The Enigmas of Tissue Closure: Inspiration from Drosophila
Abstract
:1. Introduction
2. General Steps in Tissue Closure
3. Tissue Closure in Embryogenesis
3.1. Dorsal Closure
3.2. Ventral Closure and Transient Mesoderm Tube Formation
3.3. Dorsal Vessel Closure
4. Tissue Closure in Metamorphosis
4.1. Thoracic Closure
4.2. Wing Vein Closure
5. Tissue Closure in Oogenesis
5.1. Follicle Cell Sheet Closure
5.2. Dorsal Appendage Formation
6. Tissue Closure in Wound Healing
6.1. Characteristics of Wound Healing across Developmental Stages
6.2. Signaling Pathways in Wound Healing
7. Common Strategies in Tissue Closure
7.1. Signaling for Tissue Closure
7.2. Forces for Tissue Closure
8. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chung, S.; Andrew, D.J. The formation of epithelial tubes. J. Cell Sci. 2008, 121, 3501–3504. [Google Scholar] [CrossRef] [PubMed]
- Hogan, B.L.; Kolodziej, P.A. Organogenesis: Molecular mechanisms of tubulogenesis. Nat. Rev. Genet. 2002, 3, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Avagliano, L.; Massa, V.; George, T.M.; Qureshy, S.; Bulfamante, G.P.; Finnell, R.H. Overview on neural tube defects: From development to physical characteristics. Birth Defects Res. 2019, 111, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Copp, A.J.; Greene, N.D.E. Genetics and development of neural tube defects. J. Pathol. 2010, 220, 217–230. [Google Scholar] [CrossRef]
- Maruyama, R.; Andrew, D.J. Drosophila as a model for epithelial tube formation. Dev. Dynam. 2012, 241, 119–135. [Google Scholar] [CrossRef]
- Andrew, D.J.; Ewald, A.J. Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration. Dev. Biol. 2010, 341, 34–55. [Google Scholar] [CrossRef]
- Balaghi, N.; Erdemci-Tandogan, G.; McFaul, C.; Fernandez-Gonzalez, R. Myosin waves and a mechanical asymmetry guide the oscillatory migration of Drosophila cardiac progenitors. Dev. Cell 2023, 58, 1299–1313.e5. [Google Scholar] [CrossRef]
- Tran, N.V.; Montanari, M.P.; Gui, J.; Lubenets, D.; Fischbach, L.L.; Antson, H.; Huang, Y.; Brutus, E.; Okada, Y.; Ishimoto, Y.; et al. Programmed disassembly of a microtubule-based membrane protrusion network coordinates 3D epithelial morphogenesis in Drosophila. EMBO J. 2024, 43, 568–594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Teng, X.; Toyama, Y.; Saunders, T.E. Periodic Oscillations of Myosin-II Mechanically Proofread Cell-Cell Connections to Ensure Robust Formation of the Cardiac Vessel. Curr. Biol. 2020, 30, 3364–3377.e4. [Google Scholar] [CrossRef]
- Eltsov, M.; Dube, N.; Yu, Z.; Pasakarnis, L.; Haselmann-Weiss, U.; Brunner, D.; Frangakis, A.S. Quantitative analysis of cytoskeletal reorganization during epithelial tissue sealing by large-volume electron tomography. Nat. Cell Biol. 2015, 17, 605–614. [Google Scholar] [CrossRef]
- Paci, G.; Mao, Y. Forced into shape: Mechanical forces in Drosophila development and homeostasis. Semin. Cell Dev. Biol. 2021, 120, 160–170. [Google Scholar] [CrossRef]
- Mazumdar, A.; Mazumdar, M. How one becomes many: Blastoderm cellularization in Drosophila melanogaster. Bioessays 2002, 24, 1012–1022. [Google Scholar] [CrossRef]
- Kiehart, D.P.; Crawford, J.M.; Aristotelous, A.; Venakides, S.; Edwards, G.S. Cell Sheet Morphogenesis: Dorsal Closure in Drosophila melanogaster as a Model System. Annu. Rev. Cell Dev. Biol. 2017, 33, 169–202. [Google Scholar] [CrossRef] [PubMed]
- Saias, L.; Swoger, J.; D’Angelo, A.; Hayes, P.; Colombelli, J.; Sharpe, J.; Salbreux, G.; Solon, J. Decrease in Cell Volume Generates Contractile Forces Driving Dorsal Closure. Dev. Cell 2015, 33, 611–621. [Google Scholar] [CrossRef]
