Transgenic Drosophila melanogaster Carrying a Human Full-Length DISC1 Construct (UAS-hflDISC1) Showing Effects on Social Interaction Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fly Lines
2.2. Fly Husbandry
2.3. Behavioral Assays
2.3.1. Social Interaction Network Analysis
2.3.2. Monitoring of the Locomotor Activity
2.3.3. Negative Geotaxis
2.4. Biochemical Assays
2.4.1. Western Blot Analysis
2.4.2. Hydrogen Peroxide Concentration Measurement
2.4.3. Glutathione (GSH/GSSH) Concentration Measurement
2.5. Data Analysis and Statistics
3. Results
3.1. Reduced Social Dynamics and Organizational Structure in Flies with hflDISC1
3.2. Altered Locomotor Activity and Sleep Patterns in the UAS-hflDISC1 Transgenic Flies
3.3. UAS-hflDISC1 Insertion Affects the Climbing Ability
3.4. DISC1 Protein Is Expressed in the UAS-hflDISC1 Transgenic Flies
3.5. UAS-hflDISC1 Leads to Redox Imbalance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Altered Locomotor Activity and Sleep Patterns in the UAS-hflDISC1 Transgenic Flies
Appendix A.2. Measurement of Free-Running Period under Constant Darkness
Appendix A.3. UAS-hflDISC1 Insertion Affects the Circadian Period Length
Drosophila Homologs | Human DISC1 Interacting Proteins | |||
---|---|---|---|---|
Protein Name | Protein Code | Localization (Chromosome) | Protein Name | UniprotKB |
Phosphoglycerate kinase | CG3127 | 2L (2,746,880…2,753,068) | Phosphoglycerate kinase 1 | P00558 |
Eukaryotic initiation factor 3 p40 subunit | CG9124 | 2L (5,051,193…5,053,094) | Eucaryotic translation initiation factor 3 subunit H | O15372 |
Sorting nexin 6 | CG8282 | 2L (8,218,071…8,220,741) | Sorting nexin-6 | Q9UNH7 |
Aminopeptidase P | CG6291 | 2L (16,908,229…16,910,418) | Xaa-Pro aminopeptidase 1 | Q9NQW7 |
Dynamitin | CG8269 | 2R (8,891,832…8,893,339) | Dynactin subunit 2 | Q13561 |
CG9003 | CG9003 | 2R (11,641,477…11,651,616) | F-box only protein 41 | Q8TF61 |
short stop | CG18076 | 2R (13,864,237…13,942,110) | Microtubule-actin cross_linking factor 1, isoforms 1/2/3/5 | Q9UPN3 |
parcas | CG7761 | 2R (14,981,263…14,991,336) | SH3 domain-binding protein 5 | O60239 |
Stretchin-Mlck | CG44162 | 2R (15,946,933…15,989,498) | A-kinase anchor protein 9 | Q99996 |
Lissencephaly-1 | CG8440 | 2R (16,178,826…16,185,103) | Platelet-activating factor acetylhydrolase IB subunit alpha | P43034 |
CG30291 | CG30291 | 2R (21,007,755…21,009,576) | CDK5 regulatory subunit-associated protein 3 | Q96JB5 |
Zipper sti | CG15792 | 2R (24,990,570…25,011,965) | Centrosomal protein of 63 kDa | Q96MT8 |
Cell division cycle 5 ortholog | CG6905 | 3L (357,851…361,383) | Cell division cycle 5-like protein | Q99459 |
trio | CG18214 | 3L (995,982…1,034,875) | Kalirin | O60229 |
misshapen | CG16973 | 3L (2,554,847…2,586,540) | TRAF2 and NCK-interacting protein kinase | Q9UKE5 |
Girdin | CG12734 | 3L (3,178,930…3,185,287) | Girdin | Q3V6T2 |
Exo70 ortholog | CG7127 | 3L (8,411,851…8,415,910) | Exocyst complex component 7 | Q9UPT5 |
furry | CG32045 | 3L (9,631,834…9,679,103) | Protein furry homolog-like | O94915 |
nudE | CG8104 | 3L (9,899,241…9,903,031) | Nuclear distribution protein nudE-like 1 | Q9GZM8 |
