Genetic and Non-Genetic Contributions to Eosinophilic Granulomatosis with Polyangiitis: Current Knowledge and Future Perspectives
Abstract
:1. Introduction
2. The Genetics of EGPA: From Candidate-Gene to Whole-Genome Association Analyses
3. Environmental Determinants of AAV and EGPA
4. Latest Research on EGPA
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Churg, J.; Strauss, L. Allergic Granulomatosis, Allergic Angiitis, and Periarteritis Nodosa. Am. J. Pathol. 1951, 27, 277–301. [Google Scholar] [PubMed]
- White, J.; Dubey, S. Eosinophilic Granulomatosis with Polyangiitis: A Review. Autoimmun. Rev. 2023, 22, 103219. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.W.; Welsh, N.; Farrah, T.E.; Gallacher, P.J.; Dhaun, N. ANCA Associated Vasculitis. BMJ 2020, 369, m1070. [Google Scholar] [CrossRef]
- Watts, R.A.; Mahr, A.; Mohammad, A.J.; Gatenby, P.; Basu, N.; Flores-Suárez, L.F. Classification, Epidemiology and Clinical Subgrouping of Antineutrophil Cytoplasmic Antibody (ANCA)-Associated Vasculitis. Nephrol. Dial. Transplant. 2015, 30, i14–i22. [Google Scholar] [CrossRef]
- Berti, A.; Cornec, D.; Crowson, C.S.; Specks, U.; Matteson, E.L. The Epidemiology of Antineutrophil Cytoplasmic Autoantibody–Associated Vasculitis in Olmsted County, Minnesota: A Twenty-Year US Population–Based Study. Arthritis Rheumatol. 2017, 69, 2338–2350. [Google Scholar] [CrossRef] [PubMed]
- Baldini, C.; Talarico, R.; Della Rossa, A.; Bombardieri, S. Clinical Manifestations and Treatment of Churg-Strauss Syndrome. Rheum. Dis. Clin. North Am. 2010, 36, 527–543. [Google Scholar] [CrossRef]
- Vaglio, A.; Casazza, I.; Grasselli, C.; Corradi, D.; Sinico, R.A.; Buzio, C. Churg–Strauss Syndrome. Kidney Int. 2009, 76, 1006–1011. [Google Scholar] [CrossRef]
- Chung, S.A.; Seo, P. Microscopic Polyangiitis. Rheum. Dis. Clin. North Am. 2010, 36, 545–558. [Google Scholar] [CrossRef]
- Nguyen, Y.; Guillevin, L. Eosinophilic Granulomatosis with Polyangiitis (Churg–Strauss). Semin. Respir. Crit. Care Med. 2018, 39, 471–481. [Google Scholar] [CrossRef]
- Puéchal, X. Granulomatosis with Polyangiitis (Wegener’s). Jt. Bone Spine 2020, 87, 572–578. [Google Scholar] [CrossRef]
- Lyons, P.A.; Rayner, T.F.; Trivedi, S.; Holle, J.U.; Watts, R.A.; Jayne, D.R.W.; Baslund, B.; Brenchley, P.; Bruchfeld, A.; Chaudhry, A.N.; et al. Genetically Distinct Subsets within ANCA-Associated Vasculitis. N. Engl. J. Med. 2012, 367, 214–223. [Google Scholar] [CrossRef]
- Kitching, A.R.; Anders, H.-J.; Basu, N.; Brouwer, E.; Gordon, J.; Jayne, D.R.; Kullman, J.; Lyons, P.A.; Merkel, P.A.; Savage, C.O.S.; et al. ANCA-Associated Vasculitis. Nat. Rev. Dis. Primers 2020, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Trivioli, G.; Marquez, A.; Martorana, D.; Tesi, M.; Kronbichler, A.; Lyons, P.A.; Vaglio, A. Genetics of ANCA-Associated Vasculitis: Role in Pathogenesis, Classification and Management. Nat. Rev. Rheumatol. 2022, 18, 559–574. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.T.; Hunder, G.G.; Lie, J.T.; Michel, B.A.; Bloch, D.A.; Arend, W.P.; Calabrese, L.H.; Edworthy, S.M.; Fauci, A.S.; Leavitt, R.Y. The American College of Rheumatology 1990 Criteria for the Classification of Churg-Strauss Syndrome (Allergic Granulomatosis and Angiitis). Arthritis Rheum. 1990, 33, 1094–1100. [Google Scholar] [CrossRef]
