Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias
Abstract
:1. Introduction
2. Description of Somatostatin Receptors
2.1. Overview of Somatostatin Receptors
2.2. Structure and Properties of Somatostatin Receptors
2.3. Localization, Functions and Signaling Pathways of Somatostatin Receptors
2.3.1. SSTR1
2.3.2. SSTR2
2.3.3. SSTR3
2.3.4. SSTR4
2.3.5. SSTR5
2.4. Importance of Somatostatin Receptors in Tumoral Pathology
2.4.1. Somatostatin Receptors and Neuroendocrine Tumors
2.4.2. Somatostatin Receptors and Squamous Cell Carcinomas
2.4.3. Somatostatin Receptors and Reproductive System Carcinomas
2.4.4. Somatostatin Receptors and Digestive Carcinomas
3. Therapeutical Uses of Somatostatin Analogs in Neoplasias
Somatostatin Analog | Octreotide | Lanreotide | Pasireotide |
---|---|---|---|
Most effective administration route | Subcutaneous | Subcutaneous | Subcutaneous |
Cmax attainment | 30 min (subcutaneous) 1.67–2.5 h (oral) | n/a | 0.25–0.5 h |
Volume of distribution (VL) | 13.6–30.4 L | 15.1 L | >100 L |
Protein binding | 65% | n/a | 88% |
Metabolism | Liver | Gastrointestinal tract | Liver |
Half-life | 2.3–2.7 h | 22 d | 12 h |
Clearance | 7–10 L/h | 23.1 L/h | 7.6 L/h |
Elimination | Urinary (32%) Faecal (30–40%) | Urinary (<5%) Faecal (<0.5%) | Hepatic (48.3%) Urinary (7.63%) |
Somatostatin Analog | Condition | Tumor-Expressed SSTRs | References |
---|---|---|---|
Octreotide | Acromegaly | SSTR2, SSTR5 (minor role) | [269,270] |
Congenital hyperinsulinism | SSTR2 | [271] | |
Thymic tumors | SSTR2 (minor role), SSTR3 | [178] | |
Lymphoma (potential treatment) | SSTR2 | [272] | |
Neuroendrocrine tumors | SSTR2, SSTR5 (minor role) | [273] | |
Merkel cell carcinoma | SSTR2, SSTR5 | [274,275] | |
Hepatocellular carcinoma | All SSTRs | [21] | |
Lanreotide | Acromegaly | SSTR2 | [34] |
Neuroendocrine tumors | SSTR2, SSTR5 (minor role) | [273,276,277] | |
Hepatocellular carcinoma | All SSTRs | [278] | |
Pasireotide | Acromegaly | SSTR2 (minor role), SSTR5 | [34,279] |
Congenital hyperinsulinism (proposed) and drug-induce hyperglycaemia in Cushings syndrome | SSTR5 | [271,280] | |
Neuroendrocrine tumors | SSTR1, SSTR2, SSTR3, SSTR5 | [281] |
3.1. Therapeutical Uses of Octreotide in Neoplasias
3.1.1. Octreotide in the Treatment of Thymic Tumors
3.1.2. Octreotide in the Management and Treatment of Neuroendocrine Tumors (NETs)
3.1.3. Octreotide in the Treatment of Lymphomas
3.1.4. Octreotide in the Treatment of Merkel Cell Carcinoma
3.1.5. Octreotide in the Treatment of Hepatocellular Carcinoma (HCC)
3.2. Therapeutical Uses of Lanreotide in Neoplasias
3.3. Therapeutical Uses of Pasireotide in Neoplasias
4. Somatostatin Antagonists: Current Evidence and Studies
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brazeau, P.; Vale, W.; Burgus, R.; Ling, N.; Butcher, M.; Rivier, J.; Guillemin, R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973, 179, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Esch, F.; Böhlen, P.; Ling, N.; Benoit, R.; Brazeau, P.; Guillemin, R. Primary structure of ovine hypothalamic somatostatin-28 and somatostatin-25. Proc. Natl. Acad. Sci. USA 1980, 77, 6827–6831. [Google Scholar] [CrossRef]
- Pradayrol, L.; Jörnvall, H.; Mutt, V.; Ribet, A. N-terminally extended somatostatin: The primary structure of somatostatin-28. FEBS Lett. 1980, 109, 55–58. [Google Scholar] [CrossRef]
- Shen, L.P.; Rutter, W.J. Sequence of the human somatostatin I gene. Science 1984, 224, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Günther, T.; Tulipano, G.; Dournaud, P.; Bousquet, C.; Csaba, Z.; Kreienkamp, H.J.; Lupp, A.; Korbonits, M.; Castaño, J.P.; Wester, H.J.; et al. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol. Rev. 2018, 70, 763–835. [Google Scholar] [CrossRef] [PubMed]
- Reichlin, S. Somatostatin. N. Engl. J. Med. 1983, 309, 1495–1501. [Google Scholar] [CrossRef]
- Reichlin, S. Somatostatin (second of two parts). N. Engl. J. Med. 1983, 309, 1556–1563. [Google Scholar] [CrossRef]
- Hall, R.; Page, M.D.; Dieguez, C.; Scanlon, M.F. Somatostatin: A Historical Perspective. Horm. Res. 2008, 29, 50–53. [Google Scholar] [CrossRef]
- Reisine, T.; Bell, G.I. Molecular biology of somatostatin receptors. Endocr. Rev. 1995, 16, 427–442. [Google Scholar] [CrossRef]
- O’Toole, T.J.; Sharma, S. Physiology, Somatostatin. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2024. [Google Scholar]
