Association of CTLA-4 (AT)n Variants in Basal Cell Carcinoma and Squamous Cell Carcinoma Patients from Western Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genomic DNA
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, W.; Fang, L.; Ni, R.; Zhang, H.; Pan, G. Changing Trends in the Disease Burden of Non-Melanoma Skin Cancer Globally from 1990 to 2019 and Its Predicted Level in 25 Years. BMC Cancer 2022, 22, 836. [Google Scholar] [CrossRef]
- Zavdy, O.; Coreanu, T.; Bar-On, D.Y.; Ritter, A.; Bachar, G.; Shpitzer, T.; Kurman, N.; Mansour, M.; Ad-El, D.; Rozovski, U.; et al. Cutaneous Squamous Cell Carcinoma in Immunocompromised Patients—A Comparison between Different Immunomodulating Conditions. Cancers 2023, 15, 1764. [Google Scholar] [CrossRef]
- Hernández-Zárate, S.I.; Medina-Bojórquez, A.; López-Tello, S.A.L.; Alcalá-Pérez, D. Epidemiología del cáncer de piel en pacientes de la Clínica de Dermato-oncología del Centro Dermatológico Dr. Ladislao de la Pascua. Estudio retrospectivo de los últimos ocho años. Dermatol. Rev. Mex. 2012, 56, 30–37. [Google Scholar]
- Kwasniak, L.A.; Garcia-Zuazaga, J. Basal Cell Carcinoma: Evidence-Based Medicine and Review of Treatment Modalities. Int. J. Dermatol. 2011, 50, 645–658. [Google Scholar] [CrossRef]
- Correia de Sá, T.R.; Silva, R.; Lopes, J.M. Basal Cell Carcinoma of the Skin (Part 1): Epidemiology, Pathology and Genetic Syndromes. Future Oncol. 2015, 11, 3011–3021. [Google Scholar] [CrossRef]
- Guevara-Gutiérrez, E.; Castro-Jonguitud, M.J.; De la Torre-Flores, S.E.; Muñoz-Valle, J.F.; Tlacuilo-Parra, A.; Salazar-Torres, F.J.; Valle, Y.; Padilla-Gutiérrez, J.R.; Martínez-Fernández, D.E.; Valdés-Alvarado, E. Haplotypes of (−794(CATT)5–8/−173G>C) MIF Gene Polymorphisms and Its Soluble Levels in Basal Cell Carcinoma in Western Mexican Population. J. Investig. Med. 2021, 69, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Gutiérrez, E.; Ramos-Súarez, M.; Villalobos-Ayala, R.A.; Tlacuilo-Parra, A.; Muñoz-Valle, J.F.; Tarango-Martínez, V.; Valle, Y.; Padilla-Gutiérrez, J.R.; Rojas-Díaz, J.M.; Valdés-Alvarado, E. Haplotypes of [-794(CATT)5–8/-173G>C] MIF Gene Polymorphisms and Its Soluble Levels in Cutaneous Squamous Cell Carcinoma in Western Mexican Population. Mol. Genet. Genomic Med. 2023, 11, e2252. [Google Scholar] [CrossRef] [PubMed]
- Van Coillie, S.; Wiernicki, B.; Xu, J. Molecular and Cellular Functions of CTLA-4. In Regulation of Cancer Immune Checkpoints: Molecular and Cellular Mechanisms and Therapy; Xu, J., Ed.; Springer: Singapore, 2020; pp. 7–32. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, W.; Huang, Y.; Cui, R.; Li, X.; Li, B. Evolving Roles for Targeting CTLA-4 in Cancer Immunotherapy. Cell. Physiol. Biochem. 2018, 47, 721–734. [Google Scholar] [CrossRef]
