A New Case of Paediatric Systemic Lupus Erythematosus with Onset after SARS-CoV-2 and Epstein-Barr Infection—A Case Report and Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Case Description
3.1. Outpatient Clinical and Paraclinical Evaluation Post COVID-19
3.2. Clinical and Paraclinical Evaluation in Hospital-Diagnosis of SLE
3.3. Confirmation of the Diagnosis of SLE with Lupus Nephritis—Application of Therapeutic Management
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALT | alanine aminotransferase |
ANA | antinuclear antibodies |
AST | aspartate aminotransferase |
COVID-19 | Coronavirus Disease 2019 |
CRP-C | reactive protein |
dsDNA | double-stranded deoxyribonucleic acid |
EA(D) | diffuse early antigen |
EBV | Epstein–Barr virus |
EBNA | Epstein–Barr virus nuclear antigen |
EULAR/ACR | European League Against Rheumatism/American College of Rheumatology |
ESR | erythrocyte sedimentation rate |
HDL cholesterol | high-density lipoprotein cholesterol |
Ig G | immunoglobulin G |
Ig M | immunoglobulin M |
PASC | post-acute sequelae of COVID-19 |
PCC | post-COVID-19 condition |
RNA | ribonucleic acid |
RT-PCR | real-time polymerase chain reaction |
SARS-CoV-2 | severe acute respiratory syndrome-related coronavirus 2 |
SLE | systemic lupus erythematosus |
VCA | viral capsid antigen |
References
- Tsokos, G.C.; Lo, M.S.; Reis, P.C.; Sullivan, K.E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 2016, 12, 716–730. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Ramos, A.E.; Saavedra-Salinas, M. Can the SARS-CoV-2 infection trigger systemic lupus erythematosus? A case-based review. Rheumatol. Int. 2021, 41, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Groot, N.; Shaikhani, D.; Teng, Y.K.O.; de Leeuw, K.; Bijl, M.; Dolhain, R.J.E.M.; Zirkzee, E.; Fritsch-Stork, R.; Bultink, I.E.M.; Kamphuis, S. Long-Term Clinical Outcomes in a Cohort of Adults With Childhood-Onset Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann. Rheum. Dis. 2019, 78, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J.; Berlin, J.A.; Braverman, I.M.; Callen, J.P.; Costner, M.I.; Dutz, J.; Fivenson, D.; Franks, A.G.; Jorizzo, J.L.; Lee, L.A.; et al. Dermatology position paper on the revision of the 1982 ACR criteria for systemic lupus erythematosus. Lupus 2004, 13, 839–849. [Google Scholar] [CrossRef]
- Vara, E.; Gilbert, M.; Ruth, N.M. Health disparities in outcomes of pediatric systemic lupus erythematosus. Front. Pediatr. 2022, 10, 879208. [Google Scholar] [CrossRef] [PubMed]
- Das Chagas Medeiros, M.M.; Campos Bezerra, M.; Holanda Ferreira Braga, F.N.; Feijão, M.R.M.d.J.; Gois, A.C.R.; Rebouças, V.C.D.R.; de Carvalho, T.M.A.Z.; Carvalho, L.N.S.; Ribeiro, M. Clinical and immunological aspects and outcome of a Brazilian cohort of 414 patients with systemic lupus erythematosus (SLE): Comparison between childhood-onset, adult-onset, and late-onset SLE. Lupus 2015, 25, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Asseri, A.A.; Zeng, Y.; Daines, C.L. Acute pulmonary embolism in a child with ANCA-negative idiopathic pulmonary capillaritis. Saudi Med. J. 2019, 40, 610–613. [Google Scholar] [CrossRef] [PubMed]
- Rigante, D.; Mazzoni, M.B.; Esposito, S. The cryptic interplay between systemic lupus erythematosus and infections. Autoimmun. Rev. 2014, 13, 96–102. [Google Scholar] [CrossRef]
- Jara, L.J.; Medina, G.; Saavedra, M.A. Autoimmune manifestations of infections. Curr. Opin. Rheumatol. 2018, 30, 373–379. [Google Scholar] [CrossRef]
- Caso, F.; Costa, L.; Ruscitti, P.; Navarini, L.; Del Puente, A.; Giacomelli, R.; Scarpa, R. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects? Autoimmun. Rev. 2020, 19, 102524. [Google Scholar] [CrossRef]