- Hayes, P.; Solon, J. Drosophila dorsal closure: An orchestra of forces to zip shut the embryo. Mech. Dev. 2017, 144, 2–10. [Google Scholar] [CrossRef]
- Jacinto, A.; Woolner, S.; Martin, P. Dynamic analysis of dorsal closure in Drosophila: From genetics to cell biology. Dev. Cell 2002, 3, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Selvaggi, L.; Ackermann, M.; Pasakarnis, L.; Brunner, D.; Aegerter, C.M. Force measurements of Myosin II waves at the yolk surface during Drosophila dorsal closure. Biophys. J. 2022, 121, 410–420. [Google Scholar] [CrossRef]
- Tah, I.; Haertter, D.; Crawford, J.M.; Kiehart, D.P.; Schmidt, C.F.; Liu, A.J. Minimal vertex model explains how the amnioserosa avoids fluidization during Drosophila dorsal closure. arXiv 2023, arXiv:2312.12926v1. [Google Scholar]
- Harden, N. Signaling pathways directing the movement and fusion of epithelial sheets: Lessons from dorsal closure in Drosophila. Differ. Res. Biol. Divers. 2002, 70, 181–203. [Google Scholar] [CrossRef]
- Panfilio, K.A.; Oberhofer, G.; Roth, S. High plasticity in epithelial morphogenesis during insect dorsal closure. Biol. Open 2013, 2, 1108–1118. [Google Scholar] [CrossRef]
- Lv, Z.; Zhang, N.; Zhang, X.; Grosshans, J.; Kong, D. The Lateral Epidermis Actively Counteracts Pulling by the Amnioserosa During Dorsal Closure. Front. Cell Dev. Biol. 2022, 10, 865397. [Google Scholar] [CrossRef] [PubMed]
- Rousset, R.; Carballes, F.; Parassol, N.; Schaub, S.; Cerezo, D.; Noselli, S. Signalling crosstalk at the leading edge controls tissue closure dynamics in the Drosophila embryo. PLoS Genet. 2017, 13, e1006640. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, F.; Giuliani, G.; Bauer, R.; Rabouille, C. Innexin 3, a new gene required for dorsal closure in Drosophila embryo. PLoS ONE 2013, 8, e69212. [Google Scholar] [CrossRef] [PubMed]
- Belacortu, Y.; Paricio, N. Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev. Dyn. 2011, 240, 2379–2404. [Google Scholar] [CrossRef] [PubMed]
- McEwen, D.G.; Cox, R.T.; Peifer, M. The canonical Wg and JNK signaling cascades collaborate to promote both dorsal closure and ventral patterning. Development 2000, 127, 3607–3617. [Google Scholar] [CrossRef] [PubMed]
- VanHook, A.; Letsou, A. Head involution in Drosophila: Genetic and morphogenetic connections to dorsal closure. Dev. Dyn. 2008, 237, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.R.; Wang, Y.; Galko, M.J. Crawling wounded: Molecular genetic insights into wound healing from Drosophila larvae. Int. J. Dev. Biol. 2018, 62, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Nandy, N.; Roy, J.K. Rab11 is essential for lgl mediated JNK–Dpp signaling in dorsal closure and epithelial morphogenesis in Drosophila. Dev. Biol. 2020, 464, 188–201. [Google Scholar] [CrossRef] [PubMed]
- Garlena, R.A.; Lennox, A.L.; Baker, L.R.; Parsons, T.E.; Weinberg, S.M.; Stronach, B.E. The receptor tyrosine kinase Pvr promotes tissue closure by coordinating corpse removal and epidermal zippering. Development 2015, 142, 3403–3415. [Google Scholar] [CrossRef]
- Gheisari, E.; Aakhte, M.; Muller, H.J. Gastrulation in Drosophila melanogaster: Genetic control, cellular basis and biomechanics. Mech. Dev. 2020, 163, 103629. [Google Scholar] [CrossRef]
- Loerke, D.; Blankenship, J.T. Viscoelastic voyages—Biophysical perspectives on cell intercalation during Drosophila gastrulation. Semin. Cell Dev. Biol. 2020, 100, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.C. The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination. Genetics 2020, 214, 543–560. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, N.; Averbukh, I.; Carmon, S.; Schejter, E.D.; Barkai, N.; Shilo, B.Z. Dynamics of Spaetzle morphogen shuttling in the embryo shapes gastrulation patterning. Development 2019, 146, dev181487. [Google Scholar] [CrossRef] [PubMed]