- Grayson, P.C.; Ponte, C.; Suppiah, R.; Robson, J.C.; Craven, A.; Judge, A.; Khalid, S.; Hutchings, A.; Luqmani, R.A.; Watts, R.A.; et al. 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology Classification Criteria for Eosinophilic Granulomatosis with Polyangiitis. Ann. Rheum. Dis. 2022, 81, 309–314. [Google Scholar] [CrossRef]
- Matucci, A.; Vivarelli, E.; Perlato, M.; Mecheri, V.; Accinno, M.; Cosmi, L.; Parronchi, P.; Rossi, O.; Vultaggio, A. Baseline Eosinophil Count as a Potential Clinical Biomarker for Clinical Complexity in EGPA: A Real-Life Experience. Biomedicines 2022, 10, 2688. [Google Scholar] [CrossRef]
- Matucci, A.; Vivarelli, E.; Perlato, M.; Mecheri, V.; Accinno, M.; Cosmi, L.; Parronchi, P.; Rossi, O.; Vultaggio, A. EGPA Phenotyping: Not Only ANCA, but Also Eosinophils. Biomedicines 2023, 11, 776. [Google Scholar] [CrossRef] [PubMed]
- Lyons, P.A.; Peters, J.E.; Alberici, F.; Liley, J.; Coulson, R.M.R.; Astle, W.; Baldini, C.; Bonatti, F.; Cid, M.C.; Elding, H.; et al. Genome-Wide Association Study of Eosinophilic Granulomatosis with Polyangiitis Reveals Genomic Loci Stratified by ANCA Status. Nat. Commun. 2019, 10, 5120. [Google Scholar] [CrossRef]
- Maritati, F.; Peyronel, F.; Fenaroli, P.; Pegoraro, F.; Lastrucci, V.; Benigno, G.D.; Palmisano, A.; Rossi, G.M.; Urban, M.L.; Alberici, F.; et al. Occupational Exposures and Smoking in Eosinophilic Granulomatosis With Polyangiitis: A Case–Control Study. Arthritis Rheumatol. 2021, 73, 1694–1702. [Google Scholar] [CrossRef]
- Pareek, C.S.; Smoczynski, R.; Tretyn, A. Sequencing Technologies and Genome Sequencing. J. Appl. Genet. 2011, 52, 413–435. [Google Scholar] [CrossRef]
- Cui, H.; Dhroso, A.; Johnson, N.; Korkin, D. The Variation Game: Cracking Complex Genetic Disorders with NGS and Omics Data. Methods 2015, 79–80, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Treccani, M.; Locatelli, E.; Patuzzo, C.; Malerba, G. A Broad Overview of Genotype Imputation: Standard Guidelines, Approaches, and Future Investigations in Genomic Association Studies. BIOCELL 2023, 47, 1225–1241. [Google Scholar] [CrossRef]
- Snel, B. STRING: A Web-Server to Retrieve and Display the Repeatedly Occurring Neighbourhood of a Gene. Nucleic Acids Res. 2000, 28, 3442–3444. [Google Scholar] [CrossRef] [PubMed]
- Jagiello, P.; Aries, P.; Arning, L.; Wagenleiter, S.E.N.; Csernok, E.; Hellmich, B.; Gross, W.L.; Epplen, J.T. The PTPN22 620W Allele Is a Risk Factor for Wegener’s Granulomatosis. Arthritis Rheum. 2005, 52, 4039–4043. [Google Scholar] [CrossRef] [PubMed]
