The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII
Abstract
:1. Introduction
2. Materials and Methods
Fast Polarography Experiments
3. Results
3.1. Analyzing Oxygen Evolution Patterns
3.2. Kinetics of the Fast and Slow O2 Release Pathways
4. Discussion
4.1. Analyzing Oxygen Evolution Patterns
4.2. Kinetics of the Fast and Slow O2 Release Pathways
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pecoraro, V.L.; Baldwin, M.J.; Caudle, M.T.; Hsieh, W.-Y.; Law, N.A. A proposal for water oxidation in photosystem II. Pure Appl. Chem. 1998, 70, 925–929. [Google Scholar] [CrossRef]
- Wood, P.M. The potential diagram for oxygen at pH 7. Biochem. J. 1988, 253, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Joliot, P.; Barbieri, G.; Chabaud, R. Un nouveau modele des centres photochimiques du systeme II. Photochem. Photobiol. 1969, 10, 309–329. [Google Scholar] [CrossRef]
- Kok, B.; Forbush, B.; McGloin, M. Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem. Photobiol. 1970, 11, 457–475. [Google Scholar] [CrossRef] [PubMed]
- Shevela, D.; Kern, J.F.; Govindjee, G.; Messinger, J. Solar energy conversion by photosystem II: Principles and structures. Photosynth. Res. 2023, 156, 279–307. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.L.; Sauer, K. EPR detection of a cryogenically photogenerated intermediate in photosynthetic oxygen evolution. Biochim. Biophys. Acta 1984, 767, 21–28. [Google Scholar] [CrossRef]
- Dismukes, G.C.; Siderer, Y. Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc. Natl. Acad. Sci. USA 1981, 78, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Hansson, Ö.; Andréasson, L.-E. EPR-detectable magnetically interacting manganese ions in the photosynthetic oxygen-evolving system after continuous illumination. Biochim. Biophys. Acta 1982, 679, 261–268. [Google Scholar] [CrossRef]
- Zimmermann, J.L.; Rutherford, A.W. EPR studies of the oxygen-evolving enzyme of Photosystem II. Biochim. Biophys. Acta 1984, 767, 160–167. [Google Scholar] [CrossRef]
- Pantazis, D.A.; Ames, W.; Cox, N.; Lubitz, W.; Neese, F. Two Interconvertible Structures that Explain the Spectroscopic Properties of the Oxygen-Evolving Complex of Photosystem II in the S2 State. Angew. Chem. Int. Ed. 2012, 51, 9935–9940. [Google Scholar] [CrossRef]
- Miyagawa, K.; Kawakami, T.; Suzuki, Y.; Isobe, H.; Shoji, M.; Yamanaka, S.; Okumura, M.; Nakajima, T.; Yamaguchi, K. Relative stability among intermediate structures in S2 state of CaMn4O5 cluster in PSII by using hybrid-DFT and DLPNO-CC methods and evaluation of magnetic interactions between Mn ions. J. Photochem. Photobiol. A 2020, 405, 112923. [Google Scholar] [CrossRef]
- Sioros, G.; Koulougliotis, D.; Karapanagos, G.; Petrouleas, V. The S1YZ• Metalloradical EPR Signal of Photosystem II Contains Two Distinct Components That Advance Respectively to the Multiline and g = 4.1 Conformations of S2. Biochemistry 2007, 46, 210–217. [Google Scholar] [CrossRef]
- Kusunoki, M. S1-state Mn4Ca complex of Photosystem II exists in equilibrium between the two most-stable isomeric substates: XRD and EXAFS evidence. J. Photochem. Photobiol. B 2011, 104, 100–110. [Google Scholar] [CrossRef]
- Narzi, D.; Mattioli, G.; Bovi, D.; Guidoni, L. A Spotlight on the Compatibility between XFEL and Ab Initio Structures of the Oxygen Evolving Complex in Photosystem II. Chem. Eur. J. 2017, 23, 6969–6973. [Google Scholar] [CrossRef]
- Campbell, K.A.; Peloquin, J.M.; Pham, D.P.; Debus, R.J.; Britt, R.D. Parallel polarization EPR detection of an S1-state “multiline” EPR signal in Photosystem II particles from Synechocystis sp. PCC 6803. J. Am. Chem. Soc. 1998, 120, 447–448. [Google Scholar] [CrossRef]
- Dexheimer, S.L.; Klein, M.P. Detection of a paramagnetic intermediate in the S1 state of the photosynthetic oxygen-evolving complex. J. Am. Chem. Soc. 1992, 114, 2821–2826. [Google Scholar] [CrossRef]
- Drosou, M.; Zahariou, G.; Pantazis, D.A. Orientational Jahn–Teller Isomerism in the Dark-Stable State of Nature’s Water Oxidase. Angew. Chem. Int. Ed. 2021, 60, 13493–13499. [Google Scholar] [CrossRef]
- Yamauchi, T.; Mino, H.; Matsukawa, T.; Kawamori, A.; Ono, T.-A. Parallel polarization electron paramagnetic resonance studies of the S1-state manganese cluster in the photosynthetic oxygen-evolving system. Biochemistry 1997, 36, 7520–7526. [Google Scholar] [CrossRef]
- Hillier, W.; Wydrzynski, T. Substrate water interactions within the Photosystem II oxygen evolving complex. Phys. Chem. Chem. Phys. 2004, 6, 4882–4889. [Google Scholar] [CrossRef]
- Messinger, J.; Badger, J.; Wydrzynski, T. Detection of one slowly exchanging substrate water molecule in the S3 state of photosystem II. Proc. Natl. Acad. Sci. USA 1995, 92, 3209–3213. [Google Scholar] [CrossRef]
- Lohmiller, T.; Krewald, V.; Sedoud, A.; Rutherford, A.W.; Neese, F.; Lubitz, W.; Pantazis, D.A.; Cox, N. The First State in the Catalytic Cycle of the Water-Oxidizing Enzyme: Identification of a Water-Derived μ-Hydroxo Bridge. J. Am. Chem. Soc. 2017, 139, 14412–14424. [Google Scholar] [CrossRef]
- Boussac, A.; Rutherford, A.W.; Sugiura, M. Electron transfer pathways from the S2-states to the S3-states either after a Ca2+/Sr2+ or a Cl−/I− exchange in Photosystem II from Thermosynechococcus elongatus. Biochim. Biophys. Acta 2015, 1847, 576–586. [Google Scholar] [CrossRef]
- Cox, N.; Retegan, M.; Neese, F.; Pantazis, D.A.; Boussac, A.; Lubitz, W. Electronic structure of the oxygenevolving complex in photosystem II prior to O-O bond formation. Science 2014, 345, 804–808. [Google Scholar] [CrossRef]
- Krewald, V.; Retegan, M.; Neese, F.; Lubitz, W.; Pantazis, D.A.; Cox, N. Spin State as a Marker for the Structural Evolution of Nature’s Water-Splitting Catalyst. Inorg. Chem. 2016, 55, 488–501. [Google Scholar] [CrossRef]
- Krewald, V.; Retegan, M.; Cox, N.; Messinger, J.; Lubitz, W.; DeBeer, S.; Neese, F.; Pantazis, D.A. Metal oxidation states in biological water splitting. Chem. Sci. 2015, 6, 1676–1695. [Google Scholar] [CrossRef]
- Ferreira, K.N.; Iverson, T.M.; Maghlaoui, K.; Barber, J.; Iwata, S. Architecture of the Photosynthetic Oxygen-Evolving Center. Science 2004, 303, 1831–1838. [Google Scholar] [CrossRef]
- Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 2011, 473, 55–61. [Google Scholar] [CrossRef]
- De Las Rivas, J.; Balsera, M.; Barber, J. Evolution of oxygenic photosynthesis: Genome-wide analysis of the OEC extrinsic proteins. Trends Plant Sci. 2004, 9, 18–25. [Google Scholar] [CrossRef]
- Guo, Y.; Messinger, J.; Kloo, L.; Sun, L. Reversible Structural Isomerization of Nature’s Water Oxidation Catalyst Prior to O–O Bond Formation. J. Am. Chem. Soc. 2022, 144, 11736–11747. [Google Scholar] [CrossRef]
- Krewald, V.; Neese, F.; Pantazis, D.A. Implications of structural heterogeneity for the electronic structure of the final oxygen-evolving intermediate in photosystem II. J. Inorg. Biochem. 2019, 199, 110797. [Google Scholar] [CrossRef]
- Pantazis, D.A. The S3 State of the Oxygen-Evolving Complex: Overview of Spectroscopy and XFEL Crystallography with a Critical Evaluation of Early-Onset Models for O–O Bond Formation. Inorganics 2019, 7, 55. [Google Scholar] [CrossRef]
