Genetic Basis of Hypertrophic Cardiomyopathy in Cats
Abstract
:1. Introduction
2. Gene Mutations
2.1. MYBPC3 Protein Mutation
2.2. Myosin Heavy Chain Mutation
2.3. Alstrom’s Syndrom
2.4. Thin Filaments Mutations
2.5. Occurrence of Genetic Variants
MYBPC3:c.91 G > C [A31P] | Maine coon | [71] |
Pixiebob longhair | ||
Siberian | ||
No-breed | ||
Ragdoll | [32] | |
Munchkin | [72] | |
Scottish fold | ||
MYBPC3:c.2453 C > T [R818W] | American bobtail longhair | [32,71] |
American bobtail shorthair | ||
Highlander | ||
Munchkin | ||
RagaMuffin | ||
No-breed | ||
Ragdoll | ||
MYBPC3:c.220 G > A [A74T] | British shorthair | [32] |
British longhair | ||
Ragdoll | ||
Sphynx | ||
Maine coon | ||
Devon rex | ||
Norwegian forest cats | [68] | |
Persian | ||
Bengalskich | ||
Siberian | ||
Domestic shorthair | [27] | |
MYH7 c.5647 G > A [E1883K] | No-breed | [30] |
TNNT2:c.95-108 G > A | British shorthair | [32] |
British longhair | ||
Ragdoll | ||
Sphynx | ||
Maine coon | ||
Devon rex | ||
Maine coon | [66] | |
ALMS1:c.7384 G > C [G2462R] | Sphynx | [32] |
Devon rex | ||
Maine coon | ||
Ragdoll | ||
British short- or longhair | ||
Two cats with no known breed | [33] | |
American shorthair | [72] | |
Exotic shorthair | ||
Minuet | ||
Munchkin | ||
Scottish fold |
2.6. Effect of Homozygous and Heterozygous Mutation on HCM Phenotype
3. HCM-Related Gene Expression in Cats
4. Other Mechanisms Involved in the Development of HCM
5. Conclusions
Funding
Conflicts of Interest
References
- Payne, J.R.; Borgeat, K.; Connolly, D.J.; Boswood, A.; Dennis, S.; Wagner, T.; Menaut, P.; Maerz, I.; Evans, D.; Simons, V.E.; et al. Prognostic Indicators in Cats with Hypertrophic Cardiomyopathy. Vet. Intern. Med. 2013, 27, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.R.; Brodbelt, D.C.; Fuentes, V.L. Cardiomyopathy Prevalence in 780 Apparently Healthy Cats in Rehoming Centres (the CatScan Study). J. Vet. Cardiol. 2015, 17, S244–S257. [Google Scholar] [CrossRef] [PubMed]
- Borgeat, K.; Stern, J.; Meurs, K.M.; Fuentes, V.L.; Connolly, D.J. The Influence of Clinical and Genetic Factors on Left Ventricular Wall Thickness in Ragdoll Cats. J. Vet. Cardiol. 2015, 17, S258–S267. [Google Scholar] [CrossRef] [PubMed]
- Chetboul, V.; Petit, A.; Gouni, V.; Trehiou-Sechi, E.; Misbach, C.; Balouka, D.; Sampedrano, C.C.; Pouchelon, J.-L.; Tissier, R.; Abitbol, M. Prospective Echocardiographic and Tissue Doppler Screening of a Large Sphynx Cat Population: Reference Ranges, Heart Disease Prevalence and Genetic Aspects. J. Vet. Cardiol. 2012, 14, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Abbott, J.A. Feline hypertrophic cardiomyopathy: An update. Vet. Clin. N. Am. Small Anim. Pract. 2010, 40, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Gundler, S.; Tidholm, A.; Häggström, J. Prevalence of Myocardial Hypertrophy in a Population of Asymptomatic Swedish Maine Coon Cats. Acta Vet. Scand. 2008, 50, 22. [Google Scholar] [CrossRef]
- Godiksen, M.T.; Granstrøm, S.; Koch, J.; Christiansen, M. Hypertrophic Cardiomyopathy in Young Maine Coon Cats Caused by the p.A31P cMyBP-C Mutation-the Clinical Significance of Having the Mutation. Acta Vet. Scand. 2011, 53, 7. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.A.; Rivas, V.N.; Kaplan, J.L.; Ueda, Y.; Oldach, M.S.; Ontiveros, E.S.; Kooiker, K.B.; van Dijk, S.J.; Harris, S.P. Hypertrophic Cardiomyopathy in Purpose-Bred Cats with the A31P Mutation in Cardiac Myosin Binding Protein-C. Sci. Rep. 2023, 13, 10319. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.R.; Keene, B.W.; Lamb, K.; Schober, K.A.; Chetboul, V.; Luis Fuentes, V.; Wess, G.; Payne, J.R.; Hogan, D.F.; Motsinger-Reif, A.; et al. International Collaborative Study to Assess Cardiovascular Risk and Evaluate Long-term Health in Cats with Preclinical Hypertrophic Cardiomyopathy and Apparently Healthy Cats: The REVEAL Study. Vet. Intern. Med. 2018, 32, 930–943. [Google Scholar] [CrossRef]
