Taurine and Polyphenol Complex Repaired Epidermal Keratinocyte Wounds by Regulating IL8 and TIMP2 Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. HaCaT Cell Culture and Preparation of Irritant
2.2. C. acnes Culture and Preparation of Irritant
2.3. Cytokine Array Analysis
2.4. Measurement of IL8 and TIMP2 Expression Levels
2.5. Wound-Healing Assay
2.6. mRNA and Protein Expression Analysis
2.7. Immunocytochemistry
2.8. Assessment of Wound-Healing Efficacy on Human Skin
2.9. Statistical Analysis
3. Results
3.1. C. acnes Treated HaCaT Cells Released Different Wound-Healing Cytokines Based on Subtype
3.2. Chlorogenic Acid and Taurine Synergistically Regulate IL8 and TIMP2 Expression
3.3. Chlorogenic Acid and Taurine Accelerated the Wound-Healing Process and Enhanced Tight Junction Integrity
3.4. Chlorogenic Acid and Taurine Downregulated Inflammation Markers and Upregulated Hydration Marker Expression
3.5. Chlorogenic Acid and Taurine Helped in the Recovery of Wounded Skin and Enhanced Skin Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Edwards, R.; Harding, K.G. Bacteria and wound healing. Curr. Opin. Infect. Dis. 2004, 17, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.; Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003, 83, 835–870. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.H.; Huang, B.S.; Horng, H.C.; Yeh, C.C.; Chen, Y.J. Wound healing. J. Chin. Med. Assoc. 2018, 81, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Hassanshahi, A.; Moradzad, M.; Ghalamkari, S.; Fadaei, M.; Cowin, A.J.; Hassanshahi, M. Macrophage-Mediated Inflammation in Skin Wound Healing. Cells 2022, 11, 2953. [Google Scholar] [CrossRef] [PubMed]
- Serra, R.; Grande, R.; Butrico, L.; Rossi, A.; Settimio, U.F.; Caroleo, B.; Amato, B.; Gallelli, L.; de Franciscis, S. Chronic wound infections: The role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev. Anti-Infect. Ther. 2015, 13, 605–613. [Google Scholar] [CrossRef]
- Ahle, C.M.; Stodkilde, K.; Poehlein, A.; Bomeke, M.; Streit, W.R.; Wenck, H.; Reuter, J.H.; Hupeden, J.; Bruggemann, H. Interference and co-existence of staphylococci and Cutibacterium acnes within the healthy human skin microbiome. Commun. Biol. 2022, 5, 923. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, P.; Balachander, N.; K, K.R.S. Anti-inflammatory and wound healing properties of lactic acid bacteria and its peptides. Folia Microbiol. 2023, 68, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, I.A.; Thipe, V.C.; Katti, K.V.; Mandiwana, V.; Kalombo, M.L.; Ray, S.S.; Rikhotso, R.; Janse van Vuuren, A.; Esmear, T.; Lall, N. Targeting Acne Bacteria and Wound Healing In Vitro Using Plectranthus aliciae, Rosmarinic Acid, and Tetracycline Gold Nanoparticles. Pharmaceuticals 2022, 15, 933. [Google Scholar] [CrossRef] [PubMed]
- Gong, E.Y.; Lee, S.; Park, S.; Kim, K.E.; Kim, M.S.; Kim, D.; Park, H.J.; Cho, D. Erythroid differentiation regulator 1 (Erdr1) enhances wound healing through collagen synthesis in acne skin. Arch. Dermatol. Res. 2020, 312, 59–67. [Google Scholar] [CrossRef]