- Rönnblom, L. The type I interferon system in the etiopathogenesis of autoimmune diseases. Upsala J. Med. Sci. 2011, 116, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Haslak, F.; Ozbey, D.; Yildiz, M.; Adrovic, A.; Sahin, S.; Koker, O.; Aliyeva, A.; Guliyeva, V.; Yalcin, G.; Inanli, G.; et al. Asymptomatic SARS-CoV-2 seropositivity: Patients with childhood-onset rheumatic diseases versus healthy children. Clin. Rheumatol. 2022, 41, 1523–1533. [Google Scholar] [CrossRef] [PubMed]
- Tatu, A.L.; Nadasdy, T.; Bujoreanu, F.C. Familial clustering of COVID-19 skin manifestations. Dermatol. Ther. 2020, 33, e14181. [Google Scholar] [CrossRef] [PubMed]
- Baroiu, L.; Lese, A.C.; Stefanopol, I.A.; Iancu, A.; Dumitru, C.; Ciubara, A.B.; Bujoreanu, F.C.; Baroiu, N.; Ciubara, A.; Nechifor, A.; et al. The Role of D-Dimers in the Initial Evaluation of COVID-19. Ther. Clin. Risk Manag. 2022, 18, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Tatu, A.L.; Baroiu, L.; Fotea, S.; Anghel, L.; Polea, E.D.; Nadasdy, T.; Chioncel, V.; Nwabudike, L.C. A Working Hypothesis on Vesicular Lesions Related to COVID-19 Infection, Koebner Phenomena Type V, and a Short Review of Related Data. Clin. Cosmet. Investig. Dermatol. 2021, 14, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Tatu, A.L.; Clatici, V.G.; Nwabudike, L.C. Rosacea-like demodicosis (but not primary demodicosis) and papulopustular rosacea may be two phenotypes of the same disease—A microbioma, therapeutic and diagnostic tools perspective. J. Eur. Acad. Dermatol. Venereol. 2019, 33, E46–E47. [Google Scholar] [CrossRef] [PubMed]
- Niculet, E.; Radaschin, D.S.; Nastase, F.; Draganescu, M.; Baroiu, L.; Miulescu, M.; Arbune, M.; Tatu, A.L. Influence of phytochemicals in induced psoriasis (Review). Exp. Ther. Med. 2020, 20, 3421–3424. [Google Scholar] [CrossRef]
- Branisteanu, D.E.; Pintilie, A.; Dumitriu, A.; Cerbu, A.; Ciobanu, D.; Oanta, A.; Tatu, A.L. Clinical, laboratory and therapeutic profile of Lichen planus. Med.-Surg. J. 2017, 121, 25–32. Available online: https://www.revmedchir.ro/index.php/revmedchir/article/view/123 (accessed on 31 March 2024).
- Bettiol, C.O.; Ntagerwa, J.; De Greef, A.; Tuerlinckx, D.; Namur, C.U.; Boutsen, Y. Possible Case of Children Onset Systemic Lupus Erythematosus Triggered by COVID-19. Available online: https://assets-eu.researchsquare.com/files/rs-133376/v1/1115b93c-565a-4408-a141-c633048ee2e9.pdf?c=1631869217 (accessed on 22 June 2024).
- Maram, K.P.; Paturi, V.R.R.; Alla, L.S.; Bhagavatula, M.K. COVID-19 triggered systemic lupus erythematosus in a child: A case report. Int. J. Contemp. Pediatr. 2021, 8, 1304–1306. [Google Scholar] [CrossRef]
- Das, S.; Parul; Samanta, M. Autoimmune diseases post-COVID 19 infection in children in intensive care unit: A case series. Int. J. Rheum. Dis. 2023, 26, 2288–2293. [Google Scholar] [CrossRef] [PubMed]
- de Belo, I.A.C.; Gouveia, C.; Milheiro Silva, T.; Conde, M. COVID-19 infection triggered juvenile systemic lupus erythematosus-like disease. J. Paediatr. Child Health 2022, 58, 2286–2288. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Thekkudan, S.; Mampilly, N.; Vijayan, A. Childhood-onset systemic lupus erythematosus, probably triggered by severe acute respiratory syndrome coronavirus 2 infection, presenting with autoimmune haemolytic anaemia. Curr. Med. Res. Pract. 2022, 12, 235. [Google Scholar] [CrossRef]
- Asseri, A.A.; Al-Murayeh, R.M.; Abudiah, A.M.M.; Elgebally, E.I.M.; Aljaser, A.M.M. A case report of pediatric systemic lupus erythematosus with diffuse alveolar hemorrhage following COVID-19 infection: Causation, association, or chance? Medicine 2022, 101, e30071. [Google Scholar] [CrossRef]
- Coronavirus Disease 2019 (COVID-19)|COVID-19|CDC. Available online: https://www.cdc.gov/covid/?CDC_AAref_Val=https://www.cdc.gov/coronavirus/2019-ncov/vaccines/faq-children.html (accessed on 25 July 2024).