- Biasato, I.; Francescone, L.; La Rosa, G.; Tursi, M. Anatomopathological Staging of Feline Hypertrophic Cardiomyopathy through Quantitative Evaluation Based on Morphometric and Histopathological Data. Res. Vet. Sci. 2015, 102, 136–141. [Google Scholar] [CrossRef]
- Novo Matos, J.; Garcia-Canadilla, P.; Simcock, I.C.; Hutchinson, J.C.; Dobromylskyj, M.; Guy, A.; Arthurs, O.J.; Cook, A.C.; Luis Fuentes, V. Micro-Computed Tomography (Micro-CT) for the Assessment of Myocardial Disarray, Fibrosis and Ventricular Mass in a Feline Model of Hypertrophic Cardiomyopathy. Sci. Rep. 2020, 10, 20169. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.R.; Liu, S.-K.; Maron, B.J. Echocardiographic Assessment of Spontaneously Occurring Feline Hypertrophic Cardiomyopathy: An Animal Model of Human Disease. Circulation 1995, 92, 2645–2651. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Suzuki, R.; Yuchi, Y.; Fukuoka, H.; Satomi, S.; Teshima, T.; Matsumoto, H. Comparative Study of Myocardial Function in Cases of Feline Hypertrophic Cardiomyopathy with and without Dynamic Left-Ventricular Outflow-Tract Obstruction. Front. Vet. Sci. 2023, 10, 1191211. [Google Scholar] [CrossRef] [PubMed]
- Häggström, J.; Fuentes, V.L.; Wess, G. Screening for Hypertrophic Cardiomyopathy in Cats. J. Vet. Cardiol. 2015, 17, S134–S149. [Google Scholar] [CrossRef] [PubMed]
- Linney, C.J.; Dukes-McEwan, J.; Stephenson, H.M.; López-Alvarez, J.; Fonfara, S. Left Atrial Size, Atrial Function and Left Ventricular Diastolic Function in Cats with Hypertrophic Cardiomyopathy. J. Small Anim. Pract. 2014, 55, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Wilkie, L.J.; Smith, K.; Fuentes, V.L. Cardiac Pathology Findings in 252 Cats Presented for Necropsy; a Comparison of Cats with Unexpected Death versus Other Deaths. J. Vet. Cardiol. 2015, 17, S329–S340. [Google Scholar] [CrossRef] [PubMed]
- Kittleson, M.D.; Côté, E. The Feline Cardiomyopathies: 2. Hypertrophic Cardiomyopathy. J. Feline Med. Surg. 2021, 23, 1028–1051. [Google Scholar] [CrossRef] [PubMed]
- Borgeat, K.; Sherwood, K.; Payne, J.R.; Luis Fuentes, V.; Connolly, D.J. Plasma Cardiac Troponin I Concentration and Cardiac Death in Cats with Hypertrophic Cardiomyopathy. J. Vet. Intern. Med. 2014, 28, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Borgeat, K.; Dudhia, J.; Luis Fuentes, V.; Connolly, D.J. Circulating Concentrations of a Marker of Type I Collagen Metabolism Are Associated with Hypertrophic Cardiomyopathy Mutation Status in Ragdoll Cats. J. Small Anim. Pract. 2015, 56, 360–365. [Google Scholar] [CrossRef]
- Lu, T.; Côté, E.; Kuo, Y.; Wu, H.; Wang, W.; Hung, Y. Point-of-care N-terminal pro B-type Natriuretic Peptide Assay to Screen Apparently Healthy Cats for Cardiac Disease in General Practice. Vet. Intern. Med. 2021, 35, 1663–1672. [Google Scholar] [CrossRef]
- Van Hoek, I.; Hodgkiss-Geere, H.; Bode, E.F.; Hamilton-Elliott, J.; Mõtsküla, P.; Palermo, V.; Pereira, Y.M.; Culshaw, G.J.; Ivanova, A.; Dukes-McEwan, J. Associations among Echocardiography, Cardiac Biomarkers, Insulin Metabolism, Morphology, and Inflammation in Cats with Asymptomatic Hypertrophic Cardiomyopathy. Vet. Intern. Med. 2020, 34, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Gil-Ortuño, C.; Sebastián-Marcos, P.; Sabater-Molina, M.; Nicolas-Rocamora, E.; Gimeno-Blanes, J.R.; Fernández del Palacio, M.J. Genetics of Feline Hypertrophic Cardiomyopathy. Clin. Genet. 2020, 98, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Raffle, J.; Matos, J.N.; Piercy, R.J.; Elliott, P.; Connolly, D.J.; Fuentes, V.L.; Psifidi, A. Identification of Novel Genetic Variants Associated with Feline Cardiomyopathy Using Targeted Next-Generation Sequencing. 2024. Available online: https://www.researchsquare.com/article/rs-3943358/v1 (accessed on 25 June 2024).