Mucin 68D | CG6004 | 3L (11,767,299…11,772,157) | Centrosomal protein of 170 kDa | Q5SW79 |
rogdi | CG7725 | 3L (17,049,512…17,055,454) | Protein rogdi homolog | Q9GZN7 |
Sec3 ortholog | CG3885 | 3L (17,421,787…17,425,217) | Exocyst complex component 1 | Q9NV70 |
verthandi | CG17436 | 3L (27,136,525…27,157,999) | Double-strand-break repair protein rad21 homolog | O60216 |
Intraflagellar transport 54 | CG3259 | 3R (14,302,428…14,304,458) | - | - |
Dystrophin | CG34157 | 3R (19,461,085…19,597,288) | Dystrophin | P11532 |
dunce | CG32498 | X (3,176,440…3,343,767) | cAMP-specific 3′,5′-cyclic phosphodiesterase 4B | Q07343 |
CG43689 | CG43689 | X (4,075,743…4,092,237) | - | - |
dalao | CG7055 | X (9,149,309…9,151,976) | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1 | Q969G3 |
β Spectrin | CG5870 | X (17,657,372..17,669,371) | Spectrin beta chain, non-erythrocytic 1 | Q01082 |
CG6867 | CG6867 | X (18,023,870..18,028,261) | Noelin | Q99784 |
References
- Iasevoli, F.; Tomasetti, C.; de Bartolomeis, A. Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution: Relevance for neuropsychiatric diseases. Neurochem. Res. 2013, 38, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Vessey, J.P.; Karra, D. More than just synaptic building blocks: Scaffolding proteins of the post-synaptic density regulate dendritic patterning. J. Neurochem. 2007, 102, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Dahoun, T.; Trossbach, S.V.; Brandon, N.J.; Korth, C.; Howes, O.D. The impact of Disrupted-in-Schizophrenia 1 (DISC1) on the dopaminergic system: A systematic review. Transl. Psychiatry 2017, 7, e1015. [Google Scholar] [CrossRef] [PubMed]
- Yerabham, A.S.K.; Weiergräber, O.H.; Bradshaw, N.J.; Korth, C. Revisiting disrupted-in-schizophrenia 1 as a scaffold protein. Biol. Chem. 2013, 394, 1425–1437. [Google Scholar] [CrossRef] [PubMed]
- Chubb, J.E.; Bradshaw, N.J.; Soares, D.C.; Porteous, D.J.; Millar, J.K. The DISC locus in psychiatric illness. Mol. Psychiatry 2008, 13, 36–64. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, N.J.; Porteous, D.J. DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 2012, 62, 1230–1241. [Google Scholar] [CrossRef] [PubMed]
- Millar, J.K.; Wilson-Annan, J.C.; Anderson, S.; Christie, S.; Taylor, M.S.; Semple, C.A.; Devon, R.S.; Clair, D.M.S.; Muir, W.J.; Blackwood, D.H.; et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 2008, 9, 1415–1423. [Google Scholar] [CrossRef]
- Leliveld, S.R.; Bader, V.; Hendriks, P.; Prikulis, I.; Sajnani, G.; Requena, J.R.; Korth, C. Insolubility of Disrupted-in-Schizophrenia 1 Disrupts Oligomer-Dependent Interactions with Nuclear Distribution Element 1 and Is Associated with Sporadic Mental Disease. J. Neurosci. 2008, 28, 3839–3845. [Google Scholar] [CrossRef] [PubMed]
- Pils, M.; Rutsch, J.; Eren, F.; Engberg, G.; Piehl, F.; Cervenka, S.; Sellgren, C.; Troßbach, S.; Willbold, D.; Erhardt, S.; et al. Disrupted-in-schizophrenia 1 protein aggregates in cerebrospinal fluid are elevated in patients with first-episode psychosis. Psychiatry Clin. Neurosci. 2023, 77, 665–671. [Google Scholar] [CrossRef]