- Denk-Lobnig, M.; Martin, A.C. Modular regulation of Rho family GTPases in development. Small GTPases 2019, 10, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Bodmer, R.; Frasch, M. Chapter 1.2—Development and Aging of the Drosophila Heart. In Heart Development and Regeneration; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Vogler, G.; Bodmer, R. Cellular Mechanisms of Drosophila Heart Morphogenesis. J. Cardiovasc Dev. Dis. 2015, 2, 2–16. [Google Scholar] [CrossRef]
- Bileckyj, C.; Blotz, B.; Cripps, R.M. Drosophila as a Model to Understand Second Heart Field Development. J. Cardiovasc Dev. Dis. 2023, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Amourda, C.; Garfield, D.; Saunders, T.E. Selective Filopodia Adhesion Ensures Robust Cell Matching in the Drosophila Heart. Dev. Cell 2018, 46, 189–203.e4. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Schulz, R.A. Heart development in Drosophila. Semin. Cell Dev. Biol. 2007, 18, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.M. Conserved signaling mechanisms in Drosophila heart development. Dev. Dyn. 2017, 246, 641–656. [Google Scholar] [CrossRef]
- Bishop, C.D.; Erezyilmaz, D.F.; Flatt, T.; Georgiou, C.D.; Hadfield, M.G.; Heyland, A.; Hodin, J.; Jacobs, M.W.; Maslakova, S.A.; Pires, A.; et al. What is metamorphosis? Integr. Comp. Biol. 2006, 46, 655–661. [Google Scholar] [CrossRef]
- Heyland, A.; Moroz, L.L. Signaling mechanisms underlying metamorphic transitions in animals. Integr. Comp. Biol. 2006, 46, 743–759. [Google Scholar] [CrossRef] [PubMed]
- Athilingam, T.; Tiwari, P.; Toyama, Y.; Saunders, T.E. Mechanics of epidermal morphogenesis in the Drosophila pupa. Semin. Cell Dev. Biol. 2021, 120, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Zeitlinger, J.; Bohmann, D. Thorax closure in Drosophila: Involvement of Fos and the JNK pathway. Development 1999, 126, 3947–3956. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Rizvi, M.S.; Athilingam, T.; Parihar, S.S.; Sinha, P. Heterophilic cell-cell adhesion of atypical cadherins Fat and Dachsous regulate epithelial cell size dynamics during Drosophila thorax morphogenesis. Mol. Biol. Cell 2020, 31, 546–560. [Google Scholar] [CrossRef] [PubMed]
- Athilingam, T.; Parihar, S.S.; Bhattacharya, R.; Rizvi, M.S.; Kumar, A.; Sinha, P. Proximate larval epidermal cell layer generates forces for Pupal thorax closure in Drosophila. Genetics 2022, 221, iyac030. [Google Scholar] [CrossRef]
- Usui, K.; Simpson, P. Cellular basis of the dynamic behavior of the imaginal thoracic discs during Drosophila metamorphosis. Dev. Biol. 2000, 225, 13–25. [Google Scholar] [CrossRef]
- Chaturvedi, V.; Murray, M.J. Netrins: Evolutionarily Conserved Regulators of Epithelial Fusion and Closure in Development and Wound Healing. Cells Tissues Organs 2022, 211, 193–211. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, B.K.; Irvine, K.D. The wing imaginal disc. Genetics 2022, 220, iyac020. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, Y.; Wang, X.; Wang, D.; Pflugfelder, G.O.; Shen, J. The Tbx6 Transcription Factor Dorsocross Mediates Dpp Signaling to Regulate Drosophila Thorax Closure. Int. J. Mol. Sci. 2022, 23, 4543. [Google Scholar] [CrossRef]
- Martín-Blanco, E.; Pastor-Pareja, J.C.; García-Bellido, A. JNK and decapentaplegic signaling control adhesiveness and cytoskeleton dynamics during thorax closure in Drosophila. Proc. Natl. Acad. Sci. USA 2000, 97, 7888–7893. [Google Scholar] [CrossRef]