- Sakashita, N.; Watanabe, H.C.; Ikeda, T.; Saito, K.; Ishikita, H. Origins of Water Molecules in the Photosystem II Crystal Structure. Biochemistry 2017, 56, 3049–3057. [Google Scholar] [CrossRef] [PubMed]
- Shoji, M.; Isobe, H.; Miyagawa, K.; Yamaguchi, K. Possibility of the right-opened Mn-oxo intermediate (R-oxo(4444)) among all nine intermediates in the S3 state of the oxygen-evolving complex of photosystem II revealed by large-scale QM/MM calculations. Chem. Phys. 2019, 518, 81–90. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Shoji, M.; Isobe, H.; Kawakami, T.; Miyagawa, K.; Suga, M.; Akita, F.; Shen, J.-R. Geometric, electronic and spin structures of the CaMn4O5 catalyst for water oxidation in oxygen-evolving photosystem II. Interplay between experiments and theoretical computations. Coord. Chem. Rev. 2022, 471, 214742. [Google Scholar] [CrossRef]
- Zahariou, G.; Ioannidis, N.; Sanakis, Y.; Pantazis, D.A. Arrested SubstrateBinding Resolves Catalytic Intermediates in Higher-Plant Water Oxidation. Angew. Chem. Int. Ed. 2021, 60, 3156–3162. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Nakajima, Y.; Nango, E.; Owada, S.; Yamada, D.; Hashimoto, K.; Luo, F.; Tanaka, R.; Akita, F.; Kato, K.; et al. Oxygen-evolving photosystem II structures during S1–S2–S3 transitions. Nature 2024, 626, 670–677. [Google Scholar] [CrossRef]
- Burda, K.; Schmid, G.H. On the Determination of the 5-State Distribution in the Kok Model. Z. Naturforsch. 1996, 51, 329–341. [Google Scholar] [CrossRef]
- Burda, K.; Schmid, G.H. Heterogeneity of the mechanism of water splitting in photosystem II. Biochim. Biophys. Acta 2001, 1506, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Ananyev, G.; Roy-Chowdhury, S.; Gates, C.; Fromme, P.; Dismukes, G.C. The Catalytic Cycle of Water Oxidation in Crystallized Photosystem II Complexes: Performance and Requirements for Formation of Intermediates. ACS Catal. 2019, 9, 1396–1407. [Google Scholar] [CrossRef]
- Bhowmick, A.; Hussein, R.; Bogacz, I.; Simon, P.S.; Ibrahim, M.; Chatterjee, R.; Doyle, M.D.; Cheah, M.H.; Fransson, T.; Chernev, P.; et al. Structural evidence for intermediates during O2 formation in photosystem II. Nature 2023, 617, 629–636. [Google Scholar] [CrossRef]
- Greife, P.; Schönborn, M.; Capone, M.; Assunção, R.; Narzi, D.; Guidoni, L.; Dau, H. The electron–proton bottleneck of photosynthetic oxygen evolution. Nature 2023, 617, 623–628. [Google Scholar] [CrossRef]
- Kern, J.; Chatterjee, R.; Young, I.D.; Fuller, F.D.; Lassalle, L.; Ibrahim, M.; Gul, S.; Fransson, T.; Brewster, A.S.; Alonso-Mori, R.; et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 2018, 563, 421–425. [Google Scholar] [CrossRef]
- Lubitz, W.; Pantazis, D.A.; Cox, N. Water oxidation in oxygenic photosynthesis studied by magnetic resonance techniques. FEBS Lett. 2023, 597, 6–29. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Fransson, T.; Chatterjee, R.; Cheah, M.H.; Hussein, R.; Lassalle, L.; Sutherlin, K.D.; Young, I.D.; Fuller, F.D.; Gul, S.; et al. Untangling the sequence of events during the S2 → S3 transition in photosystem II and implications for the water oxidation mechanism. Proc. Natl. Acad. Sci. USA 2020, 117, 12624–12635. [Google Scholar] [CrossRef]
- Retegan, M.; Cox, N.; Lubitz, W.; Neese, F.; Pantazis, D.A. The first tyrosyl radical intermediate formed in the S2–S3 transition of photosystem II. Phys. Chem. Chem. Phys. 2014, 16, 11901–11910. [Google Scholar] [CrossRef] [PubMed]
- Haumann, M.; Liebisch, P.; Müller, C.; Barra, M.; Grabolle, M.; Dau, H. Photosynthetic O2 formation tracked by time-resolved x-ray experiments. Science 2005, 310, 1019–1021. [Google Scholar] [CrossRef]
- Lavergne, J.; Junge, W. Proton release during the redox cycle of the water oxidase. Photosynth. Res. 1993, 38, 279–296. [Google Scholar] [CrossRef]
- Pushkar, Y.; Ravari, A.K.; Jensen, S.C.; Palenik, M. Early Binding of Substrate Oxygen Is Responsible for a Spectroscopically Distinct S2 State in Photosystem II. J. Phys. Chem. Lett. 2019, 10, 5284–5291. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, F.; Lavergne, J. Proton release during successive oxidation steps of the photosynthetic water oxidation process: Stoichiometries and pH dependence. Biochemistry 1991, 30, 10004–10012. [Google Scholar] [CrossRef]
- Suzuki, H.; Sugiura, M.; Noguchi, T. Monitoring Water Reactions during the S-State Cycle of the Photosynthetic Water-Oxidizing Center: Detection of the DOD Bending Vibrations by Means of Fourier Transform Infrared Spectroscopy. Biochemistry 2008, 47, 11024–11030. [Google Scholar] [CrossRef]
- Yang, K.R.; Lakshmi, K.V.; Brudvig, G.W.; Batista, V.S. Is Deprotonation of the Oxygen-Evolving Complex of Photosystem II during the S1 → S2 Transition Suppressed by Proton Quantum Delocalization? J. Am. Chem. Soc. 2021, 143, 8324–8332. [Google Scholar] [CrossRef] [PubMed]
- Klauss, A.; Haumann, M.; Dau, H. Alternating electron and proton transfer steps in photosynthetic water oxidation. Proc. Natl. Acad. Sci. USA 2012, 109, 16035–16040. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Rutherford, A.W.; Ishikita, H. Energetics of proton release on the first oxidation step in the water-oxidizing enzyme. Nat. Commun. 2015, 6, 8488. [Google Scholar] [CrossRef] [PubMed]
- Haumann, M.; Müller, C.; Liebisch, P.; Iuzzolino, L.; Dittmer, J.; Grabolle, M.; Neisius, T.; Meyer-Klaucke, W.; Dau, H. Structural and Oxidation State Changes of the Photosystem II Manganese Complex in Four Transitions of the Water Oxidation Cycle (S0 → S1, S1 → S2, S2 → S3, and S3,4 → S0) Characterized by X-ray Absorption Spectroscopy at 20 K and Room Temperature. Biochemistry 2005, 44, 1894–1908. [Google Scholar] [CrossRef] [PubMed]
- Iuzzolino, L.; Dittmer, J.; Dörner, W.; Meyer-Klaucke, W.; Dau, H. X-ray absorption spectroscopy on layered photosystem II membrane particles suggests manganese-centered oxidation of the oxygen-evolving complex for the S0-S1, S1-S2, and S2-S3 transitions of the water oxidation cycle. Biochemistry 1998, 37, 17112–17119. [Google Scholar] [CrossRef] [PubMed]
- Dau, H.; Iuzzolino, L.; Dittmer, J. The tetra-manganese complex of photosystem II during its redox cycle—X-ray absorption results and mechanistic implications. Biochim. Biophys. Acta 2001, 1503, 24–39. [Google Scholar] [CrossRef]
- Dau, H.; Liebisch, P.; Haumann, M. X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers--potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis. Anal. Bioanal. Chem. 2003, 376, 562–583. [Google Scholar] [CrossRef]
- Schuth, N.; Zaharieva, I.; Chernev, P.; Berggren, G.; Anderlund, N.; Styring, S.; Dau, H.; Haumann, M. Kα X-ray Emission Spectroscopy on the Photosynthetic Oxygen-Evolving Complex Supports Manganese Oxidation and Water Binding in the S3 State. Inorg. Chem. 2018, 57, 10424–10430. [Google Scholar] [CrossRef]
- Guiles, R.D.; Zimmermann, J.L.; McDermott, A.E.; Yachandra, V.K.; Cole, J.L.; Dexheimer, S.L.; Britt, R.D.; Wieghardt, K.; Bossek, U.; Sauer, K.; et al. The S3 state of photosystem II: Differences between the structure of the manganese complex in the S2 and S3 states determined by x-ray absorption spectroscopy. Biochemistry 1990, 29, 471–485. [Google Scholar] [CrossRef]