- Farina, E.A.; Assaf, M.; Corbera, S.; Chen, C.-M. Factors Related to Passive Social Withdrawal and Active Social Avoidance in Schizophrenia. J. Nerv. Ment. Dis. 2022, 210, 490–496. [Google Scholar] [CrossRef]
- Bowie, C.R.; Harvey, P.D. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr. Dis. Treat. 2006, 2, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Kesby, J.P.; Eyles, D.W.; McGrath, J.J.; Scott, J.G. Dopamine, psychosis and schizophrenia: The widening gap between basic and clinical neuroscience. Transl. Psychiatry 2018, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Turetsky, B.I.; Hahn, C.-G.; Borgmann-Winter, K.; Moberg, P.J. Scents and Nonsense: Olfactory Dysfunction in Schizophrenia. Schizophr. Bull. 2009, 35, 1117–1131. [Google Scholar] [CrossRef] [PubMed]
- Nadesalingam, N.; Chapellier, V.; Lefebvre, S.; Pavlidou, A.; Stegmayer, K.; Alexaki, D.; Gama, D.B.; Maderthaner, L.; von Känel, S.; Wüthrich, F.; et al. Motor abnormalities are associated with poor social and functional outcomes in schizophrenia. Compr. Psychiatry 2022, 115, 152307. [Google Scholar] [CrossRef] [PubMed]
- Ashton, A.; Jagannath, A. Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling. Front. Neurosci. 2020, 14, 636. [Google Scholar] [CrossRef] [PubMed]
- Boiko, D.I.; Chopra, H.; Bilal, M.; Kydon, P.V.; Herasymenko, L.O.; Rud, V.O.; Bodnar, L.A.; Vasylyeva, G.Y.; Isakov, R.I.; Zhyvotovska, L.V.; et al. Schizophrenia and disruption of circadian rhythms: An overview of genetic, metabolic and clinical signs. Schizophr. Res. 2024, 264, 58–70. [Google Scholar] [CrossRef]
- Millar, J.K.; Pickard, B.S.; Mackie, S.; James, R.; Christie, S.; Buchanan, S.R.; Malloy, M.P.; Chubb, J.E.; Huston, E.; Baillie, G.S.; et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 2005, 310, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, H.; Mackie, S.; Collins, D.M.; Hill, E.V.; Bolger, G.B.; Klussmann, E.; Porteous, D.J.; Millar, J.K.; Houslay, M.D. Isoform-Selective Susceptibility of DISC1/Phosphodiesterase-4 Complexes to Dissociation by Elevated Intracellular cAMP Levels. J. Neurosci. 2007, 27, 9513–9524. [Google Scholar] [CrossRef] [PubMed]
- Devine, M.J.; Norkett, R.; Kittler, J.T. DISC1 is a coordinator of intracellular trafficking to shape neuronal development and connectivity. J. Physiol. 2016, 594, 5459–5469. [Google Scholar] [CrossRef]
- Norkett, R.; Lesept, F.; Kittler, J.T. DISC1 Regulates Mitochondrial Trafficking in a Miro1-GTP-Dependent Manner. Front. Cell Dev. Biol. 2020, 8, 449. [Google Scholar] [CrossRef]
- Norkett, R.; Modi, S.; Birsa, N.; Atkin, T.A.; Ivankovic, D.; Pathania, M.; Trossbach, S.V.; Korth, C.; Hirst, W.D.; Kittler, J.T. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites. J. Biol. Chem. 2016, 291, 613–629. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Lee, S.B.; Suh, Y.; Kim, S.J.; Lee, N.; Hong, J.H.; Park, C.; Woo, Y.; Ishizuka, K.; Kim, J.H.; et al. DISC1 Modulates Neuronal Stress Responses by Gate-Keeping ER-Mitochondria Ca2+ Transfer through the MAM. Cell Rep. 2017, 21, 2748–2759. [Google Scholar] [CrossRef] [PubMed]