- Ishimaru, S.; Ueda, R.; Hinohara, Y.; Ohtani, M.; Hanafusa, H. PVR plays a critical role via JNK activation in thorax closure during Drosophila metamorphosis. EMBO J. 2004, 23, 3984–3994. [Google Scholar] [CrossRef]
- Kiger, J.A., Jr.; Natzle, J.E.; Kimbrell, D.A.; Paddy, M.R.; Kleinhesselink, K.; Green, M.M. Tissue remodeling during maturation of the Drosophila wing. Dev. Biol. 2007, 301, 178–191. [Google Scholar] [CrossRef]
- Hartenstein, K.; Sinha, P.; Mishra, A.; Schenkel, H.; Torok, I.; Mechler, B.M. The congested-like tracheae gene of Drosophila melanogaster encodes a member of the mitochondrial carrier family required for gas-filling of the tracheal system and expansion of the wings after eclosion. Genetics 1997, 147, 1755–1768. [Google Scholar] [CrossRef]
- Wootton, R.J. Functional Morphology of Insect Wings. Annual. Rev. Entomol. 1992, 37, 113–140. [Google Scholar] [CrossRef]
- Blair, S.S.; Palka, J. Axon guidance in the wing of Drosophila. Trends Neurosci. 1985, 8, 284–288. [Google Scholar] [CrossRef]
- Requena, D.; Alvarez, J.A.; Gabilondo, H.; Loker, R.; Mann, R.S.; Estella, C. Origins and Specification of the Wing. Curr. Biol. 2017, 27, 3826–3836. [Google Scholar] [CrossRef]
- Blair, S.S. Wing vein patterning in Drosophila and the analysis of intercellular signaling. Annu. Rev. Cell Dev. Biol. 2007, 23, 293–319. [Google Scholar] [CrossRef]
- Horne-Badovinac, S. The Drosophila micropyle as a system to study how epithelia build complex extracellular structures. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20190561. [Google Scholar] [CrossRef]
- Bate, M.; Martinez Arias, A. The Development of Drosophila Melanogaster; Cold Spring Harbor Laboratory Press: Plainview, NY, USA, 1993. [Google Scholar]
- Miao, G.; Godt, D.; Montell, D.J. Integration of Migratory Cells into a New Site In Vivo Requires Channel-Independent Functions of Innexins on Microtubules. Dev. Cell 2020, 54, 501–515.e9. [Google Scholar] [CrossRef]
- Silver, D.L.; Geisbrecht, E.R.; Montell, D.J. Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development 2005, 132, 3483–3492. [Google Scholar] [CrossRef]
- Prasad, M.; Montell, D.J. Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev. Cell 2007, 12, 997–1005. [Google Scholar] [CrossRef]
- Duchek, P.; Somogyi, K.; Jekely, G.; Beccari, S.; Rorth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 2001, 107, 17–26. [Google Scholar] [CrossRef]
- Duchek, P.; Rorth, P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 2001, 291, 131–133. [Google Scholar] [CrossRef]
- Keller, R. Shaping the vertebrate body plan by polarized embryonic cell movements. Science 2002, 298, 1950–1954. [Google Scholar] [CrossRef]
- Wu, X.; Tanwar, P.S.; Raftery, L.A. Drosophila follicle cells: Morphogenesis in an eggshell. Semin. Cell Dev. Biol. 2008, 19, 271–282. [Google Scholar] [CrossRef]
- Dobens, L.L.; Peterson, J.S.; Treisman, J.; Raftery, L.A. Drosophila bunched integrates opposing DPP and EGF signals to set the operculum boundary. Development. 2000, 127, 745–754. [Google Scholar] [CrossRef]
- Thisse, B.; Thisse, C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev. Biol. 2005, 287, 390–402. [Google Scholar] [CrossRef]
- Parsons, T.T.; Mosallaei, S.; Raftery, L.A. Two phases for centripetal migration of Drosophila melanogaster follicle cells: Initial ingression followed by epithelial migration. Development 2023, 150, dev200492. [Google Scholar] [CrossRef]
- Osterfield, M.; Berg, C.A.; Shvartsman, S.Y. Epithelial Patterning, Morphogenesis, and Evolution: Eggshell as a Model. Dev. Cell 2017, 41, 337–348. [Google Scholar] [CrossRef]
- Berg, C.A. Tube formation in egg chambers. Tissue Eng. 2008, 14 Pt. A, 1479–1488. [Google Scholar] [CrossRef]