- Greenstein, L.; Makan, K.; Tikly, M. Burden of comorbidities in South Africans with systemic lupus erythematosus. Clin. Rheumatol. 2019, 38, 2077–2082. [Google Scholar] [CrossRef] [PubMed]
- Yaniv, G.; Twig, G.; Shor, D.B.-A.; Furer, A.; Sherer, Y.; Mozes, O.; Komisar, O.; Slonimsky, E.; Klang, E.; Lotan, E.; et al. A volcanic explosion of autoantibodies in systemic lupus erythematosus: A diversity of 180 different antibodies found in SLE patients. Autoimmun. Rev. 2015, 14, 75–79. [Google Scholar] [CrossRef]
- Petri, M.; Orbai, A.M.; Alarcón, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 2677–2686. [Google Scholar] [CrossRef]
- Levy, D.M.; Kamphuis, S. Systemic Lupus Erythematosus in Children and Adolescents. Pediatr. Clin. N. Am. 2012, 59, 345–364. [Google Scholar] [CrossRef]
- Bujoreanu Bezman, L.; Tiutiuca, C.; Totolici, G.; Carneciu, N.; Bujoreanu, F.C.; Ciortea, D.A.; Niculet, E.; Fulga, A.; Alexandru, A.M.; Jicman Stan, D.; et al. Latest Trends in Retinopathy of Prematurity: Research on Risk Factors, Diagnostic Methods, and Therapies. Int. J. Gen. Med. 2023, 16, 937–949. [Google Scholar] [CrossRef]
- Jog, N.R.; James, J.A. Epstein Barr Virus and Autoimmune Responses in Systemic Lupus Erythematosus. Front. Immunol. 2021, 11, 623944. [Google Scholar] [CrossRef]
- Gracia-Ramos, A.E.; Martin-Nares, E.; Hernández-Molina, G. New Onset of Autoimmune Diseases Following COVID-19 Diagnosis. Cells 2021, 10, 3592. [Google Scholar] [CrossRef]
- Dourmishev, L.; Guleva, D.; Pozharashka, J.; Drenovska, K.; Miteva, L.; Vassileva, S. Autoimmune connective tissue diseases in the COVID-19 pandemic. Clin. Dermatol. 2021, 39, 56–63. [Google Scholar] [CrossRef]
- Tesch, F.; Ehm, F.; Vivirito, A.; Wende, D.; Batram, M.; Loser, F.; Menzer, S.; Jacob, J.; Roessler, M.; Seifert, M.; et al. Incident autoimmune diseases in association with SARS-CoV-2 infection: A matched cohort study. Clin. Rheumatol. 2023, 42, 2905–2914. [Google Scholar] [CrossRef] [PubMed]
- A Clinical Case Definition for Post COVID-19 Condition in Children and Adolescents by Expert Consensus, 16 February 2023. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post-COVID-19-condition-CA-Clinical-case-definition-2023-1 (accessed on 1 March 2024).