- Madireddy, S.; Madireddy, S. Regulation of Reactive Oxygen Species-Mediated Damage in the Pathogenesis of Schizophrenia. Brain Sci. 2020, 10, 742. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.J.; Rogers, J.C.; Katshu, M.Z.U.H.; Liddle, P.F.; Upthegrove, R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front. Psychiatry 2021, 12, 703452. [Google Scholar] [CrossRef] [PubMed]
- Bitanihirwe, B.K.Y.; Woo, T.-U.W. Oxidative Stress in Schizophrenia: An Integrated Approach. Neurosci. Biobehav. Rev. 2011, 35, 878–893. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.J.; Humpston, C.S.; Wilson, M.; Rogers, J.C.; Katshu, M.Z.U.H.; Liddle, P.F.; Upthegrove, R. Measurement of brain glutathione with magnetic Resonance spectroscopy in Schizophrenia-Spectrum disorders—A systematic review and Meta-Analysis. Brain Behav. Immun. 2024, 115, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Liddle, E.B.; Fernandes, C.C.; Palaniyappan, L.; Hall, E.L.; Robson, S.E.; Simmonite, M.; Fiesal, J.; Katshu, M.Z.; Qureshi, A.; et al. Glutathione and glutamate in schizophrenia: A 7T MRS study. Mol. Psychiatry 2020, 25, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Palaniyappan, L.; Sabesan, P.; Li, X.; Luo, Q. Schizophrenia Increases Variability of the Central Antioxidant System: A Meta-Analysis of Variance from MRS Studies of Glutathione. Front. Psychiatry 2021, 12, 796466. [Google Scholar] [CrossRef]
- Carletti, B.; Banaj, N.; Piras, F.; Bossù, P. Schizophrenia and Glutathione: A Challenging Story. J. Pers. Med. 2023, 13, 1526. [Google Scholar] [CrossRef]
- Koudys, J.W.; Traynor, J.M.; Rodrigo, A.H.; Carcone, D.; Ruocco, A.C. The NIMH Research Domain Criteria (RDoC) Initiative and Its Implications for Research on Personality Disorder. Curr. Psychiatry Rep. 2019, 21, 37. [Google Scholar] [CrossRef]
- Androschuk, A.; Al-Jabri, B.; Bolduc, F.V. From Learning to Memory: What Flies Can Tell Us about Intellectual Disability Treatment. Front. Psychiatry 2015, 6, 85. [Google Scholar] [CrossRef] [PubMed]
- Sawamura, N.; Ando, T.; Maruyama, Y.; Fujimuro, M.; Mochizuki, H.; Honjo, K.; Shimoda, M.; Toda, H.; Sawamura-Yamamoto, T.; Makuch, L.A.; et al. Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly. Mol. Psychiatry 2008, 13, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- van der Voet, M.; Nijhof, B.; Oortveld, M.A.W.; Schenck, A. Drosophila models of early onset cognitive disorders and their clinical applications. Neurosci. Biobehav. Rev. 2014, 46 Pt 2, 326–342. [Google Scholar] [CrossRef] [PubMed]
- van Alphen, B.; van Swinderen, B. Drosophila strategies to study psychiatric disorders. Brain Res. Bull. 2013, 92, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Furukubo-Tokunaga, K. Modeling schizophrenia in flies. Prog. Brain Res. 2014, 179, 107–115. [Google Scholar] [CrossRef]
- Doll, C.A.; Broadie, K. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. Front. Cell. Neurosci. 2014, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Lipina, T.V.; Roder, J.C. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: Impact of mouse models. Neurosci. Biobehav. Rev. 2014, 45, 271–294. [Google Scholar] [CrossRef]