- Meurs, K.M.; Sanchez, X.; David, R.M.; Bowles, N.E.; Towbin, J.A.; Reiser, P.J.; Kittleson, J.A.; Munro, M.J.; Dryburgh, K.; MacDonald, K.A.; et al. A Cardiac Myosin Binding Protein C Mutation in the Maine Coon Cat with Familial Hypertrophic Cardiomyopathy. Hum. Mol. Genet. 2005, 14, 3587–3593. [Google Scholar] [CrossRef] [PubMed]
- Meurs, K.M.; Norgard, M.M.; Ederer, M.M.; Hendrix, K.P.; Kittleson, M.D. A Substitution Mutation in the Myosin Binding Protein C Gene in Ragdoll Hypertrophic Cardiomyopathy. Genomics 2007, 90, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Meurs, K.M.; Norgard, M.M.; Kuan, M.; Haggstrom, J.; Kittleson, M. Analysis of 8 Sarcomeric Candidate Genes for Feline Hypertrophic Cardiomyopathy Mutations in Cats with Hypertrophic Cardiomyopathy. J. Vet. Intern. Med. 2009, 23, 840–843. [Google Scholar] [CrossRef]
- Wess, G.; Schinner, C.; Weber, K.; Küchenhoff, H.; Hartmann, K. Association of A31P and A74T Polymorphisms in the Myosin Binding Protein C3 Gene and Hypertrophic Cardiomyopathy in Maine Coon and Other Breed Cats. J. Vet. Intern. Med. 2010, 24, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Kittleson, M.D.; Meurs, K.M.; Harris, S.P. The Genetic Basis of Hypertrophic Cardiomyopathy in Cats and Humans. J. Vet. Cardiol. 2015, 17, S53–S73. [Google Scholar] [CrossRef] [PubMed]
- Schipper, T.; Ohlsson, Å.; Longeri, M.; Hayward, J.J.; Mouttham, L.; Ferrari, P.; Smets, P.; Ljungvall, I.; Häggström, J.; Stern, J.A.; et al. The TNNT2:C.95-108G>A Variant Is Common in Maine Coons and Shows No Association with Hypertrophic Cardiomyopathy. Anim. Genet. 2022, 53, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Schipper, T.; Van Poucke, M.; Sonck, L.; Smets, P.; Ducatelle, R.; Broeckx, B.J.G.; Peelman, L.J. A Feline Orthologue of the Human MYH7 c.5647G>A (p.(Glu1883Lys)) Variant Causes Hypertrophic Cardiomyopathy in a Domestic Shorthair Cat. Eur. J. Hum. Genet. 2019, 27, 1724–1730. [Google Scholar] [CrossRef]
- Heydaryan, S.; Shirani, D.; Ghalyanchi Langeroudi, A.; Bokaie, S.; Hassankhani, M.; Roustaei, A.; Halimiasl, L. Detecting Polymorphism of Myosin-binding Protein C3 Gene in Persian Breed Cat with and without Hypertrophic Cardiomyopathy. Iran. J. Vet. Med. 2024, 18, 215–222. [Google Scholar] [CrossRef]
- Boeykens, F.; Abitbol, M.; Anderson, H.; Dargar, T.; Ferrari, P.; Fox, P.R.; Hayward, J.J.; Häggström, J.; Davison, S.; Kittleson, M.D.; et al. Classification of Feline Hypertrophic Cardiomyopathy-Associated Gene Variants According to the American College of Medical Genetics and Genomics Guidelines. Front. Vet. Sci. 2024, 11, 1327081. [Google Scholar] [CrossRef]
- Meurs, K.M.; Williams, B.G.; DeProspero, D.; Friedenberg, S.G.; Malarkey, D.E.; Ezzell, J.A.; Keene, B.W.; Adin, D.B.; DeFrancesco, T.C.; Tou, S. A Deleterious Mutation in the ALMS1 Gene in a Naturally Occurring Model of Hypertrophic Cardiomyopathy in the Sphynx Cat. Orphanet J. Rare Dis. 2021, 16, 108. [Google Scholar] [CrossRef] [PubMed]
- Longeri, M.; Turba, M.E.; Ferrari, P.; Milanesi, R.; Gentilini, F. Allele Drop-Out Cases in Screening of HCM Associated ALMS1 Gene Variant in Italian Sphynx Cats. 2022. Available online: https://air.unimi.it/handle/2434/940550 (accessed on 25 June 2024).