- MacLachlan, D.J.; Nugent, J.H.A.; Evans, M.C.W. A XANES study of the manganese complex of inhibited PS II membranes indicates manganese redox changes between the modified S1, S2 and S3 states. Biochim. Biophys. Acta 1994, 1185, 103–111. [Google Scholar] [CrossRef]
- Mandal, M.; Kawashima, K.; Saito, K.; Ishikita, H. Redox Potential of the Oxygen-Evolving Complex in the Electron Transfer Cascade of Photosystem II. J. Phys. Chem. Lett. 2020, 11, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Messinger, J.; Robblee, J.H.; Bergmann, U.; Fernandez, C.; Glatzel, P.; Visser, H.; Cinco, R.M.; McFarlane, K.L.; Bellacchio, E.; Pizarro, S.A.; et al. Absence of Mn-Centered Oxidation in the S2 → S3 Transition: Implications for the Mechanism of Photosynthetic Water Oxidation. J. Am. Chem. Soc. 2001, 123, 7804–7820. [Google Scholar] [CrossRef]
- Roelofs, T.A.; Liang, W.; Latimer, M.J.; Cinco, R.M.; Rompel, A.; Andrews, J.C.; Sauer, K.; Yachandra, V.K.; Klein, M.P. Oxidation states of the manganese cluster during the flash-induced S-state cycle of the photosynthetic oxygen-evolving complex. Proc. Natl. Acad. Sci. USA 1996, 93, 3335–3340. [Google Scholar] [CrossRef] [PubMed]
- Polander, B.C.; Barry, B.A. Detection of an intermediary, protonated water cluster in photosynthetic oxygen evolution. Proc. Natl. Acad. Sci. USA 2013, 110, 10634–10639. [Google Scholar] [CrossRef] [PubMed]
- Barry, B.A.; Brahmachari, U.; Guo, Z. Tracking Reactive Water and Hydrogen-Bonding Networks in Photosynthetic Oxygen Evolution. Acc. Chem. Res. 2017, 5, 1937–1945. [Google Scholar] [CrossRef] [PubMed]
- Siegbahn, P.E.M. Water oxidation in photosystem II: Oxygen release, proton release and the effect of chloride. Dalton Trans. 2009, 45, 10063–10068. [Google Scholar] [CrossRef] [PubMed]
- Boussac, A.; Sugiura, M.; Sellés, J. Probing the proton release by Photosystem II in the S1 to S2 high-spin transition. Biochim. Biophys. Acta (BBA)—Bioenergetics 2022, 1863, 148546. [Google Scholar] [CrossRef]
- Li, X.; Siegbahn, P.E.M. Alternative mechanisms for O2 release and O–O bond formation in the oxygen evolving complex of photosystem II. Phys. Chem. Chem. Phys. 2015, 17, 12168–12174. [Google Scholar] [CrossRef]
- Siegbahn, P.E.M. Structures and Energetics for O2 Formation in Photosystem II. Acc. Chem. Res. 2009, 42, 1871–1880. [Google Scholar] [CrossRef]
- Siegbahn, P.E.M. Nucleophilic water attack is not a possible mechanism for O–O bond formation in photosystem II. Proc. Natl. Acad. Sci. USA 2017, 114, 4966–4968. [Google Scholar] [CrossRef]
- Suga, M.; Akita, F.; Sugahara, M.; Kubo, M.; Nakajima, Y.; Nakane, T.; Yamashita, K.; Umena, Y.; Nakabayashi, M.; Yamane, T.; et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 2017, 543, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Barber, J. A mechanism for water splitting and oxygen production in photosynthesis. Nat. Plants 2017, 3, 17041. [Google Scholar] [CrossRef] [PubMed]
- Sproviero, E.M.; Gascón, J.A.; McEvoy, J.P.; Brudvig, G.W.; Batista, V.S. Quantum Mechanics/Molecular Mechanics Study of the Catalytic Cycle of Water Splitting in Photosystem II. J. Am. Chem. Soc. 2008, 130, 3428–3442. [Google Scholar] [CrossRef] [PubMed]
- Vinyard, D.J.; Khan, S.; Brudvig, G.W. Photosynthetic water oxidation: Binding and activation of substrate waters for O–O bond formation. Faraday Discuss. 2015, 185, 37–50. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, L. Why nature chose the Mn4CaO5 cluster as water-splitting catalyst in photosystem II: A new hypothesis for the mechanism of O–O bond formation. Dalton Trans. 2018, 47, 14381–14387. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.; Messinger, J. Reflections on substrate water and dioxygen formation. Biochim. Biophys. Acta 2013, 1827, 1020–1030. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, H.; He, L.-L.; Zhao, D.-X.; Gong, L.-D.; Yang, Z.-Z. Theoretical reflections on the structural polymorphism of the oxygen-evolving complex in the S2 state and the correlations to substrate water exchange and water oxidation mechanism in photosynthesis. Biochim. Biophys. Acta 2017, 1858, 833–846. [Google Scholar] [CrossRef]
- Suga, M.; Akita, F.; Yamashita, K.; Nakajima, Y.; Ueno, G.; Li, H.; Yamane, T.; Hirata, K.; Umena, Y.; Yonekura, S.; et al. An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. Science 2019, 366, 334–338. [Google Scholar] [CrossRef]
- Burda, K. Dynamics of electron transfer in photosystem II. Cell Biochem. Biophys. 2007, 47, 271–284. [Google Scholar] [CrossRef]
- Isobe, H.; Shoji, M.; Suzuki, T.; Shen, J.-R.; Yamaguchi, K. Exploring reaction pathways for the structural rearrangements of the Mn cluster induced by water binding in the S3 state of the oxygen evolving complex of photosystem II. J. Photochem. Photobiol. A 2021, 405, 112905. [Google Scholar] [CrossRef]
- Linke, K.; Ho, F.M. Water in Photosystem II: Structural, functional and mechanistic considerations. Biochim. Biophys. Acta 2014, 1837, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Hansson, Ö.; Andréasson, L.-E.; Vänngård, T. Oxygen from water is coordinated to manganese in the S2 state of photosystem II. FEBS Lett. 1986, 195, 151–154. [Google Scholar] [CrossRef]
- Burda, K.; Bader, K.P.; Schmid, G.H. An estimation of the size of the water cluster present at the cleavage site of the water splitting enzyme. FEBS Lett. 2001, 491, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Loll, B.; Kern, J.; Saenger, W.; Zouni, A.; Biesiadka, J. Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 2005, 438, 1040–1044. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M. Does functional photosystem II complex have an oxygen channel? FEBS Lett. 2001, 488, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Chow, W.S. Structural and functional dynamics of plant photosystem II. Philos. Trans. R Soc. Lond. B Biol. Sci. 2002, 357, 1421–1430; discussion 1469–1470. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, A.W. Photosystem II, the water-splitting enzyme. Trends Biochem. Sci. 1989, 14, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Wydrzynski, T.; Hillier, W.; Messinger, J. On the functional significance of substrate accessibility in the photosynthetic water oxidation mechanism. Physiol. Plant. 1996, 96, 342–350. [Google Scholar] [CrossRef]
- Hussein, R.; Ibrahim, M.; Bhowmick, A.; Simon, P.S.; Chatterjee, R.; Lassalle, L.; Doyle, M.; Bogacz, I.; Kim, I.-S.; Cheah, M.H.; et al. Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition. Nat. Commun. 2021, 12, 6531. [Google Scholar] [CrossRef]
- Sakashita, N.; Watanabe, H.C.; Ikeda, T.; Ishikita, H. Structurally conserved channels in cyanobacterial and plant photosystem II. Photosynth. Res. 2017, 133, 75–85. [Google Scholar] [CrossRef]
- Ho, F.M.; Styring, S. Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim. Biophys. Acta 2008, 1777, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Vogt, L.; Vinyard, D.J.; Khan, S.; Brudvig, G.W. Oxygen-evolving complex of Photosystem II: An analysis of second-shell residues and hydrogen-bonding networks. Curr. Opin. Chem. Biol. 2015, 25, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Bondar, A.-N.; Dau, H. Extended protein/water H-bond networks in photosynthetic water oxidation. Biochim. Biophys. Acta 2012, 1817, 1177–1190. [Google Scholar] [CrossRef] [PubMed]
