S. Study of the Role of mir-326 in Colorectal Cancer. Ph.D. Dissertation, Universidad Autónoma de Madrid, Madrid, Spain, 2023. [Google Scholar]
- GraphPad Prism Version 10.0.0 for Windows, GraphPad Software, Boston, MA, USA. Available online: www.graphpad.com (accessed on 17 May 2022).
- Addinsoft. XLSTAT Statistical and Data Analysis Solution. New York, NY, USA, 2022. Available online: https://www.xlstat.com (accessed on 18 May 2024).
- Tong, Z.; Cui, Q.; Wang, J.; Zhou, Y. TransmiR v2.0: An updated transcription factor-microRNA regulation database. Nucleic Acids Res. 2019, 47, D253–D258. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020, 48, W244–W251. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas. Available online: https://www.cancer.gov/tcga (accessed on 10 January 2023).
- Human Protein Atlas. Available online: https://www.proteinatlas.org (accessed on 10 January 2023).
- Bonke, M.; Turunen, M.; Sokolova, M.; Vähärautio, A.; Kivioja, T.; Taipale, M.; Björklund, M.; Taipale, J. Transcriptional networks controlling the cell cycle. G3 2013, 3, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Okawa, S.; Nicklas, S.; Zickenrott, S.; Schwamborn, J.C.; Del Sol, A. A Generalized Gene-Regulatory Network Model of Stem Cell Differentiation for Predicting Lineage Specifiers. Stem Cell Rep. 2016, 13, 307–315. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Qin, G.; Mallik, S.; Mitra, R.; Li, A.; Jia, P.; Eischen, C.M.; Zhao, Z. MicroRNA and transcription factor co-regulatory networks and subtype classification of seminoma and non-seminoma in testicular germ cell tumors. Sci Rep. 2020, 10, 852. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Huang, L.; Zheng, Y.; Huang, H.; Chen, L.; Chi, L. Expression of miR-146a in colon cancer and its significance. Nan Fang Yi Ke Da Xue Xue Bao 2014, 34, 396–400. (In Chinese) [Google Scholar] [PubMed]
- Maralani, M.; Shanehbandi, D.; Asadi, M.; Hashemzadeh, S.; Hajiasgharzadeh, K.; Mashhadi Abdolahi, H.; Baradaran, B.; Peeters, M. Expression profiles of miR-196, miR-132, miR-146a, and miR-134 in human colorectal cancer tissues in accordance with their clinical significance: Comparison regarding KRAS mutation. Wien. Klin. Wochenschr. 2021, 133, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Omrane, I.; Kourda, N.; Stambouli, N.; Privat, M.; Medimegh, I.; Arfaoui, A.; Uhrhammer, N.; Bougatef, K.; Baroudi, O.; Bouzaienne, H.; et al. MicroRNAs 146a and 147b biomarkers for colorectal tumor’s localization. BioMed Res. Int. 2014, 2014, 584852. [Google Scholar] [CrossRef]
- Farc, O.; Berindan-Neagoe, I.; Zaharie, F.; Budisan, L.; Zanoaga, O.; Cristea, V. A role for serum cytokines and cell adhesion molecules in the non-invasive diagnosis of colorectal cancer. Oncol. Lett. 2022, 24, 323. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Okamura, S.; Yamaji, T.; Iwasaki, M.; Tsugane, S.; Shetty, V.; Koizumi, T. Plasma cytokine levels and the presence of colorectal cancer. PLoS ONE 2019, 14, e0213602. [Google Scholar] [CrossRef] [PubMed]
- Kantola, T.; Klintrup, K.; Väyrynen, J.P.; Vornanen, J.; Bloigu, R.; Karhu, T.; Herzig, K.H.; Näpänkangas, J.; Mäkelä, J.; Karttunen, T.J.; et al. Stage-dependent alterations of the serum cytokine pattern in colorectal carcinoma. Br. J. Cancer 2012, 107, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Gregorova, J.; Vychytilova-Faltejskova, P.; Sevcikova, S. Epigenetic Regulation of MicroRNA Clusters and Families during Tumor Development. Cancers 2021, 13, 1333. [Google Scholar] [CrossRef]