- Pagano, C.; Iborra, C.A.V.; Perioli, L. Recent Approaches to Wound Treatment—Second Edition. Int. J. Mol. Sci. 2024, 25, 5388. [Google Scholar] [CrossRef]
- Cros, M.P.; Mir-Pedrol, J.; Toloza, L.; Knodlseder, N.; Maruotti, J.; Zouboulis, C.C.; Guell, M.; Fabrega, M.J. New insights into the role of Cutibacterium acnes-derived extracellular vesicles in inflammatory skin disorders. Sci. Rep. 2023, 13, 16058. [Google Scholar] [CrossRef]
- Canellas-Santos, M.; Rosell-Vives, E.; Montell, L.; Bilbao, A.; Goni-de-Cerio, F.; Fernandez-Campos, F. Anti-Inflammatory and Anti-Quorum Sensing Effect of Camellia sinensis Callus Lysate for Treatment of Acne. Curr. Issues Mol. Biol. 2023, 45, 3997–4016. [Google Scholar] [CrossRef]
- Surai, P.F.; Earle-Payne, K.; Kidd, M.T. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants 2021, 10, 1876. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Ahmed, K.; Yim, J.E. Beneficial Effects of Taurine on Metabolic Parameters in Animals and Humans. J. Obes. Metab. Syndr. 2022, 31, 134–146. [Google Scholar] [CrossRef]
- Kim, C.; Cha, Y.N. Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids 2014, 46, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Marcinkiewicz, J.; Kontny, E. Taurine and inflammatory diseases. Amino Acids 2014, 46, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, S.W.; Shimada-Takaura, K.; Jong, C.J.; Ito, T.; Takahashi, K. Impaired energy metabolism of the taurine-deficient heart. Amino Acids 2016, 48, 549–558. [Google Scholar] [CrossRef]
- Ramila, K.C.; Jong, C.J.; Pastukh, V.; Ito, T.; Azuma, J.; Schaffer, S.W. Role of protein phosphorylation in excitation-contraction coupling in taurine deficient hearts. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H232–H239. [Google Scholar] [CrossRef]
- Baliou, S.; Kyriakopoulos, A.M.; Goulielmaki, M.; Panayiotidis, M.I.; Spandidos, D.A.; Zoumpourlis, V. Significance of taurine transporter (TauT) in homeostasis and its layers of regulation (Review). Mol. Med. Rep. 2020, 22, 2163–2173. [Google Scholar] [CrossRef]
- Lu, K.Y.; Cheng, L.C.; Hung, Z.C.; Chen, Z.Y.; Wang, C.W.; Hou, H.H. The Ethyl Acetate Extract of Caulerpa microphysa Promotes Collagen Homeostasis and Inhibits Inflammation in the Skin. Curr. Issues Mol. Biol. 2024, 46, 2701–2712. [Google Scholar] [CrossRef]
- Yoshimura, T.; Inokuchi, Y.; Mutou, C.; Sakurai, T.; Nagahama, T.; Murakami, S. Age-related decline in the taurine content of the skin in rodents. Amino Acids 2021, 53, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Li, J.; Zhu, G.; Wang, Y.; Zheng, G.; Kan, Q. Chlorogenic acid relieved oxidative stress injury in retinal ganglion cells through IncRNA-TUG1/Nrf2. Cell Cycle 2019, 18, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arnedo, A.; Torres Figueroa, F.; Clavijo, C.; Arbelaez, P.; Cruz, J.C.; Munoz-Camargo, C. An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS ONE 2020, 15, e0232565. [Google Scholar] [CrossRef] [PubMed]