- Carr, E.J.; Niederer, H.A.; Williams, J.; Harper, L.; Watts, R.A.; Lyons, P.A.; Smith, K.G. Confirmation of the Genetic Association of CTLA4 and PTPN22 with ANCA-Associated Vasculitis. BMC Med. Genet. 2009, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, A.; Yamashita, K.; Hirano, F.; Sada, K.; Tsukui, D.; Kondo, Y.; Kimura, Y.; Asako, K.; Kobayashi, S.; Yamada, H.; et al. Association of ETS1 Polymorphism with Granulomatosis with Polyangiitis and Proteinase 3-Anti-Neutrophil Cytoplasmic Antibody Positive Vasculitis in a Japanese Population. J. Hum. Genet. 2018, 63, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, A.; Namba, N.; Sada, K.; Hirano, F.; Kobayashi, S.; Nagasaka, K.; Sugihara, T.; Ono, N.; Fujimoto, T.; Kusaoi, M.; et al. Association of TERT and DSP Variants with Microscopic Polyangiitis and Myeloperoxidase-ANCA Positive Vasculitis in a Japanese Population: A Genetic Association Study. Arthritis Res. Ther. 2020, 22, 246. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-J.; Cheng, F.-J.; Lv, J.-C.; Luo, H.; Yu, F.; Chen, M.; Zhao, M.-H.; Zhang, H. Higher DEFB4 Genomic Copy Number in SLE and ANCA-Associated Small Vasculitis. Rheumatology 2012, 51, 992–995. [Google Scholar] [CrossRef] [PubMed]
- Fanciulli, M.; Norsworthy, P.J.; Petretto, E.; Dong, R.; Harper, L.; Kamesh, L.; Heward, J.M.; Gough, S.C.L.; De Smith, A.; Blakemore, A.I.F.; et al. FCGR3B Copy Number Variation Is Associated with Susceptibility to Systemic, but Not Organ-Specific, Autoimmunity. Nat. Genet. 2007, 39, 721–723. [Google Scholar] [CrossRef]
- Martorana, D.; Bonatti, F.; Alberici, F.; Gioffredi, A.; Reina, M.; Urban, M.L.; Maritati, F.; Adorni, A.; Radice, A.; Pizzolato, S.; et al. Fcγ-Receptor 3B ( FCGR3B ) Copy Number Variations in Patients with Eosinophilic Granulomatosis with Polyangiitis. J. Allergy Clin. Immunol. 2016, 137, 1597–1599.e8. [Google Scholar] [CrossRef]
- Alberici, F.; Bonatti, F.; Adorni, A.; Daminelli, G.; Sinico, R.A.; Gregorini, G.; Marvisi, C.; Fenaroli, P.; Peyronel, F.; Maritati, F.; et al. FCGR3B Polymorphism Predicts Relapse Risk in Eosinophilic Granulomatosis with Polyangiitis. Rheumatology 2020, 59, 3563–3566. [Google Scholar] [CrossRef]
- Campbell, R.D.; Milner, C.M. MHC Genes in Autoimmunity. Curr. Opin. Immunol. 1993, 5, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Natarajan, K.; Margulies, D.H. MHC Molecules, T Cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins-Key Elements of Adaptive and Innate Immunity. Adv. Exp. Med. Biol. 2019, 1172, 21–62. [Google Scholar] [CrossRef] [PubMed]
- Ishina, I.A.; Zakharova, M.Y.; Kurbatskaia, I.N.; Mamedov, A.E.; Belogurov, A.A.; Gabibov, A.G. MHC Class II Presentation in Autoimmunity. Cells 2023, 12, 314. [Google Scholar] [CrossRef]
- Vaglio, A.; Martorana, D.; Maggiore, U.; Grasselli, C.; Zanetti, A.; Pesci, A.; Garini, G.; Manganelli, P.; Bottero, P.; Tumiati, B.; et al. HLA–DRB4 as a Genetic Risk Factor for Churg-Strauss Syndrome. Arthritis Rheum. 2007, 56, 3159–3166. [Google Scholar] [CrossRef] [PubMed]
- Heckmann, M.; Holle, J.U.; Arning, L.; Knaup, S.; Hellmich, B.; Nothnagel, M.; Jagiello, P.; Gross, W.L.; Epplen, J.T.; Wieczorek, S. The Wegener’s Granulomatosis Quantitative Trait Locus on Chromosome 6p21.3 as Characterised by tagSNP Genotyping. Ann. Rheum. Dis. 2008, 67, 972–979. [Google Scholar] [CrossRef]