- Guskov, A.; Kern, J.; Gabdulkhakov, A.; Broser, M.; Zouni, A.; Saenger, W. Cyanobacterial photosystem II at 2.9Å resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 2009, 16, 334–342. [Google Scholar] [CrossRef]
- Ishikita, H.; Saenger, W.; Loll, B.; Biesiadka, J.; Knapp, E.-W. Energetics of a Possible Proton Exit Pathway for Water Oxidation in Photosystem II. Biochemistry 2006, 45, 2063–2071. [Google Scholar] [CrossRef]
- Gabdulkhakov, A.G.; Kljashtorny, V.G.; Dontsova, M.V. Analysis of Molecular Oxygen Exit Pathways in Cyanobacterial Photosystem II: Molecular Dynamics Studies. Kristallografiya 2015, 60, 926–931. [Google Scholar] [CrossRef]
- Gabdulkhakov, A.G.; Kljashtorny, V.G.; Dontsova, M.V. Molecular Dynamics Studies of Pathways of Water Movement in Cyanobacterial Photosystem II. Kristallografiya 2015, 60, 91–97. [Google Scholar] [CrossRef]
- Vassiliev, S.; Zaraiskaya, T.; Bruce, D. Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II. Biochim. Biophys. Acta 2013, 1827, 1148–1155. [Google Scholar] [CrossRef]
- Murray, J.W.; Barber, J. Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J. Struct. Biol. 2007, 159, 228–237. [Google Scholar] [CrossRef]
- Vassiliev, S.; Zaraiskaya, T.; Bruce, D. Exploring the energetics of water permeation in photosystem II by multiple steered molecular dynamics simulations. Biochim. Biophys. Acta 2012, 1817, 1671–1678. [Google Scholar] [CrossRef]
- Hussein, R.; Ibrahim, M.; Bhowmick, A.; Simon, P.S.; Bogacz, I.; Doyle, M.D.; Dobbek, H.; Zouni, A.; Messinger, J.; Yachandra, V.K.; et al. Evolutionary diversity of proton and water channels on the oxidizing side of photosystem II and their relevance to function. Photosynth. Res. 2023, 158, 91–107. [Google Scholar] [CrossRef]
- Stuchebrukhov, A.A. Mechanisms of proton transfer in proteins: Localized charge transfer versus delocalized soliton transfer. Phys. Rev. E 2009, 79, 031927. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, T.; Sakashita, N.; Saito, K.; Ishikita, H. pKa of a Proton-Conducting Water Chain in Photosystem II. J. Phys. Chem. Lett. 2016, 7, 1925–1932. [Google Scholar] [CrossRef]
- Shimizu, T.; Sugiura, M.; Noguchi, T. Mechanism of Proton-Coupled Electron Transfer in the S0-to-S1 Transition of Photosynthetic Water Oxidation As Revealed by Time-Resolved Infrared Spectroscopy. J. Phys. Chem. B 2018, 122, 9460–9470. [Google Scholar] [CrossRef]
- Guerra, F.; Siemers, M.; Mielack, C.; Bondar, A.-N. Dynamics of Long-Distance Hydrogen-Bond Networks in Photosystem II. J Phys. Chem. B 2018, 122, 4625–4641. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, H.; Kawashima, K.; Ueda, K.; Ikeda, T.; Saito, K.; Ninomiya, R.; Hida, C.; Takahashi, Y.; Ishikita, H. Proton transfer pathway from the oxygen-evolving complex in photosystem II substantiated by extensive mutagenesis. Biochim. Biophys. Acta Bioenerg. 2021, 1862, 148329. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Shimada, Y.; Nagao, R.; Noguchi, T. Proton and Water Transfer Pathways in the S2 → S3 Transition of the Water-Oxidizing Complex in Photosystem II: Time-Resolved Infrared Analysis of the Effects of D1-N298A Mutation and NO3− Substitution. J. Photochem. Photobiol. B 2021, 125, 6864–6873. [Google Scholar] [CrossRef]
- Takemoto, H.; Sugiura, M.; Noguchi, T. Proton Release Process during the S2-to-S3 Transition of Photosynthetic Water Oxidation As Revealed by the pH Dependence of Kinetics Monitored by Time-Resolved Infrared Spectroscopy. Biochemistry 2019, 58, 4276–4283. [Google Scholar] [CrossRef]
- Askerka, M.; Brudvig, G.W.; Batista, V.S. The O2-Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data. Acc. Chem. Res. 2017, 50, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Askerka, M.; Wang, J.; Vinyard, D.; Brudvig, G.; Batista, V. S3 State of the O2-Evolving Complex of Photosystem II: Insights from QM/MM, EXAFS, and Femtosecond X-ray Diffraction. Biochemistry 2016, 55, 981–984. [Google Scholar] [CrossRef]
- Retegan, M.; Pantazis, D.A. Interaction of methanol with the oxygen-evolving complex: Atomistic models, channel identification, species dependence, and mechanistic implications. Chem. Sci. 2016, 7, 6463–6476. [Google Scholar] [CrossRef]
- Retegan, M.; Pantazis, D.A. Differences in the Active Site of Water Oxidation among Photosynthetic Organisms. J. Am. Chem. Soc. 2017, 139, 14340–14343. [Google Scholar] [CrossRef]
- Ugur, I.; Rutherford, A.W.; Kaila, V.R.I. Redox-coupled substrate water reorganization in the active site of Photosystem II—The role of calcium in substrate water delivery. Biochim. Biophys. Acta 2016, 1857, 740–748. [Google Scholar] [CrossRef]
- Flesher, D.A.; Liu, J.; Wiwczar, J.M.; Reiss, K.; Yang, K.R.; Wang, J.; Askerka, M.; Gisriel, C.J.; Batista, V.S.; Brudvig, G.W. Glycerol binding at the narrow channel of photosystem II stabilizes the low-spin S2 state of the oxygen-evolving complex. Photosynth. Res. 2022, 152, 167–175. [Google Scholar] [CrossRef]
- Zimmermann, J.L.; Rutherford, A.W. Electron paramagnetic resonance properties of the S2 state of the oxygen-evolving complex of photosystem II. Biochemistry 1986, 25, 4609–4615. [Google Scholar] [CrossRef]
- Ogata, K.; Yuki, T.; Hatakeyama, M.; Uchida, W.; Nakamura, S. All-Atom Molecular Dynamics Simulation of Photosystem II Embedded in Thylakoid Membrane. J. Am. Chem. Soc. 2013, 135, 15670–15673. [Google Scholar] [CrossRef]
- Gabdulkhakov, A.; Guskov, A.; Broser, M.; Kern, J.; Müh, F.; Saenger, W.; Zouni, A. Probing the Accessibility of the Mn4Ca Cluster in Photosystem II: Channels Calculation, Noble Gas Derivatization, and Cocrystallization with DMSO. Structure 2009, 17, 1223–1234. [Google Scholar] [CrossRef]
- Caspy, I.; Fadeeva, M.; Mazor, Y.; Nelson, N. Structure of Dunaliella Photosystem II reveals conformational flexibility of stacked and unstacked supercomplexes. biorxiv 2021, 1–29. [Google Scholar] [CrossRef]
- Bricker, T.M.; Frankel, L.K. The structure and function of the 33 kDa extrinsic protein of Photosystem II: A critical assessment. Photosynth. Res. 1998, 56, 157–173. [Google Scholar] [CrossRef]
- Cammarata, K.V.; Cheniae, G.M. Studies on 17, 24 kD Depleted Photosystem II Membranes: I. Evidences for High and Low Affinity Calcium Sites in 17, 24 kD Depleted PSII Membranes from Wheat versus Spinach. Plant Physiol. 1987, 84, 587–595. [Google Scholar] [CrossRef]
- Enami, I.; Tomo, T.; Kitamura, M.; Katoh, S. Immobilization of the three extrinsic proteins in spinach oxygen-evolving Photosystem II membranes: Roles of the proteins in stabilization of binding of Mn and Ca2+. Biochim. Biophys. Acta 1994, 1185, 75–80. [Google Scholar] [CrossRef]
- Ifuku, K.; Noguchi, T. Structural Coupling of Extrinsic Proteins with the Oxygen-Evolving Center in Photosystem II. Front. Plant Sci. 2016, 7, 84. [Google Scholar] [CrossRef]
- Kruk, J.; Burda, K.; Jemioła-Rzemińska, M.; Strzałka, K. The 33 kDa protein of photosystem II is a low-affinity calcium- and lanthanide-binding protein. Biochemistry 2003, 42, 14862–14867. [Google Scholar] [CrossRef]
- Vass, I.; Ono, T.; Inoue, Y. Removal of 33 kDa extrinsic protein specifically stabilizes the S2QA− charge pair in photosystem II. FEBS Lett. 1987, 211, 215–220. [Google Scholar] [CrossRef]