- Turba, M.E.; Ferrari, P.; Milanesi, R.; Gentilini, F.; Longeri, M. HCM-Associated ALMS1 Variant: Allele Drop-out and Frequency in Italian Sphynx Cats. Anim. Genet. 2023, 54, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Fonfara, S.; Kitz, S.; Monteith, G.; Hahn, S.; Kipar, A. Myocardial Transcription of Inflammatory and Remodeling Markers in Cats with Hypertrophic Cardiomyopathy and Systemic Diseases Associated with an Inflammatory Phenotype. Res. Vet. Sci. 2021, 136, 484–494. [Google Scholar] [CrossRef]
- Demeekul, K.; Sukumolanan, P.; Panprom, C.; Thaisakun, S.; Roytrakul, S.; Petchdee, S. Echocardiography and MALDI-TOF Identification of Myosin-Binding Protein C3 A74T Gene Mutations Involved Healthy and Mutated Bengal Cats. Animals 2022, 12, 1782. [Google Scholar] [CrossRef]
- Heling, L.W.H.J.; Geeves, M.A.; Kad, N.M. MyBP-C: One Protein to Govern Them All. J. Muscle Res. Cell Motil. 2020, 41, 91–101. [Google Scholar] [CrossRef]
- Song, T.; Landim-Vieira, M.; Ozdemir, M.; Gott, C.; Kanisicak, O.; Pinto, J.R.; Sadayappan, S. Etiology of Genetic Muscle Disorders Induced by Mutations in Fast and Slow Skeletal MyBP-C Paralogs. Exp. Mol. Med. 2023, 55, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Tudurachi, B.-S.; Zăvoi, A.; Leonte, A.; Țăpoi, L.; Ureche, C.; Bîrgoan, S.G.; Chiuariu, T.; Anghel, L.; Radu, R.; Sascău, R.A.; et al. An Update on MYBPC3 Gene Mutation in Hypertrophic Cardiomyopathy. Int. J. Mol. Sci. 2023, 24, 10510. [Google Scholar] [CrossRef]
- Squire, J.M.; Luther, P.K.; Knupp, C. Structural Evidence for the Interaction of C-Protein (MyBP-C) with Actin and Sequence Identification of a Possible Actin-Binding Domain. J. Mol. Biol. 2003, 331, 713–724. [Google Scholar] [CrossRef]
- Sadayappan, S.; de Tombe, P.P. Cardiac Myosin Binding Protein-C: Redefining Its Structure and Function. Biophys. Rev. 2012, 4, 93–106. [Google Scholar] [CrossRef]
- MacDonald, K.A.; Kittleson, M.D.; Kass, P.H.; Meurs, K.M. Tissue Doppler Imaging in Maine Coon Cats with a Mutation of Myosin Binding Protein C with or without Hypertrophy. J. Vet. Intern. Med. 2007, 21, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Marston, S.; Copeland, O.; Gehmlich, K.; Schlossarek, S.; Carrrier, L. How Do MYBPC3 Mutations Cause Hypertrophic Cardiomyopathy? J. Muscle Res. Cell Motil. 2012, 33, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Calaghan, S.C.; Trinick, J.; Knight, P.J.; White, E. A Role for C-Protein in the Regulation of Contraction and Intracellular Ca2+ in Intact Rat Ventricular Myocytes. J. Physiol. 2000, 528, 151. [Google Scholar] [CrossRef] [PubMed]
- Rosas, P.C.; Liu, Y.; Abdalla, M.I.; Thomas, C.M.; Kidwell, D.T.; Dusio, G.F.; Mukhopadhyay, D.; Kumar, R.; Baker, K.M.; Mitchell, B.M.; et al. Phosphorylation of Cardiac Myosin-Binding Protein-C Is a Critical Mediator of Diastolic Function. Circ. Heart Fail. 2015, 8, 582–594. [Google Scholar] [CrossRef] [PubMed]
- Sepp, R.; Hategan, L.; Csányi, B.; Borbás, J.; Tringer, A.; Pálinkás, E.D.; Nagy, V.; Takács, H.; Latinovics, D.; Nyolczas, N.; et al. The Genetic Architecture of Hypertrophic Cardiomyopathy in Hungary: Analysis of 242 Patients with a Panel of 98 Genes. Diagnostics 2022, 12, 1132. [Google Scholar] [CrossRef] [PubMed]
- Andersen, P.S.; Havndrup, O.; Bundgaard, H.; Larsen, L.A.; Vuust, J.; Pedersen, A.K.; Kjeldsen, K.; Christiansen, M. Genetic and Phenotypic Characterization of Mutations in Myosin-Binding Protein C (MYBPC3) in 81 Families with Familial Hypertrophic Cardiomyopathy: Total or Partial Haploinsufficiency. Eur. J. Hum. Genet. 2004, 12, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Streisinger, G.; Okada, Y.; Emrich, J.; Newton, J.; Tsugita, A.; Terzaghi, E.; Inouye, M. Frameshift Mutations and the Genetic Code. Cold Spring Harb. Symp. Quant. Biol. 1966, 31, 77–84. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, S.J.; Dooijes, D.; dos Remedios, C.; Michels, M.; Lamers, J.M.J.; Winegrad, S.; Schlossarek, S.; Carrier, L.; ten Cate, F.J.; Stienen, G.J.M.; et al. Cardiac Myosin-Binding Protein C Mutations and Hypertrophic Cardiomyopathy: Haploinsufficiency, Deranged Phosphorylation, and Cardiomyocyte Dysfunction. Circulation 2009, 119, 1473–1483. [Google Scholar] [CrossRef]