- Jung, J.H.; Song, G.G.; Lee, Y.H. Meta-Analysis of Associations Between Interleukin-10 Polymorphisms and Susceptibility to Vasculitis. Immunol. Investig. 2015, 44, 553–565. [Google Scholar] [CrossRef]
- Rahmattulla, C.; Mooyaart, A.L.; Van Hooven, D.; Schoones, J.W.; Bruijn, J.A.; Dekkers, O.M.; European Vasculitis Genetics Consortium; Bajema, I.M. Genetic Variants in ANCA-Associated Vasculitis: A Meta-Analysis. Ann. Rheum. Dis. 2016, 75, 1687–1692. [Google Scholar] [CrossRef]
- Merkel, P.A.; Xie, G.; Monach, P.A.; Ji, X.; Ciavatta, D.J.; Byun, J.; Pinder, B.D.; Zhao, A.; Zhang, J.; Tadesse, Y.; et al. Identification of Functional and Expression Polymorphisms Associated With Risk for Antineutrophil Cytoplasmic Autoantibody–Associated Vasculitis. Arthritis Rheumatol. 2017, 69, 1054–1066. [Google Scholar] [CrossRef]
- Xie, G.; Roshandel, D.; Sherva, R.; Monach, P.A.; Lu, E.Y.; Kung, T.; Carrington, K.; Zhang, S.S.; Pulit, S.L.; Ripke, S.; et al. Association of Granulomatosis With Polyangiitis (Wegener’s) With HLA–DPB1*04 and SEMA6A Gene Variants: Evidence From Genome-Wide Analysis. Arthritis Rheum. 2013, 65, 2457–2468. [Google Scholar] [CrossRef]
- Luo, S.; Rubinsztein, D.C. BCL2L11/BIM: A Novel Molecular Link between Autophagy and Apoptosis. Autophagy 2013, 9, 104–105. [Google Scholar] [CrossRef] [PubMed]
- Kotzin, J.J.; Spencer, S.P.; McCright, S.J.; Kumar, D.B.U.; Collet, M.A.; Mowel, W.K.; Elliott, E.N.; Uyar, A.; Makiya, M.A.; Dunagin, M.C.; et al. The Long Non-Coding RNA Morrbid Regulates Bim and Short-Lived Myeloid Cell Lifespan. Nature 2016, 537, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Ntontsi, P.; Photiades, A.; Zervas, E.; Xanthou, G.; Samitas, K. Genetics and Epigenetics in Asthma. Int. J. Mol. Sci. 2021, 22, 2412. [Google Scholar] [CrossRef]
- Murrison, L.B.; Ren, X.; Preusse, K.; He, H.; Kroner, J.; Chen, X.; Jenkins, S.; Johansson, E.; Biagini, J.M.; Weirauch, M.T.; et al. TSLP Disease-Associated Genetic Variants Combined with Airway TSLP Expression Influence Asthma Risk. J. Allergy Clin. Immunol. 2022, 149, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.B.; Tebbutt, N.C.; Buchert, M.; Putoczki, T.L.; Doggett, K.; Bao, S.; Johnstone, C.N.; Masson, F.; Hollande, F.; Burgess, A.W.; et al. Glycoprotein A33 Deficiency: A New Mouse Model of Impaired Intestinal Epithelial Barrier Function and Inflammatory Disease. Dis. Model. Mech. 2015, 8, 805–815. [Google Scholar] [CrossRef]
- Johansson, Å.; Rask-Andersen, M.; Karlsson, T.; Ek, W.E. Genome-Wide Association Analysis of 350 000 Caucasians from the UK Biobank Identifies Novel Loci for Asthma, Hay Fever and Eczema. Human. Mol. Genet. 2019, 28, 4022–4041. [Google Scholar] [CrossRef] [PubMed]
- Olafsdottir, T.A.; Theodors, F.; Bjarnadottir, K.; Bjornsdottir, U.S.; Agustsdottir, A.B.; Stefansson, O.A.; Ivarsdottir, E.V.; Sigurdsson, J.K.; Benonisdottir, S.; Eyjolfsson, G.I.; et al. Eighty-Eight Variants Highlight the Role of T Cell Regulation and Airway Remodeling in Asthma Pathogenesis. Nat. Commun. 2020, 11, 393. [Google Scholar] [CrossRef]