- Ma, J.; Wang, T.; Guo, R.; Yang, X.; Yin, J.; Yu, J.; Xiang, Q.; Pan, X.; Zu, X.; Peng, C.; et al. MicroRNA-133a and microRNA-326 co-contribute to hepatocellular carcinoma 5-fluorouracil and cisplatin sensitivity by directly targeting B-cell lymphoma-extra large. Mol. Med. Rep. 2015, 12, 6235–6240. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, L.; Peng, Y.; Yang, Y.; Fan, T.; Jiang, X.; Dai, J.; Ouyang, J. The Role of miR-326 in Adipogenic Differentiation of Human Adipose-Derived Stem Cells by Targeting C/EBPα in vitro. Anat. Rec. 2020, 303, 2054–2060. [Google Scholar] [CrossRef] [PubMed]
- Otto, T.; Candido, S.V.; Pilarz, M.S.; Sicinska, E.; Bronson, R.T.; Bowden, M.; Lachowicz, I.A.; Mulry, K.; Fassl, A.; Han, R.C.; et al. Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc. Natl. Acad. Sci. USA 2017, 114, 10660–10665. [Google Scholar] [CrossRef] [PubMed]
- Farc, O.; Budisan, L.; Berindan-Neagoe, I.; Braicu, C.; Zanoaga, O.; Zaharie, F.; Cristea, V. A Group of Tumor-Suppressive micro-RNAs Changes Expression Coordinately in Colon Cancer. Curr. Issues Mol. Biol. 2023, 45, 975–989. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Concepcion, J.; Uprety, D.; Adjei, A.A. Challenges in the Use of Targeted Therapies in Non-Small Cell Lung Cancer. Cancer Res. Treat. 2022, 54, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xing, Y.; Li, B.; Li, X.; Liu, B.; Wang, Y. Molecular pathways, resistance mechanisms and targeted interventions in non-small-cell lung cancer. Mol. Med. 2022, 3, 42. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, S.; Xin, Q.; Zhang, Y.; Wang, K.; Li, M. Recent progress of CDK4/6 inhibitors’ current practice in breast cancer. Cancer Gene Ther. 2024. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.G.R.J.; Hershorn, O.; Singh, H.; Park, J.; Helewa, R.M. Sampling errors in the diagnostic of colorectal cancer is associated with delay to surgery: A retrospective cohort study. Surg. Endosc. 2022, 36, 4893–4902. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Shen, Q.; DuPré, E.; Kim, H.; Hilsenbeck, S.; Brown, P.H. cFos is critical for MCF-7 breast cancer cell growth. Oncogene 2005, 24, 6516–6524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020, 13, 165. [Google Scholar] [CrossRef]
- Kuang, C.; Tong, J.; Ermine, K.; Cai, M.; Dai, F.; Hao, S.; Giles, F.; Huang, Y.; Yu, J.; Zhang, L. Dual inhibition of BET and HAT/p300 suppresses colorectal cancer via DR5- and p53/PUMA-mediated cell death. Front. Oncol. 2022, 12, 1018775. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
1. Mean age (years) | 67.51 (11.4) | |
2. Sex | Male | 21 (46.66%) |
Female | 24 (53.33%) | |
3. Tumor histology | Adenocarcinoma | 45 (100%) |
4. Tumor TNM stage | 1 | 6 (13.33%) |
2 | 19 (42.22%) | |
3–4 | 20 (44.44%) | |
5. Tumor WHO grade | 1 | 9 (20%) |
2 | 27 (60%) | |
3 | 9 (20%) | |
6. Tumor location | Right colon | 21 (46.66%) |
Left colon | 19 (42.22%) | |
Rectum | 5 (11.11) | |
7. Comorbid conditions | Inflammatory conditions (RA, IBD) | 0 (0%) |
Diabetes mellitus | 5 (11.11%) | |
Cirrhosis | 1 (2.22) | |
Ascites | 1 (2.22) | |
CKD | 1 (2.22) | |
Chronic bronchitis | 2 (4.44) |
miR-146a Network | miR-326 Network | |||
---|---|---|---|---|
No. | Module (Hub Gene) | Functions (KEGG Pathways) | Module (Hub Gene) | Functions (KEGG Pathways) |
1 | FOS | MAPK signaling pathway Pathways in cancer Osteoclastic differentiation Colorectal cancer Cytokine–cytokine receptor interaction Apoptosis | FOS | MAPK signaling pathway Pathways in cancer Osteoclastic differentiation Colorectal cancer Cytokine–cytokine receptor interaction Apoptosis |
2 | MYC | Cell cycle Antigen processing P53 signaling pathway Cell adhesion molecules Colorectal cancer | MYC | Cell cycle Antigen processing P53 signaling pathway Cell adhesion molecules Colorectal cancer |
3 | ERG | Leukocytes transendothelial migration Cell adhesion molecules Pathways in cancer NK-mediated cytotoxicity Rheumatoid arthritis | ERG | Leukocytes transendothelial migration Cell adhesion molecules Pathways in cancer NK-mediated cytotoxicity Rheumatoid arthritis |