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of Antitumor Immunity by CTLA-4 Blockade. Science 1996, 271, 1734–1736. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, P. Preserving the CTLA-4 Checkpoint for Safer and More Effective Cancer Immunotherapy. Trends Pharmacol. Sci. 2020, 41, 4–12. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, J.; Chen, Y.; Cui, J.; Lei, Y.; Cui, Y.; Jiang, N.; Jiang, W.; Chen, L.; Chen, Y.; et al. Combined Evaluation of the Expression Status of CD155 and TIGIT Plays an Important Role in the Prognosis of LUAD (Lung Adenocarcinoma). Int. Immunopharmacol. 2020, 80, 106198. [Google Scholar] [CrossRef] [PubMed]
- Goske, M.; Ramachander, V.V.; Komaravalli, P.L.; Rahman, P.F.; Rao, C.; Jahan, P. CTLA-4 Genetic Variants (Rs11571317 and Rs3087243): Role in Susceptibility and Progression of Breast Cancer. World J. Oncol. 2017, 8, 162. [Google Scholar] [CrossRef]
- Walker, L.S.K.; Sansom, D.M. Confusing Signals: Recent Progress in CTLA-4 Biology. Trends Immunol. 2015, 36, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Welsh, M.M.; Applebaum, K.M.; Spencer, S.K.; Perry, A.E.; Karagas, M.R.; Nelson, H.H. CTLA4 Variants, UV-Induced Tolerance, and Risk of Non-Melanoma Skin Cancer. Cancer Res. 2009, 69, 6158–6163. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Brant, S.R.; Li, C.; Shrestha, U.K.; Jiang, T.; Zhou, F.; Jiang, Y.; Shi, X.; Zhao, Y.; Li, J.; et al. CTLA4 −1661A/G and 3′UTR Long Repeat Polymorphisms Are Associated with Ulcerative Colitis and Influence CTLA4 mRNA and Protein Expression. Genes Immun. 2010, 11, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, E.; Karabon, L.; Wlodarska-Polinska, I.; Jedynak, A.; Jonkisz, A.; Tomkiewicz, A.; Kornafel, J.; Stepien, M.; Ignatowicz, A.; Lebioda, A.; et al. Influence of CTLA-4/CD28/ICOS Gene Polymorphisms on the Susceptibility to Cervical Squamous Cell Carcinoma and Stage of Differentiation in the Polish Population. Hum. Immunol. 2010, 71, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A Simple Salting out Procedure for Extracting DNA from Human Nucleated Cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed]
- Machida, H.; Tsukamoto, K.; Wen, C.-Y.; Narumi, Y.; Shikuwa, S.; Isomoto, H.; Takeshima, F.; Mizuta, Y.; Niikawa, N.; Murata, I. Association of Polymorphic Alleles of CTLA4 with Inflammatory Bowel Disease in the Japanese. World J. Gastroenterol. WJG 2005, 11, 4188. [Google Scholar] [CrossRef]
- Green, A.C.; Olsen, C.M. Cutaneous Squamous Cell Carcinoma: An Epidemiological Review. Br. J. Dermatol. 2017, 177, 373–381. [Google Scholar] [CrossRef]
- Oberyszyn, T.M. Non-Melanoma Skin Cancer: Importance of Gender, Immunosuppressive Status and Vitamin D. Cancer Lett. 2008, 261, 127–136. [Google Scholar] [CrossRef]
- Le Clair, M.Z.; Cockburn, M.G. Tanning Bed Use and Melanoma: Establishing Risk and Improving Prevention Interventions. Prev. Med. Rep. 2016, 3, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Albert, A.; Knoll, M.A.; Conti, J.A.; Zbar, R.I.S. Non-Melanoma Skin Cancers in the Older Patient. Curr. Oncol. Rep. 2019, 21, 79. [Google Scholar] [CrossRef]