- Wan, Y.Y. GATA3: A Master of Many Trades in Immune Regulation. Trends Immunol. 2014, 35, 233–242. [Google Scholar] [CrossRef]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the Missing Heritability of Complex Diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef]
- Ott, J.; Kamatani, Y.; Lathrop, M. Family-Based Designs for Genome-Wide Association Studies. Nat. Rev. Genet. 2011, 12, 465–474. [Google Scholar] [CrossRef]
- Auer, P.L.; Lettre, G. Rare Variant Association Studies: Considerations, Challenges and Opportunities. Genome Med. 2015, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Dossa, H.R.G.; Bureau, A.; Maziade, M.; Lakhal-Chaieb, L.; Oualkacha, K. A Novel Rare Variants Association Test for Binary Traits in Family-Based Designs via Copulas. Stat. Methods Med. Res. 2023, 32, 2096–2122. [Google Scholar] [CrossRef]
- David, C.; Hamel, Y.; Smahi, A.; Diot, E.; Benhamou, Y.; Girszyn, N.; Le Gallou, T.; Lifermann, F.; Godmer, P.; Maurier, F.; et al. Identification of EPX Variants in Human Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss). J. Allergy Clin. Immunol. Pract. 2023, 11, 1960–1963.e3. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.P.; Peterson, C.G.B.; Dahl, R. Serum Eosinophil Granule Proteins Predict Asthma Risk in Allergic Rhinitis. Allergy 2009, 64, 733–737. [Google Scholar] [CrossRef]
- Winther, L.; Moseholm, L.; Reimert, C.M.; Stahl Skov, P.; Kaergaard Poulsen, L. Basophil Histamine Release, IgE, Eosinophil Counts, ECP, and EPX Are Related to the Severity of Symptoms in Seasonal Allergic Rhinitis. Allergy 1999, 54, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Bobbio-Pallavicini, E.; Confalonieri, M.; Tacconi, F.; Mainardi, E.; Della Porta, R.; Ceccato, D.; Maccario, R.; De Amici, M. Study of Release of Eosinophil Cationic Proteins (ECP and EPX) in the Hypereosinophilic Syndrome (HES) and Other Hypereosinophilic Conditions. Panminerva Med. 1998, 40, 186–190. [Google Scholar]
- Zhao, W.-M.; Wang, Z.-J.; Shi, R.; Zhu, Y.-Y.; Zhang, S.; Wang, R.-F.; Wang, D.-G. Environmental Factors Influencing the Risk of ANCA-Associated Vasculitis. Front. Immunol. 2022, 13, 991256. [Google Scholar] [CrossRef]
- Draibe, J.; Rodó, X.; Fulladosa, X.; Martínez-Valenzuela, L.; Diaz-Encarnación, M.; Santos, L.; Marco, H.; Quintana, L.; Rodriguez, E.; Barros, X.; et al. Seasonal Variations in the Onset of Positive and Negative Renal ANCA-Associated Vasculitis in Spain. Clin. Kidney J. 2018, 11, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Ooi, J.D.; Jiang, J.-H.; Eggenhuizen, P.J.; Chua, L.L.; Van Timmeren, M.; Loh, K.L.; O’Sullivan, K.M.; Gan, P.Y.; Zhong, Y.; Tsyganov, K.; et al. A Plasmid-Encoded Peptide from Staphylococcus Aureus Induces Anti-Myeloperoxidase Nephritogenic Autoimmunity. Nat. Commun. 2019, 10, 3392. [Google Scholar] [CrossRef]
- Watts, R.A.; Mooney, J.; Skinner, J.; Scott, D.G.I.; MacGregor, A.J. The Contrasting Epidemiology of Granulomatosis with Polyangiitis (Wegener’s) and Microscopic Polyangiitis. Rheumatology 2012, 51, 926–931. [Google Scholar] [CrossRef]