- Burda, K.; He, P.; Bader, K.P.; Schmid, G.H. Temperature dependence of the O2-oscillation pattern in the filamentous cyanobacterium Oscillatoria chalybea and in Chlorella kessleri. Z. Naturforsch. 1996, 51, 823–832. [Google Scholar] [CrossRef]
- Berthold, D.A.; Babcock, G.T.; Yocum, C.F. A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett. 1981, 134, 231–234. [Google Scholar] [CrossRef]
- Ono, T.-A.; Inoue, Y. Mn-preserving extraction of 33-, 24- and 16-kDa proteins from O2-evolving PS II particles by divalent salt-washing. FEBS Lett. 1983, 164, 255–260. [Google Scholar] [CrossRef]
- Burda, K.; Strzałka, K.; Schmid, G.H. Europium- and Dysprosium-Ions as Probes for the Study of Calcium Binding Sites in Photosystem II. Z. Naturforsch. 1995, 50, 220–230. [Google Scholar] [CrossRef]
- Joliot, P.; Joliot, A. A polarographic method for detection of oxygen production and reduction of Hill reagent by isolated chloroplasts. Biochim. Biophys. Acta 1968, 153, 625–634. [Google Scholar] [CrossRef]
- Schmid, G.H.; Thibault, P. Evidence for a Rapid Oxygen-Uptake in Tobacco Chloroplasts. Z. Naturforsch. 1979, 34, 414–418. [Google Scholar] [CrossRef]
- Ananyev, G.; Gates, C.; Dismukes, G.C. The Oxygen quantum yield in diverse algae and cyanobacteria is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II. Biochim. Biophys. Acta Bioenerg. 2016, 1857, 1380–1391. [Google Scholar] [CrossRef]
- Pham, L.V.; Janna Olmos, J.D.; Chernev, P.; Kargul, J.; Messinger, J. Unequal misses during the flash-induced advancement of photosystem II: Effects of the S state and acceptor side cycles. Photosynth. Res. 2019, 139, 93–106. [Google Scholar] [CrossRef]
- Schulder, R.; Burda, K.; Strzałka, K.; Bader, K.P.; Schmid, G.H. Study on the Parameters Affecting Oxygen Release Time Measurements by Amperometry. Z. Naturforsch. 1992, 47, 465–473. [Google Scholar] [CrossRef]
- Kirchhoff, H.; Horstmann, S.; Weis, E. Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. Biochim. Biophys. Acta Bioenerg. 2000, 1459, 148–168. [Google Scholar] [CrossRef]
- Lavergne, J.; Bouchaud, J.-P.; Joliot, P. Plastoquinone compartmentation in chloroplasts. II. Theoretical aspects. Biochim. Biophys. Acta Bioenerg. 1992, 1101, 13–22. [Google Scholar] [CrossRef]
- McCauley, S.W.; Melis, A. Quantitation of plastoquinone photoreduction in spinach chloroplasts. Photosynth. Res. 1986, 8, 3–16. [Google Scholar] [CrossRef]
- Thibault, P. A new attempt to study the oxygen evolving system of photosynthesis: Determination of transition probabilities of a state i. J. Theor. Biol. 1978, 73, 271–284. [Google Scholar] [CrossRef]
- Meunier, P.C. Oxygen evolution by Photosystem II: The contribution of backward transitions to the anomalous behaviour of double-hits revealed by a new analysis method. Photosynth. Res. 1993, 36, 111–118. [Google Scholar] [CrossRef]
- Delrieu, M.-J. Simple explanation of the misses in the cooperation of charges in photosynthetic O2 evolution. Photochem. Photobiol. 1974, 20, 441–454. [Google Scholar] [CrossRef]
- Delrieu, M.-J. Evidence for Unequal Misses in Oxygen Flash Yield Sequence in Photosynthesis. Z. Naturforsch. 1983, 38, 247–258. [Google Scholar] [CrossRef]
- Lavorel, J. Matrix analysis of the oxygen evolving system of photosynthesis. J. Theor. Biol. 1976, 57, 171–185. [Google Scholar] [CrossRef]
- Lavorel, J. On the origin of the damping of the O2 yield in sequences of flashes. In Photosynthetic Oxygen Evolution; Metzner, H., Ed.; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Han, G.; Chernev, P.; Styring, S.; Messinger, J.; Mamedov, F. Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem II. Chem. Sci. 2022, 13, 8667–8678. [Google Scholar] [CrossRef]
- Han, G.; Mamedov, F.; Styring, S. Misses during Water Oxidation in Photosystem II Are S State-dependent. J. Biol. Chem. 2012, 287, 13422–13429. [Google Scholar] [CrossRef]
- Vermaas, W.F.J.; Renger, G.; Dohnt, G. The reduction of the oxygen-evolving system in chloroplasts by thylakoid components. Biochim. Biophys. Acta 1984, 764, 192–202. [Google Scholar] [CrossRef]
- Styring, S.; Rutherford, A.W. In the oxygen-evolving complex of photosystem II the S0 state is oxidized to the S1 state by D+ (signal IIslow). Biochemistry 1987, 26, 2401–2405. [Google Scholar] [CrossRef]
- Vass, I.; Styring, S. pH-dependent charge equilibria between tyrosine-D and the S states in photosystem II. Estimation of relative midpoint redox potentials. Biochemistry 1991, 30, 830–839. [Google Scholar] [CrossRef]
- Vass, I.; Deák, Z.; Hideg, É. Charge equilibrium between the water-oxidizing complex and the electron donor tyrosine-D in Photosystem II. Biochim. Biophys. Acta Bioenerg. 1990, 1017, 63–69. [Google Scholar] [CrossRef]
- Weiss, C.; Sauer, K. Activation kinetics of photosynthetic oxygen evolution under 20–40 nanosecond laser flashes. Photochem. Photobiol. 1969, 11, 495–501. [Google Scholar] [CrossRef]
- Weiss, C., Jr.; Solnit, K.T.; von Gutfeld, R.J. Flash activation kinetics and photosynthetic unit size for oxygen evolution using 3-nsec light flashes. Biochim. Biophys. Acta 1971, 253, 298–301. [Google Scholar] [CrossRef]
- Vermass, W.F.; Rutherford, A.W.; Hansson, O. Site-directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: Donor D is a tyrosine residue in the D2 protein. Proc. Natl. Acad. Sci. USA 1988, 85, 8477–8481. [Google Scholar] [CrossRef]
- Debus, R.J.; Barry, B.A.; Babcock, G.T.; McIntosh, L. Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc. Natl. Acad. Sci. USA 1988, 85, 427–430. [Google Scholar] [CrossRef]
- Yano, J.; Yachandra, V. Mn4Ca Cluster in Photosynthesis: Where and How Water is Oxidized to Dioxygen. Chem. Rev. 2014, 114, 4175–4205. [Google Scholar] [CrossRef]
- Pokhrel, R.; Service, R.J.; Debus, R.J.; Brudvig, G.W. Mutation of Lysine 317 in the D2 Subunit of Photosystem II Alters Chloride Binding and Proton Transport. Biochemistry 2013, 52, 4758–4773. [Google Scholar] [CrossRef]
- Sirohiwal, A.; Neese, F.; Pantazis, D.A. Microsolvation of the Redox-Active Tyrosine-D in Photosystem II: Correlation of Energetics with EPR Spectroscopy and Oxidation-Induced Proton Transfer. J. Am. Chem. Soc. 2019, 141, 3217–3231. [Google Scholar] [CrossRef]
- Bricker, T.M.; Roose, J.L.; Fagerlund, R.D.; Frankel, L.K.; Eaton-Rye, J.J. The extrinsic proteins of Photosystem II. Biochim. Biophys. Acta 2012, 1817, 121–142. [Google Scholar] [CrossRef]
- Popelkova, H.; Yocum, C.F. PsbO, the manganese-stabilizing protein: Analysis of the structure–function relations that provide insights into its role in photosystem II. J. Photochem. Photobiol. B 2011, 104, 179–190. [Google Scholar] [CrossRef]
- Liang, W.; Roelofs, T.A.; Cinco, R.M.; Rompel, A.; Latimer, M.J.; Yu, W.O.; Sauer, K.; Klein, M.P.; Yachandra, V.K. Structural change of the Mn cluster during the S2 → S3 state transition of the oxygen-evolving complex of Photosystem II. Does it reflect the onset of water/substrate oxidation? Determination by Mn X-ray absorption spectroscopy. J Am. Chem. Soc. 2000, 122, 3399–3412. [Google Scholar] [CrossRef]
- Noguchi, T.; Sugiura, M. Flash-induced FTIR difference spectra of the water oxidizing complex in moderately hydrated photosystem II core films: Effect of hydration extent on S-state transitions. Biochemistry 2002, 41, 2322–2330. [Google Scholar] [CrossRef]