- Carrier, L.; Mearini, G.; Stathopoulou, K.; Cuello, F. Cardiac Myosin-Binding Protein C (MYBPC3) in Cardiac Pathophysiology. Gene 2015, 573, 188–197. [Google Scholar] [CrossRef]
- Kittleson, M.D.; Meurs, K.M.; Munro, M.J.; Kittleson, J.A.; Liu, S.K.; Pion, P.D.; Towbin, J.A. Familial Hypertrophic Cardiomyopathy in Maine Coon Cats: An Animal Model of Human Disease. Circulation 1999, 99, 3172–3180. [Google Scholar] [CrossRef]
- Godiksen, M.T.N.; Kinnear, C.; Ravnsborg, T.; Hojrup, P.; Granstr, S. Feline Hypertrophic Cardiomyopathy Associated with the p.A31P Mutation in cMyBP-C Is Caused by Production of Mutated cMyBP-C with Reduced Binding to Actin. Open J. Vet. Med. 2013, 2013, 95–103. [Google Scholar] [CrossRef]
- Osváth, S.; Gruebele, M. Proline Can Have Opposite Effects on Fast and Slow Protein Folding Phases. Biophys. J. 2003, 85, 1215–1222. [Google Scholar] [CrossRef]
- Koide, S.; Dyson, H.J.; Wright, P.E. Characterization of a Folding Intermediate of Apoplastocyanin Trapped by Proline Isomerization. Biochemistry 1993, 32, 12299–12310. [Google Scholar] [CrossRef]
- Harris, S.P.; Lyons, R.G.; Bezold, K.L. In the Thick of It: HCM-Causing Mutations in Myosin Binding Proteins of the Thick Filament. Circ. Res. 2011, 108, 751–764. [Google Scholar] [CrossRef]
- Messer, A.E.; Chan, J.; Daley, A.; Copeland, O.; Marston, S.B.; Connolly, D.J. Investigations into the Sarcomeric Protein and Ca2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats (Felix catus). Front. Physiol. 2017, 8, 348. [Google Scholar] [CrossRef]
- Ripoll Vera, T.; Monserrat Iglesias, L.; Hermida Prieto, M.; Ortiz, M.; Rodriguez Garcia, I.; Govea Callizo, N.; Gómez Navarro, C.; Rosell Andreo, J.; Gámez Martínez, J.M.; Pons Lladó, G.; et al. The R820W Mutation in the MYBPC3 Gene, Associated with Hypertrophic Cardiomyopathy in Cats, Causes Hypertrophic Cardiomyopathy and Left Ventricular Non-Compaction in Humans. Int. J. Cardiol. 2010, 145, 405–407. [Google Scholar] [CrossRef]
- Amm, I.; Sommer, T.; Wolf, D.H. Protein Quality Control and Elimination of Protein Waste: The Role of the Ubiquitin–Proteasome System. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2014, 1843, 182–196. [Google Scholar] [CrossRef]
- Bahrudin, U.; Morisaki, H.; Morisaki, T.; Ninomiya, H.; Higaki, K.; Nanba, E.; Igawa, O.; Takashima, S.; Mizuta, E.; Miake, J. Ubiquitin-Proteasome System Impairment Caused by a Missense Cardiac Myosin-Binding Protein C Mutation and Associated with Cardiac Dysfunction in Hypertrophic Cardiomyopathy. J. Mol. Biol. 2008, 384, 896–907. [Google Scholar] [CrossRef]
- Krenz, M.; Sanbe, A.; Bouyer-Dalloz, F.; Gulick, J.; Klevitsky, R.; Hewett, T.E.; Osinska, H.E.; Lorenz, J.N.; Brosseau, C.; Federico, A. Analysis of Myosin Heavy Chain Functionality in the Heart. J. Biol. Chem. 2003, 278, 17466–17474. [Google Scholar] [CrossRef]
- Krenz, M.; Sadayappan, S.; Osinska, H.E.; Henry, J.A.; Beck, S.; Warshaw, D.M.; Robbins, J. Distribution and Structure-Function Relationship of Myosin Heavy Chain Isoforms in the Adult Mouse Heart. J. Biol. Chem. 2007, 282, 24057–24064. [Google Scholar] [CrossRef]
- Collin, G.B.; Marshall, J.D.; Cardon, L.R.; Nishina, P.M. Homozygosity Mapping of Alström Syndrome to Chromosome 2p. Hum. Mol. Genet. 1997, 6, 213–219. [Google Scholar] [CrossRef]
- Chang, K.T.; Taylor, G.P.; Meschino, W.S.; Kantor, P.F.; Cutz, E. Mitogenic Cardiomyopathy: A Lethal Neonatal Familial Dilated Cardiomyopathy Characterized by Myocyte Hyperplasia and Proliferation. Hum. Pathol. 2010, 41, 1002–1008. [Google Scholar] [CrossRef]
- Bruno, S.; Darzynkiewicz, Z. Cell Cycle Dependent Expression and Stability of the Nuclear Protein Detected by Ki-67 Antibody in HL-60 Cells. Cell Prolif. 1992, 25, 31–40. [Google Scholar] [CrossRef]
- McNamara, J.W.; Schuckman, M.; Becker, R.C.; Sadayappan, S. A Novel Homozygous Intronic Variant in TNNT2 Associates with Feline Cardiomyopathy. Front. Physiol. 2020, 11, 608473. [Google Scholar] [CrossRef]