- Groff, D.; Sun, A.; Ssentongo, A.E.; Ba, D.M.; Parsons, N.; Poudel, G.R.; Lekoubou, A.; Oh, J.S.; Ericson, J.E.; Ssentongo, P.; et al. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection. JAMA Netw. Open 2021, 4, e2128568. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-B.; Zeng, N.; Yuan, K.; Tian, S.-S.; Yang, Y.-B.; Gao, N.; Chen, X.; Zhang, A.-Y.; Kondratiuk, A.L.; Shi, P.-P.; et al. Prevalence and risk factor for long COVID in children and adolescents: A meta-analysis and systematic review. J. Infect. Public Health 2023, 16, 660–672. [Google Scholar] [CrossRef]
- Buonsenso, D.; Munblit, D.; De Rose, C.; Sinatti, D.; Ricchiuto, A.; Carfi, A.; Valentini, P. Preliminary evidence on long COVID in children. Acta Paediatr. 2021, 110, 2208–2211. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.F. Case report and systematic review suggest that children may experience similar long-term effects to adults after clinical COVID-19. Acta Paediatr. 2021, 110, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Choutka, J.; Jansari, V.; Hornig, M.; Iwasaki, A. Unexplained post-acute infection syndromes. Nat. Med. 2022, 28, 911–923. [Google Scholar] [CrossRef]
- Morello, R.; Martino, L.; Buonsenso, D. Diagnosis and management of post-COVID (Long COVID) in children: A moving target. Curr. Opin. Pediatr. 2023, 35, 184–192. [Google Scholar] [CrossRef]
- Gaebler, C.; Wang, Z.; Lorenzi, J.C.C.; Muecksch, F.; Finkin, S.; Tokuyama, M.; Cho, A.; Jankovic, M.; Schaefer-Babajew, D.; Oliveira, T.Y.; et al. Evolution of antibody immunity to SARS-CoV-2. Nature 2021, 591, 639–644. [Google Scholar] [CrossRef]
- Cheung, C.C.L.; Goh, D.; Lim, X.; Tien, T.Z.; Lim, J.C.T.; Lee, J.N.; Tan, B.; Tay, Z.E.A.; Wan, W.Y.; Chen, E.X.; et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. Gut 2022, 71, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xiao, J.; Sun, R.; Tang, X.; Liang, C.; Lin, H.; Zeng, L.; Hu, J.; Yuan, R.; Zhou, P.; et al. Prolonged Persistence of SARS-CoV-2 RNA in Body Fluids. Emerg. Infect. Dis. 2020, 26, 1834–1838. [Google Scholar] [CrossRef] [PubMed]
- Khairwa, A.; Jat, K.R. Autopsy findings of COVID-19 in children: A systematic review and meta-analysis. Forensic Sci. Med. Pathol. 2022, 18, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Scottoni, F.; Giobbe, G.G.; Zambaiti, E.; Khalaf, S.; Sebire, N.J.; Curry, J.; De Coppi, P.; Gennari, F. Intussusception and COVID-19 in Infants: Evidence for an Etiopathologic Correlation. Pediatrics 2022, 149, e2021054644. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Valentini, P.; De Rose, C.; Tredicine, M.; Boza, M.d.C.P.; Camponeschi, C.; Morello, R.; Zampino, G.; Brooks, A.E.S.; Rende, M.; et al. Recovering or Persisting: The Immunopathological Features of SARS-CoV-2 Infection in Children. J. Clin. Med. 2022, 11, 4363. [Google Scholar] [CrossRef] [PubMed]
- Peluso, M.J.; Deitchman, A.N.; Torres, L.; Iyer, N.S.; Munter, S.E.; Nixon, C.C.; Donatelli, J.; Thanh, C.; Takahashi, S.; Hakim, J.; et al. Long-term SARS-CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms. Cell Rep. 2021, 36, 109518. [Google Scholar] [CrossRef] [PubMed]
- Glynne, P.; Tahmasebi, N.; Gant, V.; Gupta, R. Long COVID following Mild SARS-CoV-2 Infection: Characteristic T Cell Alterations and Response to Antihistamines. J. Investig. Med. 2022, 70, 61–67. [Google Scholar] [CrossRef]