- Pandey, H.; Bourahmoune, K.; Honda, T.; Honjo, K.; Kurita, K.; Sato, T.; Sawa, A.; Furukubo-Tokunaga, K. Genetic interaction of DISC1 and Neurexin in the development of fruit fly glutamatergic synapses. Npj Schizophr. 2017, 3, 39. [Google Scholar] [CrossRef]
- Furukubo-Tokunaga, K.; Kurita, K.; Honjo, K.; Pandey, H.; Ando, T.; Takayama, K.; Arai, Y.; Mochizuki, H.; Ando, M.; Kamiya, A.; et al. DISC1 Causes Associative Memory and Neurodevelopmental Defects in Fruit Flies. Mol. Psychiatry 2016, 21, 1232–1243. [Google Scholar] [CrossRef]
- Morris, J.A.; Kandpal, G.; Ma, L.; Austin, C.P. DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: Regulation and loss of interaction with mutation. Human. Mol. Genet. 2003, 12, 1591–1608. [Google Scholar] [CrossRef]
- Petrović, M.; Meštrović, A.; Waldowski, R.A.; Vujnović, A.F. A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster. PLoS ONE 2023, 18, e0275795. [Google Scholar] [CrossRef]
- Schneider, J.; Levine, J.D. Automated identification of social interaction criteria in Drosophila melanogaster. Biol. Lett. 2014, 10, 20140749. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Nath, T.; Linneweber, G.A.; Claeys, A.; Guo, Z.; Li, J.; Bengochea, M.; De Backer, S.; Weyn, B.; Sneyders, M.; et al. A simple computer vision pipeline reveals the effects of isolation on social interaction dynamics in Drosophila. PLoS Comput. Biol. 2018, 14, e1006410. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Dickinson, M.H.; Levine, J.D. Social structures depend on innate determinants and chemosensory processing in Drosophila. Proc. Natl. Acad. Sci. USA 2012, 109 (Suppl. S2), 17174–17179. [Google Scholar] [CrossRef] [PubMed]
- Brand, A.H.; Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Trossbach, S.V.; Bader, V.; Hecher, L.; Pum, M.E.; Masoud, S.T.; Prikulis, I.; Schäble, S.; de Souza Silva, M.A.; Su, P.; Boulat, B.; et al. Misassembly of full-length Disrupted-in-Schizophrenia 1 protein is linked to altered dopamine homeostasis and behavioral deficits. Mol. Psychiatry 2016, 21, 1561–1572. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, N.J.; Korth, C. Protein misassembly and aggregation as potential convergence points for non-genetic causes of chronic mental illness. Mol. Psychiatry 2019, 24, 936–951. [Google Scholar] [CrossRef] [PubMed]
- Scialo, F.; Sriram, A.; Stefanatos, R.; Sanz, A. Practical Recommendations for the Use of the GeneSwitch Gal4 System to Knock-Down Genes in Drosophila melanogaster. PLoS ONE 2016, 11, e0161817. [Google Scholar] [CrossRef] [PubMed]
- Akmammedov, A.; Geigges, M.; Paro, R. Single vector non-leaky gene expression system for Drosophila melanogaster. Sci. Rep. 2017, 7, 6899. [Google Scholar] [CrossRef]
- Wice, E.W.; Saltz, J.B. Selection on heritable social network positions is context-dependent in Drosophila melanogaster. Nat. Commun. 2021, 12, 3357. [Google Scholar] [CrossRef]
- Milanxpetrovic/Drosophila-Social-Network-Analysis: v1.0.0 Initial Release. Available online: https://zenodo.org/records/10355543 (accessed on 30 April 2024).