- Mary, J.; Chetboul, V.; Sampedrano, C.C.; Abitbol, M.; Gouni, V.; Trehiou-Sechi, E.; Tissier, R.; Queney, G.; Pouchelon, J.-L.; Thomas, A. Prevalence of the MYBPC3-A31P Mutation in a Large European Feline Population and Association with Hypertrophic Cardiomyopathy in the Maine Coon Breed. J. Vet. Cardiol. 2010, 12, 155–161. [Google Scholar] [CrossRef]
- Longeri, M.; Ferrari, P.; Knafelz, P.; Mezzelani, A.; Marabotti, A.; Milanesi, L.; Pertica, G.; Polli, M.; Brambilla, P.G.; Kittleson, M.; et al. Myosin-Binding Protein C DNA Variants in Domestic Cats (A31P, A74T, R820W) and Their Association with Hypertrophic Cardiomyopathy. J. Vet. Intern. Med. 2013, 27, 275–285. [Google Scholar] [CrossRef]
- Casamian-Sorrosal, D.; Chong, S.K.; Fonfara, S.; Helps, C. Prevalence and Demographics of the MYBPC3-Mutations in Ragdolls and Maine Coons in the British Isles. J. Small Anim. Pract. 2014, 55, 269–273. [Google Scholar] [CrossRef]
- Borgeat, K.; Casamian-Sorrosal, D.; Helps, C.; Luis Fuentes, V.; Connolly, D.J. Association of the Myosin Binding Protein C3 Mutation (MYBPC3 R820W) with Cardiac Death in a Survey of 236 Ragdoll Cats. J. Vet. Cardiol. 2014, 16, 73–80. [Google Scholar] [CrossRef]
- Anderson, H.; Davison, S.; Lytle, K.M.; Honkanen, L.; Freyer, J.; Mathlin, J.; Kyöstilä, K.; Inman, L.; Louviere, A.; Foran, R.C.; et al. Genetic Epidemiology of Blood Type, Disease and Trait Variants, and Genome-Wide Genetic Diversity in over 11,000 Domestic Cats. PLoS Genet. 2022, 18, e1009804. [Google Scholar] [CrossRef]
- Akiyama, N.; Suzuki, R.; Saito, T.; Yuchi, Y.; Ukawa, H.; Matsumoto, Y. Presence of Known Feline ALMS1 and MYBPC3 Variants in a Diverse Cohort of Cats with Hypertrophic Cardiomyopathy in Japan. PLoS ONE 2023, 18, e0283433. [Google Scholar] [CrossRef]
- Marston, S.; Copeland, O.; Jacques, A.; Livesey, K.; Tsang, V.; McKenna, W.J.; Jalilzadeh, S.; Carballo, S.; Redwood, C.; Watkins, H. Evidence from Human Myectomy Samples That MYBPC3 Mutations Cause Hypertrophic Cardiomyopathy Through Haploinsufficiency. Circ. Res. 2009, 105, 219–222. [Google Scholar] [CrossRef]
- Carlos Sampedrano, C.; Chetboul, V.; Mary, J.; Tissier, R.; Abitbol, M.; Serres, F.; Gouni, V.; Thomas, A.; Pouchelon, J.-L. Prospective Echocardiographic and Tissue Doppler Imaging Screening of a Population of Maine Coon Cats Tested for the A31P Mutation in the Myosin-Binding Protein C Gene: A Specific Analysis of the Heterozygous Status. J. Vet. Intern. Med. 2009, 23, 91–99. [Google Scholar] [CrossRef]
- Tallo, C.A.; Duncan, L.H.; Yamamoto, A.H.; Slaydon, J.D.; Arya, G.H.; Turlapati, L.; Mackay, T.F.; Carbone, M.A. Heat Shock Proteins and Small Nucleolar RNAs Are Dysregulated in a Drosophila Model for Feline Hypertrophic Cardiomyopathy. G3 2021, 11, jkaa014. [Google Scholar] [CrossRef]
- Colpitts, M.E.; Caswell, J.L.; Monteith, G.; Joshua, J.; O’Sullivan, M.L.; Raheb, S.; Fonfara, S. Cardiac Gene Activation Varies between Young and Adult Cats and in the Presence of Hypertrophic Cardiomyopathy. Res. Vet. Sci. 2022, 152, 38–47. [Google Scholar] [CrossRef]
- Joshua, J.; Caswell, J.; O’Sullivan, M.L.; Wood, G.; Fonfara, S. Feline Myocardial Transcriptome in Health and in Hypertrophic Cardiomyopathy—A Translational Animal Model for Human Disease. PLoS ONE 2023, 18, e0283244. [Google Scholar] [CrossRef]
- Kitz, S.; Fonfara, S.; Hahn, S.; Hetzel, U.; Kipar, A. Feline Hypertrophic Cardiomyopathy: The Consequence of Cardiomyocyte-Initiated and Macrophage-Driven Remodeling Processes? Vet. Pathol. 2019, 56, 565–575. [Google Scholar] [CrossRef]
- Fonfara, S.; Hetzel, U.; Hahn, S.; Kipar, A. Age- and Gender-Dependent Myocardial Transcription Patterns of Cytokines and Extracellular Matrix Remodelling Enzymes in Cats with Non-Cardiac Diseases. Exp. Gerontol. 2015, 72, 117–123. [Google Scholar] [CrossRef]
- Fonfara, S.; Kitz, S.; Hetzel, U.; Kipar, A. Myocardial Leptin Transcription in Feline Hypertrophic Cardiomyopathy. Res. Vet. Sci. 2017, 112, 105–108. [Google Scholar] [CrossRef]
- Khor, K.H.; Campbell, F.E.; Owen, H.; Shiels, I.A.; Mills, P.C. Myocardial Collagen Deposition and Inflammatory Cell Infiltration in Cats with Pre-Clinical Hypertrophic Cardiomyopathy. Vet. J. 2015, 203, 161–168. [Google Scholar] [CrossRef]