- Liu, Y.; He, Z.; Feng, D.; Shi, G.; Gao, R.; Wu, X.; Song, W.; Yuan, W. Cytotoxic T-Lymphocyte Antigen-4 Polymorphisms and Susceptibility to Osteosarcoma. DNA Cell Biol. 2011, 30, 1051–1055. [Google Scholar] [CrossRef] [PubMed]
- Hadinia, A.; Hossieni, S.V.; Erfani, N.; Saberi-Firozi, M.; Fattahi, M.J.; Ghaderi, A. CTLA-4 Gene Promoter and Exon 1 Polymorphisms in Iranian Patients with Gastric and Colorectal Cancers. J. Gastroenterol. Hepatol. 2007, 22, 2283–2287. [Google Scholar] [CrossRef] [PubMed]
- Al-Harbi, N.; Abdulla, M.-H.; Vaali-Mohammed, M.-A.; Bin Traiki, T.; Alswayyed, M.; Al-Obeed, O.; Abid, I.; Al-Omar, S.; Mansour, L. Evidence of Association between CTLA-4 Gene Polymorphisms and Colorectal Cancers in Saudi Patients. Genes 2023, 14, 874. [Google Scholar] [CrossRef]
- Sun, L.; Niu, T.; Zhang, Y. Association between Thyroid Cancer and CTLA-4 Gene Polymorphisms. Cell. Mol. Biol. 2023, 69, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Barreto, M.; Santos, E.; Ferreira, R.; Fesel, C.; Fontes, M.F.; Pereira, C.; Martins, B.; Andreia, R.; Viana, J.F.; Crespo, F.; et al. Evidence for CTLA4 as a Susceptibility Gene for Systemic Lupus Erythematosus. Eur. J. Hum. Genet. 2004, 12, 620–626. [Google Scholar] [CrossRef] [PubMed]
- AlFadhli, S. Overexpression and Secretion of the Soluble CTLA-4 Splice Variant in Various Autoimmune Diseases and in Cases with Overlapping Autoimmunity. Genet. Test. Mol. Biomark. 2013, 17, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Gootjes, C.; Zwaginga, J.J.; Roep, B.O.; Nikolic, T. Functional Impact of Risk Gene Variants on the Autoimmune Responses in Type 1 Diabetes. Front. Immunol. 2022, 13, 886736. [Google Scholar] [CrossRef]
- De Jong, V.M.; Zaldumbide, A.; van der Slik, A.R.; Laban, S.; Koeleman, B.P.C.; Roep, B.O. Variation in the CTLA4 3′UTR Has Phenotypic Consequences for Autoreactive T Cells and Associates with Genetic Risk for Type 1 Diabetes. Genes Immun. 2016, 17, 75–78. [Google Scholar] [CrossRef]
- Malquori, L.; Carsetti, L.; Ruberti, G. The 3′ UTR of the Human CTLA4 mRNA Can Regulate mRNA Stability and Translational Efficiency. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2008, 1779, 60–65. [Google Scholar] [CrossRef]
- Karabon, L.; Tupikowski, K.; Tomkiewicz, A.; Partyka, A.; Pawlak-Adamska, E.; Wojciechowski, A.; Kolodziej, A.; Dembowski, J.; Zdrojowy, R.; Frydecka, I. Is the Genetic Background of Co-Stimulatory CD28/CTLA-4 Pathway the Risk Factor for Prostate Cancer? Pathol. Oncol. Res. 2017, 23, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-Y.; Liu, C.-Y.; Lo, Y.-L.; Chiou, S.-H.; Lu, K.-H.; Lee, M.-C.; Wang, Y.-H. Cytotoxic T-Lymphocyte Antigen 4 Polymorphisms and Breast Cancer Susceptibility: Evidence from a Meta-Analysis. J. Chin. Med. Assoc. 2023, 86, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Queirolo, P.; Dozin, B.; Morabito, A.; Banelli, B.; Piccioli, P.; Fava, C.; Leo, C.; Carosio, R.; Laurent, S.; Fontana, V.; et al. Association of CTLA-4 Gene Variants with Response to Therapy and Long-Term Survival in Metastatic Melanoma Patients Treated with Ipilimumab: An Italian Melanoma Intergroup Study. Front. Immunol. 2017, 8, 386. [Google Scholar] [CrossRef]
