The Mitogenome of the Subarctic Octocoral Alcyonium digitatum Reveals a Putative tRNAPro Gene Nested within MutS
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Extraction and Sequencing
2.2. Data Analysis
3. Results and Discussion
3.1. Canonical Mitochondrial Gene Features
3.2. Non-Canonical Mitochondrial Gene Features
3.2.1. Putative tRNAPro Gene
3.2.2. ORFA Gene
3.3. Phylogenetic Considerations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daly, M.; Brugler, M.R.; Cartwright, P.; Collins, A.G.; Dawson, M.N.; Fautin, D.G.; France, S.C.; McFadden, C.S.; Opresko, D.M.; Rodriguez, E.; et al. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 2007, 1668, 127–182. [Google Scholar] [CrossRef]
- Jenkins, T.L.; Stevens, J.R. Predicting habitat suitability and range shifts under projected climate change for two octocorals in the north-east Atlantic. Peer J. 2022, 10, e13509. [Google Scholar] [CrossRef] [PubMed]
- Osigus, H.J.; Eitel, M.; Bernt, M.; Donath, A.; Schierwater, B. Mitogenomics at the base of Metazoa. Mol. Phylogen. Evol. 2013, 69, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, D.F.; Baco, A.R. Octocoral mitochondrial genomes provide insights into the phylogenetic history of gene order rearrangements, order reversals, and cnidarian phylogenetics. Genome Biol. Evol. 2014, 7, 391–409. [Google Scholar] [CrossRef] [PubMed]
- Hogan, R.I.; Hopkins, K.; Wheeler, A.J.; Allcock, A.L.; Yesson, C. Novel diversity in mitochondrial genomes of deep-sea Pennatulacea (Cnidaria: Anthozoa: Octocorallia). Mitochondrial. DNA Part A 2019, 30, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Ojala, D.; Montoya, J.; Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Shimpi, G.G.; Vargas, S.; Poliseno, A.; Worheide, G. Mitochondrial RNA processing in absence of tRNA punctuation in octocorals. BMC Mol. Biol. 2017, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Sixma, T.K. DNA mismatch repair: MutS structures bound to mismatches. Curr. Opin. Struct. Biol. 2001, 11, 47–52. [Google Scholar] [CrossRef]
- Bilewitch, J.P.; Degnan, S.M. A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function. BMC Evol. Biol. 2011, 11, 228. [Google Scholar] [CrossRef]
- Ramos, N.I.; DeLeo, D.M.; Horowitz, J.; McFadden, C.S.; Quattrini, A.M. Selection in coral mitogenomes, with insight into adaptations in the deep sea. Sci. Rep. 2023, 13, 6016. [Google Scholar] [CrossRef]
- Wei, Z.F.; Ta, K.W.; Zhang, N.N.; Liu, S.S.; Meng, L.; Liu, L.M.; Cai, C.Y.; Peng, X.T.; Shao, C.W. Molecular phylogenetic relationships based on mitochondrial genomes of novel deep-sea corals (Octocorallia: Alcyonacea): Insight into slow evolution and adaptation to extreme seep-sea environments. Zool. Res. 2024, 45, 215–225. [Google Scholar] [CrossRef]
- Muthye, V.; Mackereth, C.D.; Stewart, J.B.; Lavrov, D.V. Large dataset of octocoral mitochondrial genomes provides new insights into mt-mutS evolution and function. DNA Rep. 2022, 110, 103273. [Google Scholar] [CrossRef] [PubMed]
- Dubin, A.; Chi, S.I.; Emblem, Å.; Moum, T.; Johansen, S.D. Deep-water sea anemone with a two-chromosome mitochondrial genome. Gene 2019, 692, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Hahn, C.; Bachmann, L.; Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—A baiting and iterative mapping approach. Nucleic Acids Res. 2013, 41, e129. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Johansen, S.D.; Emblem, Å. Mitochondrial group I introns in hexacorals are regulatory genetic elements. In The Bentic Zone; Intech Open: London, UK, 2020; pp. 694–719. [Google Scholar] [CrossRef]