- Rodríguez, J.M.M.; Fonfara, S.; Hetzel, U.; Kipar, A. Feline Hypertrophic Cardiomyopathy: Reduced Microvascular Density and Involvement of CD34+ Interstitial Cells. Vet. Pathol. 2022, 59, 269–283. [Google Scholar] [CrossRef]
- Moturi, S.; Ghosh-Choudhary, S.K.; Finkel, T. Cardiovascular Disease and the Biology of Aging. J. Mol. Cell. Cardiol. 2022, 167, 109–117. [Google Scholar] [CrossRef]
- Ward-Caviness, C.K. Accelerated Epigenetic Aging and Incident Atrial Fibrillation: New Outlook on an Immutable Risk Factor? Circulation 2021, 144, 1912–1914. [Google Scholar] [CrossRef]
- Blagosklonny, M.V. Anti-Aging: Senolytics or Gerostatics (Unconventional View). Oncotarget 2021, 12, 1821–1835. [Google Scholar] [CrossRef]
- Christiansen, L.B.; Dela, F.; Koch, J.; Hansen, C.N.; Leifsson, P.S.; Yokota, T. Impaired Cardiac Mitochondrial Oxidative Phosphorylation and Enhanced Mitochondrial Oxidative Stress in Feline Hypertrophic Cardiomyopathy. Am. J. Physiol.-Heart Circ. Physiol. 2015, 308, H1237–H1247. [Google Scholar] [CrossRef]
- Nacarelli, T.; Lau, L.; Fukumoto, T.; Zundell, J.; Fatkhutdinov, N.; Wu, S.; Aird, K.M.; Iwasaki, O.; Kossenkov, A.V.; Schultz, D. NAD+ Metabolism Governs the Proinflammatory Senescence-Associated Secretome. Nat. Cell Biol. 2019, 21, 397–407. [Google Scholar] [CrossRef]
- Zoncu, R.; Efeyan, A.; Sabatini, D.M. mTOR: From Growth Signal Integration to Cancer, Diabetes and Ageing. Nat. Rev. Mol. Cell Biol. 2011, 12, 21–35. [Google Scholar] [CrossRef]
- Berg, C.E.; Lavan, B.E.; Rondinone, C.M. Rapamycin Partially Prevents Insulin Resistance Induced by Chronic Insulin Treatment. Biochem. Biophys. Res. Commun. 2002, 293, 1021–1027. [Google Scholar] [CrossRef]
- Lamming, D.W.; Ye, L.; Katajisto, P.; Goncalves, M.D.; Saitoh, M.; Stevens, D.M.; Davis, J.G.; Salmon, A.B.; Richardson, A.; Ahima, R.S.; et al. Rapamycin-Induced Insulin Resistance Is Mediated by mTORC2 Loss and Uncoupled from Longevity. Science 2012, 335, 1638–1643. [Google Scholar] [CrossRef]
- Henrique Mazucanti, C.; Victor Cabral-Costa, J.; Rodrigues Vasconcelos, A.; Zukas Andreotti, D.; Scavone, C.; Mitiko Kawamoto, E. Longevity Pathways (mTOR, SIRT, Insulin/IGF-1) as Key Modulatory Targets on Aging and Neurodegeneration. Curr. Top. Med. Chem. 2015, 15, 2116–2138. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Liu, L.; Li, P.; Li, J. Rapamycin Inhibits the mTOR/p70S6K Pathway and Attenuates Cardiac Fibrosis in Adriamycin-Induced Dilated Cardiomyopathy. Thorac. Cardiovasc. Surg 2012, 61, 223–228. [Google Scholar] [CrossRef]
- Qin, W.; Cao, L.; Massey, I.Y. Role of PI3K/Akt Signaling Pathway in Cardiac Fibrosis. Mol. Cell. Biochem. 2021, 476, 4045–4059. [Google Scholar] [CrossRef]
- Gao, X.-M.; Wong, G.; Wang, B.; Kiriazis, H.; Moore, X.-L.; Su, Y.-D.; Dart, A.; Du, X.-J. Inhibition of mTOR Reduces Chronic Pressure-Overload Cardiac Hypertrophy and Fibrosis. J. Hypertens. 2006, 24, 1663–1670. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Markby, G.R.; MacNair, A.J.; Tang, K.; Tkacz, M.; Parys, M.; Phadwal, K.; MacRae, V.E.; Corcoran, B.M. TGF-β-induced PI3K/AKT/mTOR Pathway Controls Myofibroblast Differentiation and Secretory Phenotype of Valvular Interstitial Cells through the Modulation of Cellular Senescence in a Naturally Occurring in Vitro Canine Model of Myxomatous Mitral Valve Disease. Cell Prolif. 2023, 56, e13435. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.L.; Rivas, V.N.; Walker, A.L.; Grubb, L.; Farrell, A.; Fitzgerald, S.; Kennedy, S.; Jauregui, C.E.; Crofton, A.E.; McLaughlin, C.; et al. Delayed-Release Rapamycin Halts Progression of Left Ventricular Hypertrophy in Subclinical Feline Hypertrophic Cardiomyopathy: Results of the RAPACAT Trial. J. Am. Vet. Med. Assoc. 2023, 261, 1628–1637. [Google Scholar] [CrossRef] [PubMed]
- Machka, C.; Lange, S.; Werner, J.; Wacke, R.; Killian, D.; Knueppel, A.; Knuebel, G.; Vogel, H.; Lindner, I.; Roolf, C. Everolimus in Combination with Mycophenolate Mofetil as Pre- and Post-Transplantation Immunosuppression after Nonmyeloablative Hematopoietic Stem Cell Transplantation in Canine Littermates. Biol. Blood Marrow Transplant. 2014, 20, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Kaeberlein, M.; Creevy, K.E.; Promislow, D.E.L. The Dog Aging Project: Translational Geroscience in Companion Animals. Mamm. Genome 2016, 27, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Mouttham, L.; Castelhano, M.G.; Akey, J.M.; Benton, B.; Borenstein, E.; Castelhano, M.G.; Coleman, A.E.; Creevy, K.E.; Crowder, K.; Dunbar, M.D.; et al. Purpose, Partnership, and Possibilities: The Implementation of the Dog Aging Project Biobank. Biomark. Insights 2022, 17, 11772719221137217. [Google Scholar] [CrossRef] [PubMed]