- Kim, C.J.; Debus, R.J. Evidence from FTIR Difference Spectroscopy That a Substrate H2O Molecule for O2 Formation in Photosystem II Is Provided by the Ca Ion of the Catalytic Mn4CaO5 Cluster. Biochemistry 2017, 56, 2558–2570. [Google Scholar] [CrossRef] [PubMed]
- Siegbahn, P.E.M. The S2 to S3 transition for water oxidation in PSII (Photosystem II), revisited. Phys. Chem. Chem. Phys. 2018, 20, 22926–22931. [Google Scholar] [CrossRef] [PubMed]
- Capone, M.; Bovi, D.; Narzi, D.; Guidoni, L. Reorganization of Substrate Waters between the Closed and Open Cubane Conformers during the S2 to S3 Transition in the Oxygen Evolving Complex. Biochemistry 2015, 54, 6439–6442. [Google Scholar] [CrossRef]
- Narzi, D.; Bovi, D.; Guidoni, L. Pathway for Mn-cluster oxidation by tyrosine-Z in the S2 state of photosystem II. Proc. Natl. Acad. Sci. USA 2014, 111, 8723–8728. [Google Scholar] [CrossRef]
- Siegbahn, P.E.M. Substrate Water Exchange for the Oxygen Evolving Complex in PSII in the S1, S2, and S3 States. J. Am. Chem. Soc. 2013, 135, 9442–9449. [Google Scholar] [CrossRef]
- Wang, J.; Askerka, M.; Brudvig, G.W.; Batista, V.S. Crystallographic Data Support the Carousel Mechanism of Water Supply to the Oxygen-Evolving Complex of Photosystem II. ACS Energy Lett. 2017, 2, 2299–2306. [Google Scholar] [CrossRef]
- Chrysina, M.; Heyno, E.; Kutin, Y.; Reus, M.; Nilsson, H.; Nowaczyk, M.M.; DeBeer, S.; Neese, F.; Messinger, J.; Lubitz, W.; et al. Five-coordinate MnIV intermediate in the activation of nature’s water splitting cofactor. Proc. Natl. Acad. Sci. USA 2019, 116, 16841–16846. [Google Scholar] [CrossRef]
- Cox, N.; Pantazis, D.A.; Neese, F.; Lubitz, W. Biological Water Oxidation. Acc. Chem. Res. 2013, 46, 1588–1596. [Google Scholar] [CrossRef]
- Orio, M.; Pantazis, D.A. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chem. Commun. 2021, 57, 33952–33974. [Google Scholar] [CrossRef]
- Corry, T.A.; O’Malley, P.J. Proton Isomers Rationalize the High- and Low-Spin Forms of the S2 State Intermediate in the Water-Oxidizing Reaction of Photosystem II. J. Phys. Chem. Lett. 2019, 10, 5226–5230. [Google Scholar] [CrossRef]
- Rogers, C.J.; Hardwick, O.; Corry, T.A.; Rummel, F.; Collison, D.; Bowen, A.M.; O’Malley, P.J. Magnetic and Electronic Structural Properties of the S3 State of Nature’s Water Oxidizing Complex: A Combined Study in ELDOR-Detected Nuclear Magnetic Resonance Spectral Simulation and Broken-Symmetry Density Functional Theory. ACS Omega 2022, 7, 41783–41788. [Google Scholar] [CrossRef] [PubMed]
- Nass, K.; Foucar, L.; Barends, T.R.; Hartmann, E.; Botha, S.; Shoeman, R.L.; Doak, R.B.; Alonso-Mori, R.; Aquila, A.; Bajt, S.; et al. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J. Synchrotron. Radiat. 2015, 22, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Fukushima, Y.; Kamiya, N. Two different structures of the oxygen-evolving complex in the same polypeptide frameworks of photosystem II. J. Am. Chem. Soc. 2017, 139, 1718–1721. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Askerka, M.; Batista, V.S.; Brudvig, G.W.; Gunner, M.R. X-ray Free Electron Laser Radiation Damage through the S-State Cycle of the Oxygen-Evolving Complex of Photosystem II. J Phys. Chem. B 2017, 121, 9382–9388. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, R.; Chen, Y.; Xu, B.; Chen, C.; Zhang, C. Mimicking the Catalytic Center for the Water-Splitting Reaction in Photosystem II. Catalysts 2020, 10, 185. [Google Scholar] [CrossRef]
- Nass, K. Radiation damage in protein crystallography at X-ray free-electron lasers. Acta Cryst. 2019, 75, 211–218. [Google Scholar] [CrossRef]
- Sirohiwal, A.; Pantazis, D.A. Functional Water Networks in Fully Hydrated Photosystem II. J. Am. Chem. Soc. 2022, 144, 22035–22050. [Google Scholar] [CrossRef] [PubMed]
- Suga, M.; Shimada, A.; Akita, F.; Shen, J.-R.; Tosha, T.; Sugimoto, H. Time-resolved studies of metalloproteins using X-ray free electron laser radiation at SACLA. Biochim. Biophys. Acta 2020, 1864, 129466. [Google Scholar] [CrossRef]
- Mandal, M.; Saito, K.; Ishikita, H. Release of Electrons and Protons from Substrate Water Molecules at the Oxygen-Evolving Complex in Photosystem II. J. Phys. Soc. Jpn. 2022, 91, 091012. [Google Scholar] [CrossRef]
- Haumann, M.; Barra, M.; Loja, P.; Löscher, S.; Krivanek, R.; Grundmeier, A.; Andreasson, L.E.; Dau, H. Bromide does not bind to the Mn4Ca complex in its S1 state in Cl(-)-depleted and Br(-)-reconstituted oxygen-evolving photosystem II: Evidence from X-ray absorption spectroscopy at the Br K-edge. Biochemistry 2006, 45, 13101–13107. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, K.; Andréasson, L.E. A one-site, two-state model for the binding of anions in photosystem II. Biochemistry 1996, 35, 14259–14267. [Google Scholar] [CrossRef]
- Olesen, K.; Andréasson, L.E. The function of the chloride ion in photosynthetic oxygen evolution. Biochemistry 2003, 42, 2025–2035. [Google Scholar] [CrossRef]
- Rivalta, I.; Amin, M.; Luber, S.; Vassiliev, S.; Pokhrel, R.; Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N.; Bruce, D.; et al. Structural–Functional Role of Chloride in Photosystem II. Biochemistry 2011, 50, 6312–6315. [Google Scholar] [CrossRef] [PubMed]
- Service, R.J.; Hillier, W.; Debus, R.J. Evidence from FTIR Difference Spectroscopy of an Extensive Network of Hydrogen Bonds near the Oxygen-Evolving Mn4Ca Cluster of Photosystem II Involving D1-Glu65, D2-Glu312, and D1-Glu329. Biochemistry 2010, 49, 6655–6669. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Sugiyama, A.; Nagao, R.; Noguchi, T. Role of D1-Glu65 in Proton Transfer during Photosynthetic Water Oxidation in Photosystem II. J. Phys. Chem. B 2022, 126, 8202–8213. [Google Scholar] [CrossRef] [PubMed]
- de Lichtenberg, C.; Kim, C.J.; Chernev, P.; Debus, R.J.; Messinger, J. The exchange of the fast substrate water in the S2 state of photosystem II is limited by diffusion of bulk water through channels—Implications for the water oxidation mechanism. Chem. Sci. 2021, 12, 12763–12775. [Google Scholar] [CrossRef] [PubMed]
- Junge, W.; Haumann, M.; Ahlbrink, R.; Mulkidjanian, A.; Clausen, J. Electrostatics and proton transfer in photosynthetic water oxidation. Philos. Trans. R Soc. Lond. B Biol. Sci. 2002, 357, 1407–1417; discussion 1417–1420. [Google Scholar] [CrossRef] [PubMed]
- Retegan, M.; Krewald, V.; Mamedov, F.; Neese, F.; Lubitz, W.; Cox, N.; Pantazis, D.A. A five-coordinate Mn(IV) intermediate in biological water oxidation: Spectroscopic signature and a pivot mechanism for water binding. Chem. Sci. 2016, 7, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Bovi, D.; Narzi, D.; Guidoni, L. The S2 State of the Oxygen-Evolving Complex of Photosystem II Explored by QM/MM Dynamics: Spin Surfaces and Metastable States Suggest a Reaction Path Towards the S3 State. Angew. Chem. Int. Ed. 2013, 52, 11744–11749. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, K.; Takaoka, T.; Kimura, H.; Saito, K.; Ishikita, H. O2 evolution and recovery of the water-oxidizing enzyme. Nat. Com. 2018, 9, 1247. [Google Scholar] [CrossRef]
- Bouges-Bocquet, B. Limiting steps in photosystem II and water decomposition in chlorella and spinach chloroplasts. Biochim. Biophys. Acta 1973, 292, 772–785. [Google Scholar] [CrossRef]