- Littlefield, K.M.; Watson, R.O.; Schneider, J.M.; Neff, C.P.; Yamada, E.; Zhang, M.; Campbell, T.B.; Falta, M.T.; Jolley, S.E.; Fontenot, A.P.; et al. SARS-CoV-2-specific T cells associate with inflammation and reduced lung function in pulmonary post-acute sequalae of SARS-CoV-2. PLoS Pathog. 2022, 18, e1010359. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, B.; Boustani, K.; Ogger, P.P.; Papadaki, A.; Tonkin, J.; Orton, C.M.; Ghai, P.; Suveizdyte, K.; Hewitt, R.J.; Desai, S.R.; et al. Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity 2022, 55, 542–556.e5. [Google Scholar] [CrossRef]
- Knoll, R.; Schultze, J.L.; Schulte-Schrepping, J. Monocytes and Macrophages in COVID-19. Front. Immunol. 2021, 12, 720109. [Google Scholar] [CrossRef]
- Phetsouphanh, C.; Darley, D.R.; Wilson, D.B.; Howe, A.; Munier, C.M.L.; Patel, S.K.; Juno, J.A.; Burrell, L.M.; Kent, S.J.; Dore, G.J.; et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022, 23, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, H.; Dubey, S.; Koduri, G.; D’Cruz, D. Rheumatological complications of Covid 19. Autoimmun. Rev. 2021, 20, 102883. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, P.; Doaty, S.; Hahn, B.H. Aetiopathogenesis of systemic lupus erythematosus. In Case Studies in Clinical Psychological Science: Bridging the Gap from Science to Practice; Oxford University Press (OUP): Oxford, UK, 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Cervera, R.; Abarca-Costalago, M.; Abramovicz, D.; Allegri, F.; Annnunziata, P.; Aydintug, A.O.; Bcarelli, M.R.; Bellisai, F.; Bernardino, I.; Biernat-Kaluza, E.; et al. Systemic lupus erythematosus in Europe at the change of the millennium: Lessons from the “Euro-Lupus Project”. Autoimmun. Rev. 2006, 5, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, S.; Gonakoti, S.; Asemota, I.R.; Mba, B. A Case of Systemic Lupus Erythematosus Flare Triggered by Severe Coronavirus Disease 2019. J. Clin. Rheumatol. 2020, 26, 234–235. [Google Scholar] [CrossRef] [PubMed]
- Bonometti, R.; Sacchi, M.C.; Stobbione, P.; Lauritano, E.C.; Tamiazzo, S.; Marchegiani, A.; Novara, E.; Molinaro, E.; Benedetti, I.; Massone, L.; et al. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9695–9697. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.-H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- Tench, C.M.; McCurdie, I.; White, P.D.; D’Cruz, D.P. The prevalence and associations of fatigue in systemic lupus erythematosus. Rheumatology 2000, 39, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, S.; Lövgren, M.; Eriksson, L.; Moberg, C.; Svenungsson, E.; Gunnarsson, I.; Henriksson, E.W. An exploration of patient-reported symptoms in systemic lupus erythematosus and the relationship to health-related quality of life. Scand. J. Rheumatol. 2012, 41, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Sibbitt, W.L., Jr.; Brandt, J.R.; Johnson, C.R.; Maldonado, M.E.; Patel, S.R.; Ford, C.C.; Bankhurst, A.D.; Brooks, W.M. The incidence and prevalence of neuropsychiatric syndromes in pediatric onset systemic lupus erythematosus. J. Rheumatol. 2002, 29, 1536–1542. Available online: https://pubmed.ncbi.nlm.nih.gov/12136916/ (accessed on 5 March 2024).