- Juarez, M.T. Drosophila Embryos as a Model for Wound-Induced Transcriptional Dynamics: Genetic Strategies to Achieve a Localized Wound Response. Adv. Wound Care 2016, 5, 262–270. [Google Scholar] [CrossRef]
- Smith-Bolton, R. Drosophila Imaginal Discs as a Model of Epithelial Wound Repair and Regeneration. Adv. Wound Care 2016, 5, 251–261. [Google Scholar] [CrossRef]
- Noselli, S. Drosophila, actin and videotape—new insights in wound healing. Nat. Cell Biol. 2002, 4, E251–E253. [Google Scholar] [CrossRef]
- Razzell, W.; Wood, W.; Martin, P. Swatting flies: Modelling wound healing and inflammation in Drosophila. Dis. Model. Mech. 2011, 4, 569–574. [Google Scholar] [CrossRef]
- Matsubayashi, Y.; Millard, T.H. Analysis of the Molecular Mechanisms of Reepithelialization in Drosophila Embryos. Adv. Wound Care 2016, 5, 243–250. [Google Scholar] [CrossRef]
- George, A.; Martin, P. Wound Healing Insights from Flies and Fish. Cold Spring Harb. Perspect. Biol. 2022, 14, a041217. [Google Scholar] [CrossRef]
- Worley, M.I.; Setiawan, L.; Hariharan, I.K. Regeneration and transdetermination in Drosophila imaginal discs. Annu. Rev. Genet. 2012, 46, 289–310. [Google Scholar] [CrossRef]
- Diaz-Garcia, S.; Ahmed, S.; Baonza, A. Analysis of the Function of Apoptosis during Imaginal Wing Disc Regeneration in Drosophila melanogaster. PLoS ONE 2016, 11, e0165554. [Google Scholar] [CrossRef]
- Rothenberg, K.E.; Fernandez-Gonzalez, R. Forceful closure: Cytoskeletal networks in embryonic wound repair. Mol. Biol. Cell 2019, 30, 1353–1358. [Google Scholar] [CrossRef]
- Zulueta-Coarasa, T.; Fernandez-Gonzalez, R. Dynamic force patterns promote collective cell movements during embryonic wound repair. Nat. Phys. 2018, 14, 750–758. [Google Scholar] [CrossRef]
- Abreu-Blanco, M.T.; Verboon, J.M.; Liu, R.; Watts, J.J.; Parkhurst, S.M. Drosophila embryos close epithelial wounds using a combination of cellular protrusions and an actomyosin purse string. J. Cell Sci. 2012, 125, 5984–5997. [Google Scholar] [CrossRef] [PubMed]
- Kobb, A.B.; Zulueta-Coarasa, T.; Fernandez-Gonzalez, R. Tension regulates myosin dynamics during Drosophila embryonic wound repair. J. Cell Sci. 2017, 130, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.R.; Wang, Y.; Jacobson, A.; Sankoorikkal, N.; Chirinos, J.D.; Burra, S.; Makthal, N.; Kumaraswami, M.; Galko, M.J. Pvr and distinct downstream signaling factors are required for hemocyte spreading and epidermal wound closure at Drosophila larval wound sites. G3 2022, 12, jkab388. [Google Scholar] [CrossRef] [PubMed]
- Krautz, R.; Arefin, B.; Theopold, U. Damage signals in the insect immune response. Front. Plant. Sci. 2014, 5, 342. [Google Scholar] [CrossRef] [PubMed]
- Kim-Jo, C.; Gatti, J.L.; Poirie, M. Drosophila Cellular Immunity against Parasitoid Wasps: A Complex and Time-Dependent Process. Front. Physiol. 2019, 10, 603. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, U.; Girard, J.R.; Goins, L.M.; Spratford, C.M. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019, 211, 367–417. [Google Scholar] [CrossRef] [PubMed]
- Galko, M.J.; Krasnow, M.A. Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol. 2004, 2, E239. [Google Scholar] [CrossRef]
- Bailey, E.C.; Kobielski, S.; Park, J.; Losick, V.P. Polyploidy in Tissue Repair and Regeneration. Cold Spring Harb. Perspect. Biol. 2021, 13, a040881. [Google Scholar] [CrossRef] [PubMed]
- Losick, V.P.; Fox, D.T.; Spradling, A.C. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium. Curr. Biol. 2013, 23, 2224–2232. [Google Scholar] [CrossRef]
- Wu, Y.; Brock, A.R.; Wang, Y.; Fujitani, K.; Ueda, R.; Galko, M.J. A blood-borne PDGF/VEGF-like ligand initiates wound-induced epidermal cell migration in Drosophila larvae. Curr. Biol. 2009, 19, 1473–1477. [Google Scholar] [CrossRef]