- Stonesifer, C.J.; Djavid, A.R.; Grimes, J.M.; Khaleel, A.E.; Soliman, Y.S.; Maisel-Campbell, A.; Garcia-Saleem, T.J.; Geskin, L.J.; Carvajal, R.D. Immune Checkpoint Inhibition in Non-Melanoma Skin Cancer: A Review of Current Evidence. Front. Oncol. 2021, 11, 734354. [Google Scholar] [CrossRef] [PubMed]
- Shalhout, S.Z.; Emerick, K.S.; Kaufman, H.L.; Miller, D.M. Immunotherapy for Non-Melanoma Skin Cancer. Curr. Oncol. Rep. 2021, 23, 125. [Google Scholar] [CrossRef]
- Karabon, L.; Pawlak, E.; Tomkiewicz, A.; Jedynak, A.; Passowicz-Muszynska, E.; Zajda, K.; Jonkisz, A.; Jankowska, R.; Krzakowski, M.; Frydecka, I. CTLA-4, CD28, and ICOS Gene Polymorphism Associations with Non-Small-Cell Lung Cancer. Hum. Immunol. 2011, 72, 947–954. [Google Scholar] [CrossRef]
Variable | BCC (n = 150) | SCC (n = 150) |
---|---|---|
Demographics | ||
Age | 67 (26–92) | 71 (38–96) |
Sex | Male: 37% (56) Female: 63% (94) | Male: 55% (83) Female: 45% (67) |
Clinical characteristics | ||
Tumor size | ||
High risk | ≥5 mm: 67% (100) | ≥2 cm: 49% (74) |
Low risk | ≤5 mm 33% (50) | ≤2 cm: 51% (76) |
Tumor localization | ||
Head and neck | 93% (140) | 64% (96) |
Core and upper extremities | 5% (7) | 25% (38) |
Other body parts | 2% (3) | 11% (16) |
Histopathology | ||
BCC histopathology | ||
Low risk | 66% (99) | - |
High risk | 34% (51) | - |
SCC histopathology | ||
Highly differentiated | - | 61% (92) |
Moderately differentiated | - | 10% (15) |
Lowly differentiated | - | 1% (1) |
Bowen’s disease | - | 26% (39) |
Other | - | 2% (3) |
Variant | % BCC (n = 150) | % RG (n = 150) | OR (CI 95%); p |
---|---|---|---|
CTLA-4 (AT)n | |||
Genotype | |||
88/88 | 74 (111) | 77.3 (116) | 1 |
88/102 | 2 (3) | 0 (0) | 7.31 (0.37–143); 0.07 |
88/104 | 2 (3) | 0 (0) | 7.31 (0.37–143); 0.07 |
88/108 | 2 (3) | 0 (0) | 7.31 (0.37–143); 0.07 |
88/122 | 1.3 (2) | 0 (0) | 5.22 (0.24–110.03); 0.15 |
96/96 | 0.7 (1) | 0.7 (1) | 1.04 (0.06–16.9); 0.9 |
102/108 | 1.3 (2) | 0 (0) | 5.22 (0.24–110.03); 0.15 |
102/122 | 1.3 (2) | 0 (0) | 5.22 (0.24–110.03); 0.15 |
104/104 | 9.4 (14) | 3.3 (5) | 2.92 (1.02–8.39); 0.03 |
104/106 | 0 (0) | 1.3 (2) | 0.20 (0.01–4.40); 0.16 |
106/106 | 2 (3) | 16 (24) | 0.13 (0.03–0.44); 0.01 |
108/108 | 2.7 (4) | 0.7 (1) | 4.18 (0.46–37.98); 0.16 |
108/110 | 0 (0) | 0.7 (1) | 0.35 (0.01–8.64); 0.32 |
108/112 | 1.3 (2) | 0 (0) | 5.22 (0.24–110.03); 0.15 |
Allele | |||
88 | 77.7 (233) | 77.3 (232) | 1 |
96 | 0.7 (2) | 0.7 (2) | 0.99 (0.13–7.12); 0.99 |
102 | 2.3 (7) | 0 (0) | 14.93 (0.84–263.01); 0.01 |
104 | 10.3 (31) | 4 (12) | 2.57 (1.28–5.13); 0.01 |
106 | 2 (6) | 16.7 (50) | 0.11 (0.05–0.28); 0.00 |
108 | 5 (15) | 1 (3) | 4.9 (1.42–17.42); 0.01 |
110 | 0 (0) | 0.3 (1) | 0.33 (0.01–8.1); 0.31 |