- Aries, P.M.; Herlyn, K.; Reinhold-Keller, E.; Latza, U. No Seasonal Variation in the Onset of Symptoms of 445 Patients with Wegener’s Granulomatosis. Arthritis Rheum. 2008, 59, 904. [Google Scholar] [CrossRef]
- Mahr, A.; Artigues, N.; Coste, J.; Aouba, A.; Pagnoux, C.; Guillevin, L.; French Vasculitis Study Group. Seasonal Variations in Onset of Wegener’s Granulomatosis: Increased in Summer? J. Rheumatol. 2006, 33, 1615–1622. [Google Scholar]
- Kanai, K.; Kuwabara, S.; Mori, M.; Arai, K.; Yamamoto, T.; Hattori, T. Leukocytoclastic-vasculitic Neuropathy Associated with Chronic Epstein–Barr Virus Infection. Muscle Nerve 2003, 27, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Yoshioka, T.; Yamakawa, T.; Maeda, M.; Shimizu, H.; Fujita, Y.; Maruyama, S.; Ito, Y.; Matsuo, S. Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis Associated with Infectious Mononucleosis Due to Primary Epstein-Barr Virus Infection: Report of Three Cases. Clin. Kidney J. 2014, 7, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Schramm, M.A.; Venhoff, N.; Wagner, D.; Thiel, J.; Huzly, D.; Craig-Mueller, N.; Panning, M.; Hengel, H.; Kern, W.V.; Voll, R.E. COVID-19 in a Severely Immunosuppressed Patient With Life-Threatening Eosinophilic Granulomatosis With Polyangiitis. Front. Immunol. 2020, 11, 2086. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.; Patel, K.; Rahimi, O.; Sanyurah, O.; Iardino, A.; Khan, N. ANCA Vasculitis: A Manifestation of Post-Covid-19 Syndrome. Respir. Med. Case Rep. 2021, 34, 101549. [Google Scholar] [CrossRef] [PubMed]
- Maritati, F.; Moretti, M.I.; Nastasi, V.; Mazzucchelli, R.; Morroni, M.; Bagnarelli, P.; Rupoli, S.; Tavio, M.; Galiotta, P.; Bisello, W.; et al. ANCA-Associated Glomerulonephritis and Anti-Phospholipid Syndrome in a Patient with SARS-CoV-2 Infection: Just a Coincidence? Case Rep. Nephrol. Dial. 2021, 11, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Reiff, D.D.; Meyer, C.G.; Marlin, B.; Mannion, M.L. New Onset ANCA-Associated Vasculitis in an Adolescent during an Acute COVID-19 Infection: A Case Report. BMC Pediatr. 2021, 21, 333. [Google Scholar] [CrossRef]
- Mueller, M.; Poller, W.; Klingel, K.; Neumann, T.; Landmesser, U.; Heidecker, B. Eosinophilic Granulomatosis with Polyangiitis (EGPA) with Low Activity EBV Replication during the COVID 19 Pandemic. IJC Heart Vasc. 2022, 39, 100968. [Google Scholar] [CrossRef]
- Popa, E.R.; Stegeman, C.A.; Abdulahad, W.H.; Van Der Meer, B.; Arends, J.; Manson, W.M.; Bos, N.A.; Kallenberg, C.G.M.; Cohen Tervaert, J.-W. Staphylococcal Toxic-Shock-Syndrome-Toxin-1 as a Risk Factor for Disease Relapse in Wegener’s Granulomatosis. Rheumatology 2007, 46, 1029–1033. [Google Scholar] [CrossRef]
- Kronbichler, A.; Kerschbaum, J.; Mayer, G. The Influence and Role of Microbial Factors in Autoimmune Kidney Diseases: A Systematic Review. J. Immunol. Res. 2015, 2015, 858027. [Google Scholar] [CrossRef] [PubMed]
- van Timmeren, M.M.; Heeringa, P.; Kallenberg, C.G.M. Infectious Triggers for Vasculitis. Curr. Opin. Rheumatol. 2014, 26, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Beaudreuil, S.; Lasfargues, G.; Lauériere, L.; El Ghoul, Z.; Fourquet, F.; Longuet, C.; Halimi, J.-M.; Nivet, H.; Büchler, M. Occupational Exposure in ANCA-Positive Patients: A Case-Control Study. Kidney Int. 2005, 67, 1961–1966. [Google Scholar] [CrossRef] [PubMed]