- Canaani, O.; Malkin, S.; Mauzerall, D. Pulsed photoacoustic detection of flash-induced oxygen evolution from intact leaves and its oscillations. Proc. Natl. Acad. Sci. USA 1988, 85, 4725–4729. [Google Scholar] [CrossRef]
- Etienne, A.L. Étude de l’étape thermique de l’émission photosynthétique d’oxygène par une méthode d’écoulement. Biochim. Biophys. Acta 1968, 153, 895–897. [Google Scholar] [CrossRef] [PubMed]
- Jursinic, P.A.; Dennenberg, R.J. Oxygen release time in leaf discs and thylakoids of peas and Photosystem II membrane fragments of spinach. Biochim. Biophys. Acta 1990, 1020, 195–206. [Google Scholar] [CrossRef]
- Lavergne, J. Mitochondrial responses to intracellular pulses of photosynthetic oxygen. Proc. Natl. Acad. Sci. USA 1989, 86, 8768–8772. [Google Scholar] [CrossRef] [PubMed]
- Mauzerall, D. Determination of Oxygen Emission and Uptake in Leaves by Pulsed, Time Resolved Photoacoustics. Plant Physiol. 1990, 94, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.S.; Moussavi, M.; Dismukes, G.C. Monitoring oxygen concentration in solution by ESR oximetry using lithium phthalocyanine: Application to photosynthesis. J. Am. Chem. Soc. 1991, 113, 5914–5915. [Google Scholar] [CrossRef]
- Strzalka, K.; Walczak, T.; Sarna, T.; Swartz, H.M. Measurement of Time-Resolved Oxygen Concentration Changes in Photosynthetic Systems by Nitroxide-Based EPR Oximetry. Arch. Biochem. Biophys. 1990, 281, 312–318. [Google Scholar] [CrossRef]
- de Wijn, R.; van Gorkom, H.J. Kinetics of Electron Transfer from QA to QB in Photosystem II. Biochemistry 2001, 40, 11912–11922. [Google Scholar] [CrossRef]
- Vinyard, D.J.; Ananyev, G.M.; Dismukes, G.C. Photosystem II: The Reaction Center of Oxygenic Photosynthesis. Annu. Rev. Biochem. 2013, 82, 577–606. [Google Scholar] [CrossRef] [PubMed]
- Bowes, J.; Crofts, A.R.; Arntzen, C.J. Redox Reactions on the Reducing Side of Photosystem II in Chloroplasts with Altered Herbicide Binding Properties. Arch. Biochem. Biophys. 1980, 200, 303–308. [Google Scholar] [CrossRef]
- Robinson, H.H.; Crofts, A.R. Kinetics of the oxidation-reduction reactions of the photosystem II quinone acceptor complex, and the pathway for deactivation. FEBS Lett. 1983, 153, 221–226. [Google Scholar] [CrossRef]
- Weiss, W.; Renger, G. UV-spectral characterization in Tris-washed chloroplasts of the redox component D1 which functionally connects the reaction center with the water-oxidizing enzyme system Y in photosynthesis. FEBS 1984, 169, 219–223. [Google Scholar] [CrossRef]
- Krivanek, R.; Kern, J.; Zouni, A.; Dau, H.; Haumann, M. Spare quinones in the QB cavity of crystallized photosystem II from Thermosynechococcus elongatus. Biochim. Biophys. Acta 2007, 1767, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Whitmarsh, J.; Pakrasi, H.B. Form and Function of Cytochrome b-559. In Oxygenic Photosynthesis: The Light Reactions; Ort, D.R., Yocum, C.F., Heichel, I.F., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 249–264. [Google Scholar]
- Shinopoulos, K.E.; Brudvig, G.W. Cytochrome b559 and cyclic electron transfer within photosystem II. Biochim. Biophys. Acta Bioenerg. 2012, 1817, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Müh, F.; Zouni, A. Cytochrome b559 in Photosystem II. In Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling; Cramer, W.A., Kallas, T., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 143–175. [Google Scholar]
- Falkowski, P.G.; Fujita, Y.; Ley, A.; Mauzerall, D. Evidence for Cyclic Electron Flow around Photosystem II in Chlorella pyrenoidosa. Plant Physiol. 1986, 81, 310–312. [Google Scholar] [CrossRef] [PubMed]
- Feyziyev, Y.; Deák, Z.; Styring, S.; Bernát, G. Electron transfer from Cyt b559 and tyrosine-D to the S2 and S3 states of the water oxidizing complex in photosystem II at cryogenic temperatures. J. Bioenerg. Biomembr. 2013, 45, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Zournas, A.; Mani, K.; Dismukes, G.C. Cyclic electron flow around photosystem II in silico: How it works and functions in vivo. Photosynth. Res. 2023, 156, 129–145. [Google Scholar] [CrossRef]
- Gates, C.; Ananyev, G.; Roy-Chowdhury, S.; Fromme, P.; Dismukes, G.C. Regulation of light energy conversion between linear and cyclic electron flow within photosystem II controlled by the plastoquinone/quinol redox poise. Photosynth. Res. 2023, 156, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Burnap, R.L. Structural rearrangements preceding dioxygen formation by the water oxidation complex of photosystem II. Proc. Natl. Acad. Sci. USA 2015, 112, E6139–E6147. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, M.; Tibiletti, T.; Takachi, I.; Hara, Y.; Kanawaku, S.; Sellés, J.; Boussac, A. Probing the role of Valine 185 of the D1 protein in the Photosystem II oxygen evolution. Biochim. Biophys. Acta Bioenerg. 2018, 1859, 1259–1273. [Google Scholar] [CrossRef]
- Pokhrel, R.; Debus, R.J.; Brudvig, G.W. Probing the Effect of Mutations of Asparagine 181 in the D1 Subunit of Photosystem II. Biochemistry 2015, 54, 1663–1672. [Google Scholar] [CrossRef]
- Dilbeck, P.L.; Hwang, H.J.; Zaharieva, I.; Gerencser, L.; Dau, H.; Burnap, R.L. The D1-D61N Mutation in Synechocystis sp. PCC 6803 Allows the Observation of pH-Sensitive Intermediates in the Formation and Release of O2 from Photosystem II. Biochemistry 2012, 51, 1079–1091. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, S.; Shen, L.; Han, G.; Umena, Y.; Shen, J.-R.; Noguchi, T.; Mino, H. Formation of the High-Spin S2 State Related to the Extrinsic Proteins in the Oxygen Evolving Complex of Photosystem II. J. Phys. Chem. Lett. 2020, 11, 8908–8913. [Google Scholar] [CrossRef] [PubMed]
- Dilbeck, P.L.; Bao, H.; Neveu, C.L.; Burnap, R.L. Perturbing the water cavity surrounding the manganese cluster by mutating the residue D1-Valine 185 has a strong effect on the water oxidation mechanism of Photosystem II. Biochemistry 2013, 52, 6824–6833. [Google Scholar] [CrossRef] [PubMed]
- de Lichtenberg, C.; Avramov, A.P.; Zhang, M.; Mamedov, F.; Burnap, R.L.; Messinger, J. The D1-V185N mutation alters substrate water exchange by stabilizing alternative structures of the Mn4Ca-cluster in photosystem II. Biochim. Biophys. Acta Bioenerg. 2021, 1862, 148319. [Google Scholar] [CrossRef] [PubMed]
- Kaur, D.; Szejgis, W.; Mao, J.; Amin, M.; Reiss, K.M.; Askerka, M.; Cai, X.; Khaniya, U.; Zhang, Y.; Brudvig, G.W.; et al. Relative stability of the S2 isomers of the oxygen evolving complex of photosystem II. Photosynth. Res. 2019, 141, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Oyala, P.H.; Stich, T.A.; Debus, R.J.; Britt, R.D. Ammonia Binds to the Dangler Manganese of the Photosystem II Oxygen Evolving Complex. J. Am. Chem. Soc. 2015, 137, 8829–8837. [Google Scholar] [CrossRef] [PubMed]
- Lubitz, W.; Chrysina, M.; Cox, N. Water oxidation in photosystem II. Photosynth. Res. 2019, 142, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Kusunoki, M. Mono-manganese mechanism of the photosytem II water splitting reaction by a unique Mn4Ca cluster. Biochim. Biophys. Acta 2007, 1767, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Corry, T.A.; O’Malley, P.J. Evidence of O-O Bond Formation in the Final Metastable S3 State of Nature’s Water Oxidising Complex Implies a Novel Mechanism of Water Oxidation. J. Phys. Chem. Lett. 2018, 9, 6269–6274. [Google Scholar] [CrossRef]