- Makagon, M.M.; McCowan, B.; Mench, J.A. How can social network analysis contribute to social behavior research in applied ethology? Appl. Anim. Behav. Sci. 2012, 138, 152–161. [Google Scholar] [CrossRef]
- Rigo, F.; Filošević, A.; Petrović, M.; Jović, K.; Waldowski, R.A. Locomotor sensitization modulates voluntary self-administration of methamphetamine in Drosophila melanogaster. Addict. Biol. 2021, 26, e12963. [Google Scholar] [CrossRef]
- Gargano, J.W.; Martin, I.; Bhandari, P.; Grotewiel, M.S. Rapid iterative negative geotaxis (RING): A new method for assessing age-related locomotor decline in Drosophila. Exp. Gerontol. 2023, 40, 386–395. [Google Scholar] [CrossRef]
- Vujnović, A.F.; Rubinić, M.; Starčević, I.; Waldowski, R.A. Influence of Redox and Dopamine Regulation in Cocaine-Induced Phenotypes Using Drosophila. Antioxidants 2023, 12, 933. [Google Scholar] [CrossRef]
- Alisik, M.; Neselioglu, S.; Erel, O. A colorimetric method to measure oxidized, reduced and total glutathione levels in erythrocytes. J. Lab. Med. 2019, 43, 269–277. [Google Scholar] [CrossRef]
- Hennah, W.; Thomson, P.; Peltonen, L.; Porteous, D. Genes and Schizophrenia: Beyond Schizophrenia: The Role of DISC1 in Major Mental Illness. Schizophr. Bull. 2006, 32, 409–416. [Google Scholar] [CrossRef]
- Soares, D.C.; Carlyle, B.C.; Bradshaw, N.J.; Porteous, D.J. DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness. ACS Chem. Neurosci. 2011, 2, 609–632. [Google Scholar] [CrossRef]
- Whiteley, J.T.; Fernandes, S.; Sharma, A.; Mendes, A.P.D.; Racha, V.; Benassi, S.K.; Marchetto, M.C. Reaching into the toolbox: Stem cell models to study neuropsychiatric disorders. Stem Cell Rep. 2022, 17, 187–210. [Google Scholar] [CrossRef]
- Tomoda, T.; Sumitomo, A.; Jaaro-Peled, H.; Sawa, A. Utility and validity of DISC1 mouse models in biological psychiatry. Neuroscience 2008, 321, 99–107. [Google Scholar] [CrossRef]
- Wang, Q.; Jaaro-Peled, H.; Sawa, A.; Brandon, N.J. How has DISC1 enabled drug discovery? Mol. Cell. Neurosci. 2008, 37, 187–195. [Google Scholar] [CrossRef]
- Hikida, T.; Gamo, N.J.; Sawa, A. DISC1 as a therapeutic target for mental illnesses. Expert. Opin. Ther. Targets 2012, 16, 1151–1160. [Google Scholar] [CrossRef]
- Sawa, A.; Ishizuka, K.; Katsanis, N. The potential of DISC1 protein as a therapeutic target for mental illness. Expert. Opin. Ther. Targets 2016, 20, 641–643. [Google Scholar] [CrossRef]
- Shaw, P.J.; Cirelli, C.; Greenspan, R.J.; Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 2000, 287, 1834–1837. [Google Scholar] [CrossRef]
- Zaharija, B.; Bradshaw, N.J. Aggregation of Disrupted in Schizophrenia 1 arises from a central region of the protein. Progress. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 130, 110923. [Google Scholar] [CrossRef]
- Murphy, L.C.; Millar, J.K. Regulation of mitochondrial dynamics by DISC1, a putative risk factor for major mental illness. Schizophr. Res. 2017, 187, 55–61. [Google Scholar] [CrossRef]
- James, R.; Adams, R.R.; Christie, S.; Buchanan, S.R.; Porteous, D.J.; Millar, J.K. Disrupted in Schizophrenia 1 (DISC1) is a multicompartmentalized protein that predominantly localizes to mitochondria. Mol. Cell. Neurosci. 2014, 26, 112–122. [Google Scholar] [CrossRef]
- Ogawa, F.; Malavasi, E.L.; Crummie, D.K.; Eykelenboom, J.E.; Soares, D.C.; Mackie, S.; Porteous, D.J.; Millar, J. K DISC1 complexes with TRAK1 and Miro1 to modulate anterograde axonal mitochondrial trafficking. Hum. Mol. Genet. 2014, 23, 906–919. [Google Scholar] [CrossRef]