- Rihova, Z.; Maixnerova, D.; Jancova, E.; Pelclova, D.; Bartunkova, J.; Fenclova, Z.; Vankova, Z.; Reiterova, J.; Merta, M.; Rysava, R.; et al. Silica and Asbestos Exposure in ANCA-Associated Vasculitis with Pulmonary Involvement. Ren. Fail. 2005, 27, 605–608. [Google Scholar] [CrossRef]
- Scott, J.; Hartnett, J.; Mockler, D.; Little, M.A. Environmental Risk Factors Associated with ANCA Associated Vasculitis: A Systematic Mapping Review. Autoimmun. Rev. 2020, 19, 102660. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.E.; Watts, R.A.; Bentham, G.; Innes, N.J.; Scott, D.G.I. Are Environmental Factors Important in Primary Systemic Vasculitis?: A Case–Control Study. Arthritis Rheum. 2003, 48, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cui, Z.; Long, J.; Huang, W.; Wang, J.; Wang, H.; Zhang, L.; Chen, M.; Zhao, M. The Frequency of ANCA-Associated Vasculitis in a National Database of Hospitalized Patients in China. Arthritis Res. Ther. 2018, 20, 226. [Google Scholar] [CrossRef]
- Trivioli, G.; Terrier, B.; Vaglio, A. Eosinophilic Granulomatosis with Polyangiitis: Understanding the Disease and Its Management. Rheumatology 2020, 59, iii84–iii94. [Google Scholar] [CrossRef] [PubMed]
- Ciavatta, D.J.; Yang, J.; Preston, G.A.; Badhwar, A.K.; Xiao, H.; Hewins, P.; Nester, C.M.; Pendergraft, W.F.; Magnuson, T.R.; Jennette, J.C.; et al. Epigenetic Basis for Aberrant Upregulation of Autoantigen Genes in Humans with ANCA Vasculitis. J. Clin. Investig. 2010, 120, 3209–3219. [Google Scholar] [CrossRef]
- Yang, J.; Ge, H.; Poulton, C.J.; Hogan, S.L.; Hu, Y.; Jones, B.E.; Henderson, C.D.; McInnis, E.A.; Pendergraft, W.F.; Jennette, J.C.; et al. Histone Modification Signature at Myeloperoxidase and Proteinase 3 in Patients with Anti-Neutrophil Cytoplasmic Autoantibody-Associated Vasculitis. Clin. Epigenet 2016, 8, 85. [Google Scholar] [CrossRef]
- McKinney, E.F.; Lyons, P.A.; Carr, E.J.; Hollis, J.L.; Jayne, D.R.W.; Willcocks, L.C.; Koukoulaki, M.; Brazma, A.; Jovanovic, V.; Kemeny, D.M.; et al. A CD8+ T Cell Transcription Signature Predicts Prognosis in Autoimmune Disease. Nat. Med. 2010, 16, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Niccolai, E.; Bettiol, A.; Baldi, S.; Silvestri, E.; Di Gloria, L.; Bello, F.; Nannini, G.; Ricci, F.; Nicastro, M.; Ramazzotti, M.; et al. Gut Microbiota and Associated Mucosal Immune Response in Eosinophilic Granulomatosis with Polyangiitis (EGPA). Biomedicines 2022, 10, 1227. [Google Scholar] [CrossRef]
- Visscher, P.M.; Yengo, L.; Cox, N.J.; Wray, N.R. Discovery and Implications of Polygenicity of Common Diseases. Science 2021, 373, 1468–1473. [Google Scholar] [CrossRef] [PubMed]