- Quattrini, A.M.; Rodriguez, E.; Faircloth, B.C.; Cowman, P.F.; Brugler, M.R.; Farfan, G.A.; Hellberg, M.E.; Kitahara, M.V.; Morrison, C.L.; Paz-Garcia, D.A.; et al. Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat. Ecol. Evol. 2020, 4, 1531–1538. [Google Scholar] [CrossRef] [PubMed]
- Celis, J.S.; Wibberg, D.; Winkler, A.; Wilke, T.; Kalinowski, J. Complete mitochondrial genome of the scleractinian coral Porites rus. Mitochondrial. DNA Part A 2016, 27, 3595–3696. [Google Scholar] [CrossRef]
- Niu, W.; Lin, R.; Shi, X.; Chen, C.H.; Shen, K.N.; Hsiao, C.D. Next-generation sequencing yields the complete mitogenome of massive coral, Porites lutea (Cnidaria: Poritidae). Mitochondrial. DNA Part B 2016, 1, 8–9. [Google Scholar] [CrossRef]
- Emblem, Å.; Okkenhaug, S.; Weiss, E.S.; Denver, D.R.; Karlsen, B.O.; Moum, T.; Johansen, S.D. Sea anemones possess dynamic mitogenome structures. Mol. Phylogenet. Evol. 2014, 75, 184–193. [Google Scholar] [CrossRef]
- Chi, S.I.; Dahl, M.; Emblem, Å.; Johansen, S.D. Giant group I intron in a mitochondrial genome is removed by RNA back-splicing. BMC Mol. Biol. 2019, 20, 16. [Google Scholar] [CrossRef]
- Johansen, S.D.; Chi, S.I.; Dubin, A.; Jørgensen, T.E. The mitochondrial genome of the sea anemone Stichodactyla haddoni reveals catalytic introns, insertion-like elements, and unexpected phylogeny. Life 2021, 11, 402. [Google Scholar] [CrossRef] [PubMed]
- Paharkova, V.; Alvarez, G.; Nakamura, H.; Cohen, P.; Lee, K.W. Rat humanin is encoded and translated in mitochondria and is localized to the mitochondrial compartment where is regulates ROS production. Mol. Cell Endocrin. 2015, 413, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Zeng, J.; Drew, B.G.; Sallam, T.; Martin-Montalvo, A.; Wan, J.; Kim, S.J.; Mehta, H.; Hevener, A.L.; de Cabo, R.; et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metebol. 2015, 21, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, T.R.; Johansen, S.D. Expanding the coding potential of vertebrate mitochondrial genomes: Lesson learned from the Atlantic cod. In Mitochondrial DNA-New Insight; Intech Open: London, UK, 2018; pp. 95–111. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heuchel, A.; Emblem, Å.; Jørgensen, T.E.; Moum, T.; Johansen, S.D. The Mitogenome of the Subarctic Octocoral Alcyonium digitatum Reveals a Putative tRNAPro Gene Nested within MutS. Curr. Issues Mol. Biol. 2024, 46, 8104-8110. https://doi.org/10.3390/cimb46080479
Heuchel A, Emblem Å, Jørgensen TE, Moum T, Johansen SD. The Mitogenome of the Subarctic Octocoral Alcyonium digitatum Reveals a Putative tRNAPro Gene Nested within MutS. Current Issues in Molecular Biology. 2024; 46(8):8104-8110. https://doi.org/10.3390/cimb46080479
Chicago/Turabian StyleHeuchel, Alisa, Åse Emblem, Tor Erik Jørgensen, Truls Moum, and Steinar Daae Johansen. 2024. "The Mitogenome of the Subarctic Octocoral Alcyonium digitatum Reveals a Putative tRNAPro Gene Nested within MutS" Current Issues in Molecular Biology 46, no. 8: 8104-8110. https://doi.org/10.3390/cimb46080479
APA StyleHeuchel, A., Emblem, Å., Jørgensen, T. E., Moum, T., & Johansen, S. D. (2024). The Mitogenome of the Subarctic Octocoral Alcyonium digitatum Reveals a Putative tRNAPro Gene Nested within MutS. Current Issues in Molecular Biology, 46(8), 8104-8110. https://doi.org/10.3390/cimb46080479