- Millar, J.K.; James, R.; Christie, S.; Porteous, D.J. Disrupted in schizophrenia 1 (DISC1): Subcellular targeting and induction of ring mitochondria. Mol. Cell. Neurosci. 2005, 30, 477–484. [Google Scholar] [CrossRef]
- Atkin, T.A.; MacAskill, A.F.; Brandon, N.J.; Kittler, J.T. Disrupted in Schizophrenia-1 regulates intracellular trafficking of mitochondria in neurons. Mol. Psychiatry 2011, 16, 122–124. [Google Scholar] [CrossRef]
- Eykelenboom, J.E.; Briggs, G.J.; Bradshaw, N.J.; Soares, D.C.; Ogawa, F.; Christie, S.; Malavasi, E.L.; Makedonopoulou, P.; Mackie, S.; Malloy, M.P.; et al. A t(1;11) translocation linked to schizophrenia and affective disorders gives rise to aberrant chimeric DISC1 transcripts that encode structurally altered, deleterious mitochondrial proteins. Hum. Mol. Genet. 2012, 21, 3374–3386. [Google Scholar] [CrossRef]
- Atkin, T.A.; Brandon, N.J.; Kittler, J.T. Disrupted in Schizophrenia 1 forms pathological aggresomes that disrupt its function in intracellular transport. Human. Mol. Genet. 2000, 21, 2017–2028. [Google Scholar] [CrossRef]
- Hendricks, J.C.; Finn, S.M.; Panckeri, K.A.; Chavkin, J.; Williams, J.A.; Sehgal, A.; Pack, A.I. Rest in Drosophila is a sleep-like state. Neuron 2000, 25, 129–138. [Google Scholar] [CrossRef]
- Mazzotta, G.M.; Damulewicz, M.; Cusumano, P. Better Sleep at Night: How Light Influences Sleep in Drosophila. Front. Physiol. 2020, 11, 997. [Google Scholar] [CrossRef]
- Camargo, L.M.; Collura, V.; Rain, J.C.; Mizuguchi, K.; Hermjakob, H.; Kerrien, S.; Bonnert, T.P.; Whiting, P.J.; Brandon, N.J. Disrupted in Schizophrenia 1 Interactome: Evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol. Psychiatry 2007, 12, 74–86. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samardžija, B.; Petrović, M.; Zaharija, B.; Medija, M.; Meštrović, A.; Bradshaw, N.J.; Filošević Vujnović, A.; Andretić Waldowski, R. Transgenic Drosophila melanogaster Carrying a Human Full-Length DISC1 Construct (UAS-hflDISC1) Showing Effects on Social Interaction Networks. Curr. Issues Mol. Biol. 2024, 46, 8526-8549. https://doi.org/10.3390/cimb46080502
Samardžija B, Petrović M, Zaharija B, Medija M, Meštrović A, Bradshaw NJ, Filošević Vujnović A, Andretić Waldowski R. Transgenic Drosophila melanogaster Carrying a Human Full-Length DISC1 Construct (UAS-hflDISC1) Showing Effects on Social Interaction Networks. Current Issues in Molecular Biology. 2024; 46(8):8526-8549. https://doi.org/10.3390/cimb46080502
Chicago/Turabian StyleSamardžija, Bobana, Milan Petrović, Beti Zaharija, Marta Medija, Ana Meštrović, Nicholas J. Bradshaw, Ana Filošević Vujnović, and Rozi Andretić Waldowski. 2024. "Transgenic Drosophila melanogaster Carrying a Human Full-Length DISC1 Construct (UAS-hflDISC1) Showing Effects on Social Interaction Networks" Current Issues in Molecular Biology 46, no. 8: 8526-8549. https://doi.org/10.3390/cimb46080502
APA StyleSamardžija, B., Petrović, M., Zaharija, B., Medija, M., Meštrović, A., Bradshaw, N. J., Filošević Vujnović, A., & Andretić Waldowski, R. (2024). Transgenic Drosophila melanogaster Carrying a Human Full-Length DISC1 Construct (UAS-hflDISC1) Showing Effects on Social Interaction Networks. Current Issues in Molecular Biology, 46(8), 8526-8549. https://doi.org/10.3390/cimb46080502