- Tsai, C.R.; Anderson, A.E.; Burra, S.; Jo, J.; Galko, M.J. Yorkie regulates epidermal wound healing in Drosophila larvae independently of cell proliferation and apoptosis. Dev. Biol. 2017, 427, 61–71. [Google Scholar] [CrossRef]
- Johansen, K.A.; Iwaki, D.D.; Lengyel, J.A. Localized JAK/STAT signaling is required for oriented cell rearrangement in a tubular epithelium. Development 2003, 130, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Wickstrom, S.A. Mechanical state transitions in the regulation of tissue form and function. Nat. Rev. Mol. Cell Biol. 2024, 25, 654–670. [Google Scholar] [CrossRef] [PubMed]
- Karkali, K.; Pastor-Pareja, J.C.; Martin-Blanco, E. JNK signaling and integrins cooperate to maintain cell adhesion during epithelial fusion in Drosophila. Front. Cell Dev. Biol. 2023, 11, 1034484. [Google Scholar] [CrossRef]
- Lim, S.E.; Vicente-Munuera, P.; Mao, Y. Forced back into shape: Mechanics of epithelial wound repair. Curr. Opin. Cell Biol. 2024, 87, 102324. [Google Scholar] [CrossRef] [PubMed]
- Davidson, L.A. Mechanical design in embryos: Mechanical signalling, robustness and developmental defects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20150516. [Google Scholar] [CrossRef]
- Martin, A.C.; Kaschube, M.; Wieschaus, E.F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 2009, 457, 495–499. [Google Scholar] [CrossRef]
- Mason, F.M.; Tworoger, M.; Martin, A.C. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction. Nat. Cell Biol. 2013, 15, 926–936. [Google Scholar] [CrossRef]
- Mao, F.; Yang, Y.; Jiang, H. Endocytosis and exocytosis protect cells against severe membrane tension variations. Biophys. J. 2021, 120, 5521–5529. [Google Scholar] [CrossRef]
Signaling Pathways | Embryogenesis | Metamorphosis | Oogenesis | Pathophysiology | ||||
---|---|---|---|---|---|---|---|---|
Dorsal Closure | Ventral Closure | Dorsal Vessel Closure | Thoracic Closure | Wing Vein Closure | Follicle Cell Sheet Closure | Dorsal Appendage Formation | Wound Healing | |
DPP | [13,16,19,28] | [30] | [40] | [50,51] | [49,58] | [67,68] | [71,72] | [76] |
EGF | [13] | [30] | [40] | N/D | [49,58] | [65,68] | [71,72] | [24] |
FGF | N/D | N/D | [36,39,40] | N/D | N/D | [69] | N/D | [89] |
Hedgehog | N/D | N/D | [40] | N/D | [49,58] | [67] | N/D | N/D |
Hippo | [19] | N/D | N/D | N/D | N/D | [67] | N/D | [27,76,93] |
JAK/STAT | N/D | N/D | N/D | N/D | N/D | [62,67] | N/D | [89] |
JNK | [13,16,19,22,28,29,52] | N/D | [36,40] | [51,52] | N/D | N/D | [72] | [73,76,89,91] |
Notch | [13] | N/D | [40] | N/D | [49,58] | N/D | N/D | N/D |
Pvr | [29] | N/D | [40] | [29,52] | N/D | [67] | N/D | [85] |
Toll | N/D | [30] | [39] | N/D | N/D | N/D | N/D | [73,76] |
Wnt | [19,25] | N/D | [40] | [46,50] | [58] | [67] | N/D | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Su, Z.; Xie, X.-J. The Enigmas of Tissue Closure: Inspiration from Drosophila. Curr. Issues Mol. Biol. 2024, 46, 8710-8725. https://doi.org/10.3390/cimb46080514
Huang X, Su Z, Xie X-J. The Enigmas of Tissue Closure: Inspiration from Drosophila. Current Issues in Molecular Biology. 2024; 46(8):8710-8725. https://doi.org/10.3390/cimb46080514
Chicago/Turabian StyleHuang, Xiaoying, Zhongjing Su, and Xiao-Jun Xie. 2024. "The Enigmas of Tissue Closure: Inspiration from Drosophila" Current Issues in Molecular Biology 46, no. 8: 8710-8725. https://doi.org/10.3390/cimb46080514
APA StyleHuang, X., Su, Z., & Xie, X. -J. (2024). The Enigmas of Tissue Closure: Inspiration from Drosophila. Current Issues in Molecular Biology, 46(8), 8710-8725. https://doi.org/10.3390/cimb46080514