- Mandal, M.; Saito, K.; Ishikita, H. The Nature of the Short Oxygen−Oxygen Distance in the Mn4CaO6 Complex of Photosystem II Crystals. J. Phys. Chem. Lett. 2020, 11, 10262–10268. [Google Scholar] [CrossRef]
- Pérez-Navarro, M.; Neese, F.; Lubitz, W.; Pantazis, D.A.; Cox, N. Recent developments in biological water oxidation. Curr. Opin. Chem. Biol. 2016, 31, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Pushkar, Y.; Davis, K.M.; Palenik, M.C. Model of the Oxygen Evolving Complex Which is Highly Predisposed to O–O Bond Formation. J. Phys. Chem. Lett. 2018, 9, 3525–3531. [Google Scholar] [CrossRef] [PubMed]
- Renger, G. Mechanism of light induced water splitting in Photosystem II of oxygen evolving photosynthetic organisms. Biochim. Biophys. Acta 2012, 1817, 1164–1176. [Google Scholar] [CrossRef] [PubMed]
- Shoji, M.; Isobe, H.; Yamaguchi, K. QM/MM Study of the S2 to S3 Transition Reaction in the Oxygen-Evolving Complex of Photosystem II. Chem. Phys. Lett. 2015, 636, 172–179. [Google Scholar] [CrossRef]
- Siegbahn, P.E.M. A Structure-Consistent Mechanism for Dioxygen Formation in Photosystem II. Eur. J. Chem. 2008, 14, 8290–8302. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, M.; Ogata, K.; Fujii, K.; Yachandra, V.K.; Yano, J.; Nakamura, S. Structural changes in the S3 state of the oxygen evolving complex in photosystem II. Chem. Phys. Lett. 2016, 651, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Messinger, J.; Kloo, L.; Sun, L. Alternative Mechanism for O2 Formation in Natural Photosynthesis via Nucleophilic Oxo–Oxo Coupling. J. Am. Chem. Soc. 2023, 145, 4129–4141. [Google Scholar] [CrossRef] [PubMed]
- Burnap, R.L.; Shen, J.R.; Jursinic, P.A.; Inoue, Y.; Sherman, L.A. Oxygen yield and thermoluminescence characteristics of a cyanobacterium lacking the manganese-stabilizing protein of photosystem II. Biochemistry 1992, 31, 7404–7410. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.A.; Gregor, W.; Pham, D.P.; Peloquin, J.M.; Debus, R.J.; Britt, R.D. The 23 and 17 kDa extrinsic proteins of photosystem II modulate the magnetic properties of the S1-state manganese cluster. Biochemistry 1998, 37, 5039–5045. [Google Scholar] [CrossRef] [PubMed]
- Enami, I.; Okumura, A.; Nagao, R.; Suzuki, T.; Iwai, M.; Shen, J.R. Structures and functions of the extrinsic proteins of photosystem II from different species. Photosynth. Res. 2008, 98, 349–363. [Google Scholar] [CrossRef]
- Tomita, M.; Ifuku, K.; Sato, F.; Noguchi, T. FTIR evidence that the PsbP extrinsic protein induces protein conformational changes around the oxygen-evolving Mn cluster in photosystem II. Biochemistry 2009, 48, 6318–6325. [Google Scholar] [CrossRef] [PubMed]
- Nagao, R.; Tomo, T.; Noguchi, T. Effects of extrinsic proteins on the protein conformation of the oxygen-evolving center in cyanobacterial photosystem II as revealed by Fourier transform infrared spectroscopy. Biochemistry 2015, 54, 2022–2031. [Google Scholar] [CrossRef] [PubMed]
- Offenbacher, A.R.; Polander, B.C.; Barry, B.A. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation. J. Biol. Chem. 2013, 288, 29056–29068. [Google Scholar] [CrossRef] [PubMed]
- Boussac, A.; Setif, P.; Rutherford, A.W. Inhibition of tyrosine Z photooxidation after formation of the S3-state in calcium-depleted and chloride-depleted photosystem-II. Biochemistry 1992, 31, 1224–1234. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Rutherford, A.W.; Ishikita, H. Mechanism of tyrosine D oxidation in Photosystem II. Proc. Natl. Acad. Sci. USA 2013, 110, 7690–7695. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, P.; Rutherford, A.W. Properties of the chloride-depleted oxygen-evolving complex of photosystem II studied by electron paramagnetic resonance. Biochemistry 1996, 35, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Wincencjusz, H.; van Gorkom, H.J.; Yocum, C.F. The photosynthetic oxygen evolving complex requires chloride for its redox state S2 → S3 and S3 → S0 transitions but not for S0 → S1 or S1 → S2 transitions. Biochemistry 1997, 36, 3663–3670. [Google Scholar] [CrossRef]
- Packham, N.K.; Hodges, M.; Etienne, A.L.; Briantais, J.M. Changes in the flash-induced oxygen yield pattern by thylakoid membrane phosphorylation. Photosynth. Res. 1988, 15, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Shinkarev, V.P. Flash-Induced Oxygen Evolution in Photosynthesis: Simple Solution for the Extended S-State Model that includes Misses, Double-Hits, Inactivation, and Backward-Transitions. Biophys. J. 2005, 88, 412–421. [Google Scholar] [CrossRef]
- Isgandarova, S.; Renger, G.; Messinger, J. Functional differences of photosystem II from Synechococcus elongatus and spinach characterized by flash induced oxygen evolution patterns. Biochemistry 2003, 42, 8929–8938. [Google Scholar] [CrossRef]
- Vinyard, D.J.; Zachary, C.E.; Ananyev, G.; Dismukes, G.C. Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: A mathematical solution to asymmetric Markov chains. Biochim. Biophys. Acta 2013, 1827, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Messinger, J.; Schroeder, W.P.; Renger, G. Structure-function relations in photosystem II. Effects of temperature and chaotropic agents on the period four oscillation of flash-induced oxygen evolution. Biochemistry 1993, 32, 7658–7668. [Google Scholar] [CrossRef] [PubMed]
- Pham, L.V.; Messinger, J. Probing S-state advancements and recombination pathways in photosystem II with a global fit program for flash-induced oxygen evolution pattern. Biochim. Biophys. Acta 2016, 1857, 848–859. [Google Scholar] [CrossRef] [PubMed]
Parameters | α0 | α1 | α2 | α3 | d | S0 | S1 | S2 | S3 | C | pfq |
---|---|---|---|---|---|---|---|---|---|---|---|
PSII BBY control | 0.001 | 0.001 | 0.785 | 0.001 | 0.85 | 0.05 | 0.87 | 0.08 | 0.00 | 0.995 | 0.0054 |
PSII BBY—P,Q | 0.55 | 0.28 | 0.78 | 0.12 | 0.30 | 0.04 | 0.88 | 0.08 | 0.00 | 0.967 | 0.0165 |
PSII BBY—O,P,Q | 0.51 | 0.27 | 0.79 | 0.16 | 0.02 | 0.282 | 0.530 | 0.130 | 0.058 | 0.990 | 0.0139 |
Parameters | Afast | τfast [ms] | Aslow | τslow [ms] |
---|---|---|---|---|
PSII BBY control | 0.73 ± 0.08 | 4.1 ± 1.8 | 0.27 ± 0.08 | 44.2 ± 14.7 |
PSII BBY—P,Q | 0.26 ± 0.09 | 6.2 ± 3.6 | 0.74 ± 0.06 | 22.2 ± 4.4 |
PSII BBY—O,P,Q | 0 | ------- | 1.00 ± 0.03 | 13 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krysiak, S.; Burda, K. The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Curr. Issues Mol. Biol. 2024, 46, 7187-7218. https://doi.org/10.3390/cimb46070428
Krysiak S, Burda K. The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Current Issues in Molecular Biology. 2024; 46(7):7187-7218. https://doi.org/10.3390/cimb46070428
Chicago/Turabian StyleKrysiak, Sonia, and Kvetoslava Burda. 2024. "The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII" Current Issues in Molecular Biology 46, no. 7: 7187-7218. https://doi.org/10.3390/cimb46070428
APA StyleKrysiak, S., & Burda, K. (2024). The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Current Issues in Molecular Biology, 46(7), 7187-7218. https://doi.org/10.3390/cimb46070428