- Sampaio, M.C.d.A.; De Oliveira, Z.N.P.; Machado, M.C.d.M.R.; Dos Reis, V.M.S.; Vilela, M.A.C. Discoid Lupus Erythematosus in Children—A Retrospective Study of 34 Patients. Pediatr. Dermatol. 2008, 25, 163–167. [Google Scholar] [CrossRef]
- Ramírez Gómez, L.A.; Uribe Uribe, O.; Osio Uribe, O.; Grisales Romero, H.; Cardiel, M.H.; Wojdyla, D.; BA Pons-Estel on behalf of the Grupo Latinoamericano de Estudio del Lupus (GLADEL). Childhood systemic lupus erythematosus in Latin America. The GLADEL experience in 230 children. Lupus 2008, 17, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Quan, T.; Nolasco, H.; Park, S.-H.; Hong, M.S.; Crouch, J.; Pamer, E.G.; Howe, J.G.; Craft, J. Defective Control of Latent Epstein-Barr Virus Infection in Systemic Lupus Erythematosus. J. Immunol. 2004, 172, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- De Paschale, M.; Clerici, P. Serological diagnosis of Epstein-Barr virus infection: Problems and solutions. World J. Virol. 2012, 1, 31–43. [Google Scholar] [CrossRef]
- Yadav, P.; Tran, H.; Ebegbe, R.; Gottlieb, P.; Wei, H.; Lewis, R.H.; Mumbey-Wafula, A.; Kaplan, A.; Kholdarova, E.; Spatz, L. Antibodies Elicited in Response to EBNA-1 May Cross-React with dsDNA. PLoS ONE 2011, 6, e14488. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Song, J.; Liu, H.; Zheng, H.; Chen, C. Positive Epstein–Barr virus detection in coronavirus disease 2019 (COVID-19) patients. Sci. Rep. 2021, 11, 10902. [Google Scholar] [CrossRef] [PubMed]
- Miskovic, R.; Cirkovic, A.; Miljanovic, D.; Jeremic, I.; Grk, M.; Basaric, M.; Lazarevic, I.; Stojanovic, M.; Plavsic, A.; Raskovic, S.; et al. Epstein–Barr Virus Reactivation as a New Predictor of Achieving Remission or Lupus Low Disease Activity State in Patients with Systemic Lupus Erythematosus with Cutaneous Involvement. Int. J. Mol. Sci. 2023, 24, 6156. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Filho, A.D.; Barreto-Filho, J.A.; Neves, S.J.F.; de Lyra, D.P. Association between the 8-item Morisky Medication Adherence Scale (MMAS-8) and blood pressure control. Arq. Bras. Cardiol. 2012, 99, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Rees, F.; Doherty, M.; Lanyon, P.; Davenport, G.; Riley, R.D.; Zhang, W.; Grainge, M.J. Early Clinical Features in Systemic Lupus Erythematosus: Can They Be Used to Achieve Earlier Diagnosis? A Risk Prediction Model. Arthritis Care Res. 2017, 69, 833–841. [Google Scholar] [CrossRef]
- Heinlen, L.D.; McClain, M.T.; Merrill, J.; Akbarali, Y.W.; Edgerton, C.C.; Harley, J.B.; James, J.A. Clinical criteria for systemic lupus erythematosus precede diagnosis, and associated autoantibodies are present before clinical symptoms. Arthritis Rheum. 2007, 56, 2344–2351. [Google Scholar] [CrossRef]
Biomarkers/Reference Range | Outpatient Paraclinical Evaluation | Paraclinical Evaluation Pediatric Hospital—Galati | Paraclinical Evaluation Nephrology Clinic |
---|---|---|---|
Erythrocytes [4.1–5.3 × 106/µL] | 3.28 × 106 | 2.43 × 106 | |
Hemoglobin [11–15 g/dL] | 9.2 | 9.2 | 7.2 |
Hematocrit [35–45%] | 29 | 20.9 | 29.6 |
Leukocyte [4500–13,500/mm3] | 3300 | 3160 | |
Absolute lymphocytes [1.5–6.5 × 103/µL] | 0.69 × 103 | ||
No. reticulocytes [0.5–1.5%] | 2.01 | ||
Thrombocytes [150–400] × 103/µL | 550 | ||
Erythrocyte sedimentation rate [1–25 mm/h] | 39 | 120 | 130 |
C reactive protein [<5.0 mg/L] | -- | -- | 44 |
Ferritin [20–200 ng/mL] | 482 | 1047 | 1440 |
Glycosylated ferritin [50–80%] | -- | -- | 15 |
Serum albumin [34–50 g/L] | 32 | ||