- Yarborough, S.; Fitzpatrick, A.; Schwartz, S.M. Evaluation of Cognitive Function in the Dog Aging Project: Associations with Baseline Canine Characteristics. Sci. Rep. 2022, 12, 13316. [Google Scholar] [CrossRef] [PubMed]
- Rivas, V.N.; Kaplan, J.L.; Kennedy, S.A.; Fitzgerald, S.; Crofton, A.E.; Farrell, A.; Grubb, L.; Jauregui, C.E.; Grigorean, G.; Choi, E. Multi-Omic, Histopathologic, and Clinicopathologic Effects of Once-Weekly Oral Rapamycin in a Naturally Occurring Feline Model of Hypertrophic Cardiomyopathy: A Pilot Study. Animals 2023, 13, 3184. [Google Scholar] [CrossRef]
- Sukumolanan, P.; Phanakrop, N.; Thaisakun, S.; Roytrakul, S.; Petchdee, S. Analysis of the Serum Peptidomics Profile for Cats with Sarcomeric Gene Mutation and Hypertrophic Cardiomyopathy. Front. Vet. Sci. 2021, 8, 771408. [Google Scholar] [CrossRef]
- Meng, R.; Pei, Z.; Zhang, A.; Zhou, Y.; Cai, X.; Chen, B.; Liu, G.; Mai, W.; Wei, J.; Dong, Y. AMPK Activation Enhances PPARα Activity to Inhibit Cardiac Hypertrophy via ERK1/2 MAPK Signaling Pathway. Arch. Biochem. Biophys. 2011, 511, 1–7. [Google Scholar] [CrossRef]
- Muslin, A.J. MAPK Signalling in Cardiovascular Health and Disease: Molecular Mechanisms and Therapeutic Targets. Clin. Sci. 2008, 115, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Chang, J.; Li, X.; Wang, J.; Wu, X.; Liu, X.; Zhu, Y.; Yu, X.Y. Association of DNA methylation and transcriptome reveals epigenetic etiology of heart failure. Funct. Integr. Genom. 2022, 22, 89–112. [Google Scholar] [CrossRef]
- Grzeczka, A.; Graczyk, S.; Kordowitzki, P. DNA methylation and telomeres—Their impact on the occurrence of atrial fibrillation during cardiac aging. Int. J. Mol. Sci. 2023, 24, 15699. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tu, X. The genetics and epigenetics of ventricular arrhythmias in patients without structural heart disease. Front. Cardiovasc. Med. 2022, 9, 891399. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, S.; Kim, G.H. Genetic and epigenetic regulation of arrhythmogenic cardiomyopathy. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2017, 1863, 2064–2069. [Google Scholar]
- Bartoszuk, U.; Keene, B.W.; Toaldo, M.B.; Pereira, N.; Summerfield, N.; Matos, J.N.; Glaus, T.M. Holter monitoring demonstrates that ventricular arrhythmias are common in cats with decompensated and compensated hypertrophic cardiomyopathy. Vet. J. 2019, 243, 21–25. [Google Scholar] [CrossRef]
- Scolari, F.L.; Faganello, L.S.; Garbin, H.I.; E Mattos, B.P.; Biolo, A. A Systematic Review of microRNAs in Patients with Hypertrophic Cardiomyopathy. Int. J. Cardiol. 2021, 327, 146–154. [Google Scholar] [CrossRef]
- Weber, K.; Rostert, N.; Bauersachs, S.; Wess, G. Serum microRNA Profiles in Cats with Hypertrophic Cardiomyopathy. Mol. Cell. Biochem. 2015, 402, 171–180. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzeczka, A.; Graczyk, S.; Pasławski, R.; Pasławska, U. Genetic Basis of Hypertrophic Cardiomyopathy in Cats. Curr. Issues Mol. Biol. 2024, 46, 8752-8766. https://doi.org/10.3390/cimb46080517
Grzeczka A, Graczyk S, Pasławski R, Pasławska U. Genetic Basis of Hypertrophic Cardiomyopathy in Cats. Current Issues in Molecular Biology. 2024; 46(8):8752-8766. https://doi.org/10.3390/cimb46080517
Chicago/Turabian StyleGrzeczka, Arkadiusz, Szymon Graczyk, Robert Pasławski, and Urszula Pasławska. 2024. "Genetic Basis of Hypertrophic Cardiomyopathy in Cats" Current Issues in Molecular Biology 46, no. 8: 8752-8766. https://doi.org/10.3390/cimb46080517
APA StyleGrzeczka, A., Graczyk, S., Pasławski, R., & Pasławska, U. (2024). Genetic Basis of Hypertrophic Cardiomyopathy in Cats. Current Issues in Molecular Biology, 46(8), 8752-8766. https://doi.org/10.3390/cimb46080517