4 | TP53 | P53 pathway Cell cycle NLR pathway Pathways in cancer | TP53 | P53 pathway Cell cycle NLR pathway Pathways in cancer |
5 | NFIC | ECM-ligand interaction Focal adhesion Steroid hormone biosynthesis Purine metabolism | NFIC | ECM-ligand interaction Focal adhesion Steroid hormone biosynthesis Purine metabolism |
7 | HDAC2 | p53 signaling pathway TGFβ signaling pathway Cell cycle Transcription misregulation in cancer | HDAC2 | P53 signaling pathway TGFβ signaling pathway Cell cycle Transcription misregulation in cancer |
8 | STAT3 | Jak-STAT signaling pathway Influenza A Hepatitis C Complement and coagulation cascade P53 signaling Pathways in cancer | STAT3 | Jak-STAT signaling pathway Influenza A Hepatitis C Complement and coagulation cascade P53 signaling Pathways in cancer |
9 | GATA2 | Asthma Fatty acid metabolism FCεRI pathway Leucocyte transendothelial migration | GATA2 | Asthma Fatty acid metabolism FCεRI pathway Leucocyte transendothelial migration |
10 | HIF1A | Pathways in cancer Glycolysis, gluconeogenesis Toxoplasmosis TLR signaling pathway | HIF1A | Pathways in cancer Glycolysis, gluconeogenesis Toxoplasmosis TLR signaling pathway |
11 | miR-335 | Cytokine–cytokine receptor interaction | miR-335 | Cytokine–cytokine receptor interaction |
12 | CTNNB1 | Colorectal cancer Pathways in cancer Adheens junction WNT signaling pathway | EOMES | P53 signaling pathway Hepatitis C Cell cycle |
13 | TAF1 | Erbb signaling pathway HTLV1 infection | EGR1 | Glycosamine degradation HTLV1 infection Focal adhesion Autoimmune thyroid disease |
14 | GABPA1 | Calcium signaling pathway | CREB1 | Dopaminergic synapse Antigen processing and presentation Complement and coagulation cascade Calcium signaling pathway Fatty acid biosynthesis |
15 | POU2F2 | Antigen processing Cell adhesion molecules | MYCN | Antigen processing and presentation Epstein Barr virus infection Cell cycle NK mediated cytotoxicity Neutrophylin signaling |
16 | MITF | Melanogenesis Pathways in cancer BCR signaling pathway | MAX | Cell adhesion molecules Cytokine–cytokine receptor interaction Regulation of actin cytoskeleton Leukocyte transepithelial migration Tight junction |
17 | FOSL1 | ECM-receptor interaction Cytokine–cytokine receptor interaction Cell cycle TLR signaling pathway Pathways in cancer | E2F1 | Cell cycle P53 signaling pathway Rig-1-like receptor pathway Pathways in cancer |
18 | BRCA1 | Measles JAK-STAT signaling pathway Tuberculosis TLR signaling pathway | EP300 | Pathways in cancer HTLV-1 infection Cell cycle TGFβ signaling pathway Bile secretion Notch signaling pathway |
19 | MXI1 | Cytokine–cytokine receptor interaction Measles Regulation of actin cytoskeleton Leukocyte transendothelial migration Tight junction | PML | Pathways in cancer Colorectal cancer P53 signaling pathway Apoptosis |
20 | EED | Cell cycle Pathways in cancer Oocyte meiosis p53 signaling pathway Rheumatoid arthritis Linoleic acid metabolism | ZBTB7A | Glycolysis/gluconeogenesis Pentose phosphate pathway Pyruvate metabolism P53 signaling pathway Cell cycle Pathways in cancer |
21 | USF1 | Leishmaniasis Antigen processing and presentation Glycolysis-gluconeogenesis | NR3C1 | Phenylalanine metabolism P53 signaling pathway |
22 | NCOR1 | Transcription misregulation in cancer PPAR signaling pathway P53 signaling pathway Adherens junction | NRF1 | RNA transport Citrate cycle Mucin glycan A biosynthesis |
23 | HSF1 | Legionellosis NK mediated cytotoxicity | XBP1 | Protein processing in the endoplasmic reticulum Aminoacid metabolism |