- Owczarek, W.; Paplinska, M.; Targowski, T.; Jahnz-Rozyk, K.; Paluchowska, E.; Kucharczyk, A.; Kasztalewicz, B. Analysis of eotaxin 1/CCL11, eotaxin 2/CCL24 and eotaxin 3/CCL26 expression in lesional and non-lesional skin of patients with atopic dermatitis. Cytokine 2010, 50, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.M.; Wiesolek, H.L.; Sumagin, R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol. 2020, 108, 787–799. [Google Scholar] [CrossRef]
- Miller, M.D.; Krangel, M.S. The human cytokine I-309 is a monocyte chemoattractant. Proc. Natl. Acad. Sci. USA 1992, 89, 2950–2954. [Google Scholar] [CrossRef]
- Coden, M.E.; Berdnikovs, S. Eosinophils in wound healing and epithelial remodeling: Is coagulation a missing link? J. Leukoc. Biol. 2020, 108, 93–103. [Google Scholar] [CrossRef]
- Fu, C.; Chen, J.; Lu, J.; Yi, L.; Tong, X.; Kang, L.; Pei, S.; Ouyang, Y.; Jiang, L.; Ding, Y.; et al. Roles of inflammation factors in melanogenesis (Review). Mol. Med. Rep. 2020, 21, 1421–1430. [Google Scholar] [CrossRef]
- Zhong, C.; Liang, G.; Li, P.; Shi, K.; Li, F.; Zhou, J.; Xu, D. Inflammatory response: The target for treating hyperpigmentation during the repair of a burn wound. Front. Immunol. 2023, 14, 1009137. [Google Scholar] [CrossRef] [PubMed]
- Mann, A.; Breuhahn, K.; Schirmacher, P.; Blessing, M. Keratinocyte-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: Stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization. J. Investig. Dermatol. 2001, 117, 1382–1390. [Google Scholar] [CrossRef]
- Koh, T.J.; DiPietro, L.A. Inflammation and wound healing: The role of the macrophage. Expert Rev. Mol. Med. 2011, 13, e23. [Google Scholar] [CrossRef]
- Zaharie, R.D.; Popa, C.; Schlanger, D.; Valean, D.; Zaharie, F. The Role of IL-22 in Wound Healing. Potential Implications in Clinical Practice. Int. J. Mol. Sci. 2022, 23, 3693. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.G.; Sanders, A.J.; Ruge, F.; Harding, K.G. Influence of interleukin-8 (IL-8) and IL-8 receptors on the migration of human keratinocytes, the role of PLC-gamma and potential clinical implications. Exp. Ther. Med. 2012, 3, 231–236. [Google Scholar] [CrossRef]
- Hibuse, T.; Maeda, N.; Nagasawa, A.; Funahashi, T. Aquaporins and glycerol metabolism. Biochim. Biophys. Acta 2006, 1758, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, Y.; Liu, H.; Huang, J. Local injection of high-molecular hyaluronan promotes wound healing in old rats by increasing angiogenesis. Oncotarget 2018, 9, 8241–8252. [Google Scholar] [CrossRef] [PubMed]
- Aya, K.L.; Stern, R. Hyaluronan in wound healing: Rediscovering a major player. Wound Repair Regen. 2014, 22, 579–593. [Google Scholar] [CrossRef]
- Pidwill, G.R.; Gibson, J.F.; Cole, J.; Renshaw, S.A.; Foster, S.J. The Role of Macrophages in Staphylococcus aureus Infection. Front. Immunol. 2020, 11, 620339. [Google Scholar] [CrossRef]