Uric acid [0–6.1 mg/dL] | 7.8 | ||
Urea [11–45 mg/dL] | 50 | 86.3 | |
Creatinine [5.0–8.0 mg/L] | 9.7 | 10.5 | 8.48 |
Cystatin C [0.62–1.11 mg/L] | -- | -- | 1.97 |
Dosage of urinary proteins/24 h | -- | 1948 | |
[42–225 mg/24 h] | |||
Creatin kinase [40–230 U/L] | -- | 22 | 76 |
Gama glutamine transpeptidase (GGT) [11–28 U/L] | 38 | ||
Lactate dehydrogenase [105–230 U/L] | 286 | 274 | |
HDL cholesterol [>50 mg/dL] | 30 | 28 | |
Triglycerides [<1.50 g/L] | 1.6 | 3.3 | |
Total protein [57–80 g/L] | 83 | ||
Serum iron level [50–170 µg/dL] | 40 | ||
Transferrin [2.50–3.80 g/L] | 1.92 | ||
Alanine aminotransferase (ALT) [4–44 U/L] | 117 | 92 | |
Aspartate aminotransferase (AST) [14–36 U/I] | 72 | 124 | |
D-Dimer [0–0.55 mg/L] | -- | 2.52 | |
Anti EBV (VCA) IgG antibodies | 696 | 86.6 | -- |
[<17.0 AU/mL—negative >23.0 AU/mL—positive] | |||
Anti EBV (VCA) Ig M antibodies | 29.7 | <10 | -- |
[<20.0 AU/mL—negative 20.0–40.0 AU/mL—equivocal >40.0 AU/mL—positive] | |||
EBV (EBNA) IgG antibodies | >600 | 101.8 | -- |
[<5.0 AU/mL—negative >20.0 AU/mL—positive] | |||
Extended ANA profile: | -- | ||
double stranded DNA [negative] | Positive | ||
Nucleosomes [negative] | Equivocal | ||
Histones [negative] | Positive | ||
Double-stranded DNA antibodies | -- | >400 | 379 |
[>15 UI/mL–positive] | |||
Antinuclear antibodies (ANA) [0–32 AU/mL] | -- | 1750 | -- |
Antibodies against C1q [<10 U/mL] | -- | -- | 59 |
C1q antigens [222–354 mg/L] | -- | -- | 85 |
Anti-SARS-CoV-2 IgG antibodies [>10.0 AU/mL—positive] | -- | 109.4 | -- |
Anti-thyroid peroxidase antibodies (ATPO) [0–35 IU/mL] | -- | 65.6 | |
Serum complement C3 [82–160 mg/dL] | -- | 40 | |
Serum complement C4 [15–46 mg/dL] | -- | <8 | |
IgG immunoglobulin [700–1600 mg/dL] | 3044.36 | Intensively | |
postive 3+ | |||
25-OH-Vitamin D [30–50 ng/mL] | 56.1 | 16 | |
PCR EBV | -- | -- | Log 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrea, C.L.; Ciortea, D.-A.; Miulescu, M.; Candussi, I.-L.; Chirila, S.I.; Verga, G.I.; Bergheș, S.-E.; Râșcu, M.C.; Berbece, S.I. A New Case of Paediatric Systemic Lupus Erythematosus with Onset after SARS-CoV-2 and Epstein-Barr Infection—A Case Report and Literature Review. Curr. Issues Mol. Biol. 2024, 46, 8642-8657. https://doi.org/10.3390/cimb46080509
Petrea CL, Ciortea D-A, Miulescu M, Candussi I-L, Chirila SI, Verga GI, Bergheș S-E, Râșcu MC, Berbece SI. A New Case of Paediatric Systemic Lupus Erythematosus with Onset after SARS-CoV-2 and Epstein-Barr Infection—A Case Report and Literature Review. Current Issues in Molecular Biology. 2024; 46(8):8642-8657. https://doi.org/10.3390/cimb46080509
Chicago/Turabian StylePetrea (Cliveți), Carmen Loredana, Diana-Andreea Ciortea, Magdalena Miulescu, Iuliana-Laura Candussi, Sergiu Ioachim Chirila, Gabriela Isabela Verga (Răuță), Simona-Elena Bergheș, Mihai Ciprian Râșcu, and Sorin Ion Berbece. 2024. "A New Case of Paediatric Systemic Lupus Erythematosus with Onset after SARS-CoV-2 and Epstein-Barr Infection—A Case Report and Literature Review" Current Issues in Molecular Biology 46, no. 8: 8642-8657. https://doi.org/10.3390/cimb46080509
APA StylePetrea, C. L., Ciortea, D. -A., Miulescu, M., Candussi, I. -L., Chirila, S. I., Verga, G. I., Bergheș, S. -E., Râșcu, M. C., & Berbece, S. I. (2024). A New Case of Paediatric Systemic Lupus Erythematosus with Onset after SARS-CoV-2 and Epstein-Barr Infection—A Case Report and Literature Review. Current Issues in Molecular Biology, 46(8), 8642-8657. https://doi.org/10.3390/cimb46080509