24 | NFKB1 | Cytokine–cytokine receptor interaction Chemokine signaling pathway NLR pathway Intestinal immune network for IgA secretion | RELA | Cytokine–cytokine receptor interaction Chemokine signaling pathway NLR pathway Apoptosis Intestinal immune network for IgA secretion |
25 | STAT1 | TLR receptor signaling Hepatitis C Cytokine-receptor interaction JAK-STAT pathway Intestinal immune network for IgA secretion |
MiRNA | Pathway (KEGG) | FDR |
---|---|---|
miR-146a module | TLR signaling | 0.029 |
Adherens junction | 0.029 | |
Notch signaling pathway | 0.029 | |
Axon guidance | 0.029 | |
RIG-1 receptor signaling | 0.029 | |
Colorectal cancer | 0.029 | |
Apoptosis | 0.029 | |
Neutrophin signaling pathway | 0.029 | |
Pertussis | 0.029 | |
Chagas disease | 0.030 | |
WNT signaling pathway | 0.047 | |
miR-326 module | Hedgehog signaling pathway | 0.111 |
Insulin pathway signaling | 0.263 | |
Vibrio cholerae infection | 0.308 | |
Tight junction | 0.308 | |
Fatty acid biosynthesis | 0.501 | |
Notch signaling pathway | 0.501 | |
Dorso-ventral axis formation | 0.55 | |
Complement and coagulation cascade | 0.55 | |
Adherens junction | 0.55 | |
B-cell receptor signaling pathway | 0.55 | |
Transcriptional misregulation in cancer | 0.55 | |
TGFβ signaling pathway | 0.556 | |
Systemic lupus erythematosus | 0.559 | |
FCγR-mediated phagocytosis | 0.608 | |
Regulation of actin cytoskeleton | 0.608 |
Correlation | Normal Tissue | Tumoral Tissue |
---|---|---|
MiR-146a-miR-326 | 0.844 * | 0.797 * |
Pathway | FDR |
---|---|
Pathways in cancer | 3.6 × 10−10 |
Transcriptional misregulation in cancer | 5 × 10−9 |
Th17 differentiation | 7.1 × 10−9 |
PD-1 expression and PD-L regulation in cancer | 1.7 × 10−7 |
Colorectal cancer | 7.9 × 10−6 |
MAPK pathway | 3.6 × 10−5 |
Micro-RNAs in cancer | 6.9 × 10−5 |
Clinical Parameter | Micro-RNA | AUC | Sensitivity | Specificity | |
---|---|---|---|---|---|
TNM stage | Stages 1–2 | miR-146a | 0.655 | 0.76 | 0.56 |
miR-326 | 0.808 | 0,91 | 0.68 | ||
miR146a_ + miR-326 | 0.824 | 0.76 | 0.89 | ||
Stages 3–4 | miR-146a | 0.741 | 0.69 | 0.80 | |
miR-326 | 0.850 | 0.91 | 0.77 | ||
miR146a_ + miR-326 | 0.872 | 0.91 | 0.76 | ||
Tumor location | Right colon | miR-146a | 0.742 | 0.60 | 0.86 |
miR-326 | 0.878 | 0.91 | 0.72 | ||
miR146a_ + miR-326 | 0.888 | 0.952 | 0.76 | ||
Left colon+ rectum | miR-146a | 0.651 | 0.778 | 0.583 | |
miR-326 | 0.781 | 0.911 | 0.625 | ||
miR146a_ + miR-326 | 0.807 | 0.75 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farc, O.; Budisan, L.; Zaharie, F.; Țăulean, R.; Vălean, D.; Talvan, E.; Neagoe, I.B.; Zănoagă, O.; Braicu, C.; Cristea, V. Expression and Functional Analysis of Immuno-Micro-RNAs mir-146a and mir-326 in Colorectal Cancer. Curr. Issues Mol. Biol. 2024, 46, 7065-7085. https://doi.org/10.3390/cimb46070421
Farc O, Budisan L, Zaharie F, Țăulean R, Vălean D, Talvan E, Neagoe IB, Zănoagă O, Braicu C, Cristea V. Expression and Functional Analysis of Immuno-Micro-RNAs mir-146a and mir-326 in Colorectal Cancer. Current Issues in Molecular Biology. 2024; 46(7):7065-7085. https://doi.org/10.3390/cimb46070421
Chicago/Turabian StyleFarc, Ovidiu, Liviuta Budisan, Florin Zaharie, Roman Țăulean, Dan Vălean, Elena Talvan, Ioana Berindan Neagoe, Oana Zănoagă, Cornelia Braicu, and Victor Cristea. 2024. "Expression and Functional Analysis of Immuno-Micro-RNAs mir-146a and mir-326 in Colorectal Cancer" Current Issues in Molecular Biology 46, no. 7: 7065-7085. https://doi.org/10.3390/cimb46070421
APA StyleFarc, O., Budisan, L., Zaharie, F., Țăulean, R., Vălean, D., Talvan, E., Neagoe, I. B., Zănoagă, O., Braicu, C., & Cristea, V. (2024). Expression and Functional Analysis of Immuno-Micro-RNAs mir-146a and mir-326 in Colorectal Cancer. Current Issues in Molecular Biology, 46(7), 7065-7085. https://doi.org/10.3390/cimb46070421