- Yamane, T.; Nakagami, G.; Yoshino, S.; Muramatsu, A.; Matsui, S.; Oishi, Y.; Kanazawa, T.; Minematsu, T.; Sanada, H. Hydrocellular foam dressing promotes wound healing along with increases in hyaluronan synthase 3 and PPARalpha gene expression in epidermis. PLoS ONE 2013, 8, e73988. [Google Scholar] [CrossRef]
- Trinh, X.T.; Long, N.V.; Van Anh, L.T.; Nga, P.T.; Giang, N.N.; Chien, P.N.; Nam, S.Y.; Heo, C.Y. A Comprehensive Review of Natural Compounds for Wound Healing: Targeting Bioactivity Perspective. Int. J. Mol. Sci. 2022, 23, 9573. [Google Scholar] [CrossRef] [PubMed]
Control | C. acnes | ||||
---|---|---|---|---|---|
RT1 | RT4 | RT5 | RT6 | ||
EOTAXIN | 4269 | 2807 | 2577 | 6098 * | 3016 |
EOSTAXIN-2 | 4822 | 3549 | 2978 | 5599 * | 3769 |
GM-CSF | 1374 | 3027 * | 1024 | 3119 * | 1402 |
ICAM-1 | 2204 | 3103 * | 1622 | 3481 * | 1728 |
IFN-γ | 1977 | 2050 | 1379 | 2469 | 1512 |
I-309 | 1035 | 749 * | 627* | 1144 | 625 |
IL1β | 926 | 1011 | 1452 | 1866 * | 1435 |
IL2 | 568 | 551 | 713 | 735 | 672 |
IL3 | 1768 | 2269 | 2732 | 2510 | 2465 |
IL4 | 930 | 830 | 938 | 938 | 858 |
IL6 | 795 | 18,243 ** | 971 | 15,600 ** | 1189 |
IL6sR | 2952 | 3540 | 2142 | 4445 | 2164 |
IL7 | 777 | 551 | 538 | 612 | 635 |
IL8 | 20,736 | 27,118 ** | 17,180 * | 24,431 ** | 19,036 |
IL10 | 3451 | 1877 | 1386 | 3660 | 1871 |
IL11 | 1422 | 1379 | 1161 | 1517 | 1265 |
IL12p40 | 1547 | 1884 | 1441 | 2756 * | 1395 |
IL12p70 | 1717 | 1804 | 1444 | 1889 | 1102 |
IL13 | 204 | 385 | 469 | 430 | 477 |
IL15 | 1699 | 1629 | 1519 | 3449 * | 1768 |
IL16 | 1663 | 1832 | 1640 | 2085 | 1919 |
IL17 | 1398 | 1350 | 1280 | 1356 | 1427 |
IP10 | 11,672 | 7293 | 5679 | 10,349 | 7650 |
MCP1 | 28,997 | 27,476 | 21,413 * | 24,417 * | 26,040 |
MCP2 | 1689 | 1064 * | 869 * | 1478 | 1150 * |
RANTES | 1755 | 3204 * | 2661 * | 3908 * | 4113 * |
TNF-α | 2969 | 1731 | 1316 | 2285 | 1861 |
TNF-β | 12,637 | 6323 * | 5839 * | 9101 * | 7487 * |
TIMP2 | 23,746 | 18,691 ** | 17,167 ** | 19,875 * | 19,082 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Shin, J.Y.; Kwon, O.S.; Jun, S.-H.; Kang, N.-G. Taurine and Polyphenol Complex Repaired Epidermal Keratinocyte Wounds by Regulating IL8 and TIMP2 Expression. Curr. Issues Mol. Biol. 2024, 46, 8685-8698. https://doi.org/10.3390/cimb46080512
Lee S, Shin JY, Kwon OS, Jun S-H, Kang N-G. Taurine and Polyphenol Complex Repaired Epidermal Keratinocyte Wounds by Regulating IL8 and TIMP2 Expression. Current Issues in Molecular Biology. 2024; 46(8):8685-8698. https://doi.org/10.3390/cimb46080512
Chicago/Turabian StyleLee, Sooyeon, Jae Young Shin, Oh Sun Kwon, Seung-Hyun Jun, and Nae-Gyu Kang. 2024. "Taurine and Polyphenol Complex Repaired Epidermal Keratinocyte Wounds by Regulating IL8 and TIMP2 Expression" Current Issues in Molecular Biology 46, no. 8: 8685-8698. https://doi.org/10.3390/cimb46080512
APA StyleLee, S., Shin, J. Y., Kwon, O. S., Jun, S. -H., & Kang, N. -G. (2024). Taurine and Polyphenol Complex Repaired Epidermal Keratinocyte Wounds by Regulating IL8 and TIMP2 Expression. Current Issues in Molecular Biology, 46(8), 8685-8698. https://doi.org/10.3390/cimb46080512