112 | 0.7 (2) | 0 (0) | 4.97 (0.23–104); 0.15 |
122 | 1.3 (4) | 0 (0) | 8.96 (0.48–167); 0.04 |
Variant | % SCC (n = 150) | % RG (n = 150) | OR (CI 95%); p |
---|---|---|---|
CTLA-4 (AT)n | |||
Genotype | |||
88/88 | 73.3 (110) | 78 (117) | 1 |
96/96 | 0 (0) | 1.3 (2) | 0.23 (0.01–4.28); 0.16 |
102/102 | 0 (0) | 0.7 (1) | 0.339 (0.014–8.41); 0.32 |
104/104 | 6 (9) | 4 (6) | 1.53 (0.52–4.42); 0.43 |
106/106 | 4.6 (7) | 14.6 (22) | 0.32 (0.13–0.78); 0.01 |
108/108 | 2 (3) | 0 (0) | 7.12 (0.36–139.4); 0.08 |
122/122 | 0.7 (1) | 0 (0) | 3.05 (0.12–75); 0.31 |
132/132 | 0.7 (1) | 0 (0) | 3.05 (0.12–75); 0.31 |
88/102 | 2 (3) | 0 (0) | 7.12 (0.36–139.4); 0.08 |
88/104 | 2 (3) | 0 (0) | 7.12 (0.36–139.4); 0.08 |
88/122 | 2 (3) | 0 (0) | 7.12 (0.36–139.4); 0.08 |
88/132 | 1.3 (2) | 0 (0) | 5.08 (0.24–107.11); 0.15 |
102/108 | 2 (3) | 0 (0) | 7.12 (0.36–139.4); 0.08 |
104/106 | 0.7 (1) | 0.7 (1) | 1.01 (0.06–16.46); 0.9 |
108/110 | 0.7 (1) | 0.7 (1) | 1.01 (0.06–16.46); 0.9 |
108/112 | 2 (3) | 0 (0) | 7.12 (0.36–139.4); 0.08 |
Allele | |||
88 | 77 (231) | 78 (234) | 1 |
96 | 0 (0) | 1.3 (4) | 0.113 (0.006–2.10) 0.05 |
102 | 2 (6) | 0.7 (2) | 3.03 (0.61–15.21) 0.15 |
104 | 7.4 (22) | 4.4 (13) | 1.71 (0.84–3.45) 0.13 |
106 | 5 (15) | 15 (45) | 0.33 (0.18–0.62) 0.00 |
108 | 4.3 (13) | 0.3 (1) | 13.16 (1.71–101.48) 0.01 |
110 | 0.3 (1) | 0.3 (1) | 1.01 (0.06–16.22) 0.99 |
112 | 1 (3) | 0 (0) | 7.09 (0.36–138) 0.08 |
122 | 1.7 (5) | 0 (0) | 11.14 (0.61–202) 0.03 |
132 | 1.3 (4) | 0 (0) | 9.11 (0.48–170) 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Diaz, J.M.; Zambrano-Román, M.; Padilla-Gutiérrez, J.R.; Valle, Y.; Muñoz-Valle, J.F.; Valdés-Alvarado, E. Association of CTLA-4 (AT)n Variants in Basal Cell Carcinoma and Squamous Cell Carcinoma Patients from Western Mexico. Curr. Issues Mol. Biol. 2024, 46, 8368-8375. https://doi.org/10.3390/cimb46080493
Rojas-Diaz JM, Zambrano-Román M, Padilla-Gutiérrez JR, Valle Y, Muñoz-Valle JF, Valdés-Alvarado E. Association of CTLA-4 (AT)n Variants in Basal Cell Carcinoma and Squamous Cell Carcinoma Patients from Western Mexico. Current Issues in Molecular Biology. 2024; 46(8):8368-8375. https://doi.org/10.3390/cimb46080493
Chicago/Turabian StyleRojas-Diaz, Jose Manuel, Marianela Zambrano-Román, Jorge Ramón Padilla-Gutiérrez, Yeminia Valle, José Francisco Muñoz-Valle, and Emmanuel Valdés-Alvarado. 2024. "Association of CTLA-4 (AT)n Variants in Basal Cell Carcinoma and Squamous Cell Carcinoma Patients from Western Mexico" Current Issues in Molecular Biology 46, no. 8: 8368-8375. https://doi.org/10.3390/cimb46080493
APA StyleRojas-Diaz, J. M., Zambrano-Román, M., Padilla-Gutiérrez, J. R., Valle, Y., Muñoz-Valle, J. F., & Valdés-Alvarado, E. (2024). Association of CTLA-4 (AT)n Variants in Basal Cell Carcinoma and Squamous Cell Carcinoma Patients from Western Mexico. Current Issues in Molecular Biology, 46(8), 8368-8375. https://doi.org/10.3390/cimb46080493