- Papalexi, E.; Satija, R. Single-Cell RNA Sequencing to Explore Immune Cell Heterogeneity. Nat. Rev. Immunol. 2018, 18, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-Cell RNA Sequencing Technologies and Applications: A Brief Overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef] [PubMed]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug Repurposing: Progress, Challenges and Recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Frangou, E.; Vassilopoulos, D.; Boletis, J.; Boumpas, D.T. An Emerging Role of Neutrophils and NETosis in Chronic Inflammation and Fibrosis in Systemic Lupus Erythematosus (SLE) and ANCA-Associated Vasculitides (AAV): Implications for the Pathogenesis and Treatment. Autoimmun. Rev. 2019, 18, 751–760. [Google Scholar] [CrossRef]
- Lewis, C.M.; Vassos, E. Polygenic Risk Scores: From Research Tools to Clinical Instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Igo, R.P.; Kinzy, T.G.; Cooke Bailey, J.N. Genetic Risk Scores. CP Human. Genet. 2019, 104, e95. [Google Scholar] [CrossRef]
- Khunsriraksakul, C.; Markus, H.; Olsen, N.J.; Carrel, L.; Jiang, B.; Liu, D.J. Construction and Application of Polygenic Risk Scores in Autoimmune Diseases. Front. Immunol. 2022, 13, 889296. [Google Scholar] [CrossRef]
Features | MPO-ANCA-Positive | ANCA-Negative |
---|---|---|
Affected individuals | 30–40% | 60–70% |
Phenotype | Vasculitis-like | Allergy-like |
Biological pathways | Autoimmunity | Mucosal dysfunction |
Biological actors | ANCA and neutrophils | Eosinophils |
Associated genes | HLA-DQA2, TERT | BACH2, CDK6, GATA3, GPA33, IRF1/IL5 |
Gene | Chrom | EGPA | PR3+ | MPO+ | ANCA- |
---|---|---|---|---|---|
FCGR3B | 1 | ||||
GPA33 | 1 | ||||
BCL2L11 | 2 | ||||
MIR4435-2HG | 2 | ||||
LPP | 3 | ||||
IRF1 | 5 | ||||
TERT | 5 | ||||
TSLP | 5 | ||||
ARHGAP18 | 6 | ||||
BACH2 | 6 | ||||
HLA-DPB1 | 6 | ||||
HLA-DQA1 | 6 | ||||
HLA-DQA2 | 6 | ||||
HLA-DRB1 | 6 | ||||
HLA-DRB4 | 6 | ||||
CDK6 | 7 | ||||
GATA3 | 10 | ||||
ETS1 | 11 | ||||
PRTN3 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treccani, M.; Veschetti, L.; Patuzzo, C.; Malerba, G.; Vaglio, A.; Martorana, D. Genetic and Non-Genetic Contributions to Eosinophilic Granulomatosis with Polyangiitis: Current Knowledge and Future Perspectives. Curr. Issues Mol. Biol. 2024, 46, 7516-7529. https://doi.org/10.3390/cimb46070446
Treccani M, Veschetti L, Patuzzo C, Malerba G, Vaglio A, Martorana D. Genetic and Non-Genetic Contributions to Eosinophilic Granulomatosis with Polyangiitis: Current Knowledge and Future Perspectives. Current Issues in Molecular Biology. 2024; 46(7):7516-7529. https://doi.org/10.3390/cimb46070446
Chicago/Turabian StyleTreccani, Mirko, Laura Veschetti, Cristina Patuzzo, Giovanni Malerba, Augusto Vaglio, and Davide Martorana. 2024. "Genetic and Non-Genetic Contributions to Eosinophilic Granulomatosis with Polyangiitis: Current Knowledge and Future Perspectives" Current Issues in Molecular Biology 46, no. 7: 7516-7529. https://doi.org/10.3390/cimb46070446
APA StyleTreccani, M., Veschetti, L., Patuzzo, C., Malerba, G., Vaglio, A., & Martorana, D. (2024). Genetic and Non-Genetic Contributions to Eosinophilic Granulomatosis with Polyangiitis: Current Knowledge and Future Perspectives. Current Issues in Molecular Biology, 46(7), 7516-7529. https://doi.org/10.3390/cimb46070446