- Bloom, S.R.; Polak, J.M. Somatostatin. Br. Med. J. 1987, 295, 288–290. [Google Scholar] [CrossRef]
- Cervia, D.; Casini, G.; Bagnoli, P. Physiology and pathology of somatostatin in the mammalian retina: A current view. Mol. Cell. Endocrinol. 2008, 286, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Scheau, C.; Draghici, C.; Ilie, M.A.; Lupu, M.; Solomon, I.; Tampa, M.; Georgescu, S.R.; Caruntu, A.; Constantin, C.; Neagu, M.; et al. Neuroendocrine Factors in Melanoma Pathogenesis. Cancers 2021, 13, 2277. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.G. Somatostatin and somatostatin analogues: Pharmacokinetics and pharmacodynamic effects. Gut 1994, 35, S1–S4. [Google Scholar] [CrossRef]
- Theodoropoulou, M.; Stalla, G.K. Somatostatin receptors: From signaling to clinical practice. Front. Neuroendocrinol. 2013, 34, 228–252. [Google Scholar] [CrossRef]
- Shamsi, B.H.; Chatoo, M.; Xu, X.K.; Xu, X.; Chen, X.Q. Versatile Functions of Somatostatin and Somatostatin Receptors in the Gastrointestinal System. Front. Endocrinol. 2021, 12, 652363. [Google Scholar] [CrossRef]
- Robinson, S.L.; Thiele, T.E. Somatostatin signaling modulates binge drinking behavior via the central nucleus of the amygdala. Neuropharmacology 2023, 237, 109622. [Google Scholar] [CrossRef]
- Joye, D.A.M.; Rohr, K.E.; Suenkens, K.; Wuorinen, A.; Inda, T.; Arzbecker, M.; Mueller, E.; Huber, A.; Pancholi, H.; Blackmore, M.G.; et al. Somatostatin regulates central clock function and circadian responses to light. Proc. Natl. Acad. Sci. USA 2023, 120, e2216820120. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.P.; Ji, Z.; Epelbaum, J. Somatostatin as a neurotrophic factor. Which receptor/second messenger transduction system is involved? Perspect. Dev. Neurobiol. 1998, 5, 427–435. [Google Scholar]
- Rai, U.; Thrimawithana, T.R.; Valery, C.; Young, S.A. Therapeutic uses of somatostatin and its analogues: Current view and potential applications. Pharmacol. Ther. 2015, 152, 98–110. [Google Scholar] [CrossRef]
- Periferakis, A.; Tsigas, G.; Periferakis, A.T.; Badarau, I.A.; Scheau, A.E.; Tampa, M.; Georgescu, S.R.; Didilescu, A.C.; Scheau, C.; Caruntu, C. Antitumoral and Anti-inflammatory Roles of Somatostatin and Its Analogs in Hepatocellular Carcinoma. Anal. Cell. Pathol. 2021, 2021, 1840069. [Google Scholar] [CrossRef]
- Kouroumalis, E.; Samonakis, D.; Notas, G. Somatostatin in hepatocellular carcinoma: Experimental and therapeutic implications. Hepatoma Res. 2018, 4, 34. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, Y.; Bai, C.; Zhao, H.; Jia, R.; Chen, J.; Zhu, W.; Huo, L. Gallium-68 labeled somatostatin receptor antagonist PET/CT in over 500 patients with neuroendocrine neoplasms: Experience from a single center in China. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2002–2011. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Zhao, T.; Zhang, Y.; Yun, Y.; Xu, Y.; Guo, S.; Zhong, Y.; Xie, X.; Shen, J. Discovery and exploration of novel somatostatin receptor subtype 5 (SSTR5) antagonists for the treatment of cholesterol gallstones. Eur. J. Med. Chem. 2024, 264, 116017. [Google Scholar] [CrossRef]
- Vanhoutte, P.M.; Humphrey, P.P.; Spedding, M.X. International Union of Pharmacology recommendations for nomenclature of new receptor subtypes. Pharmacol. Rev. 1996, 48, 1–2. [Google Scholar]
- Hoyer, D.; Bell, G.I.; Berelowitz, M.; Epelbaum, J.; Feniuk, W.; Humphrey, P.P.; O’Carroll, A.M.; Patel, Y.C.; Schonbrunn, A.; Taylor, J.E.; et al. Classification and nomenclature of somatostatin receptors. Trends Pharmacol. Sci. 1995, 16, 86–88. [Google Scholar] [CrossRef]
- Yamada, Y.; Post, S.R.; Wang, K.; Tager, H.S.; Bell, G.I.; Seino, S. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc. Natl. Acad. Sci. USA 1992, 89, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Schulz, S.; Händel, M.; Schreff, M.; Schmidt, H.; Höllt, V. Localization of five somatostatin receptors in the rat central nervous system using subtype-specific antibodies. J. Physiol. 2000, 94, 259–264. [Google Scholar] [CrossRef]
- Redmann, A.; Rasch, A.; Tourné, H.; Mann, K.; Petersenn, S. Characterization and transcriptional regulation of the human somatostatin receptor subtype 1 gene. Horm. Metab. Res. 2007, 39, 359–365. [Google Scholar] [CrossRef]
- Van Op den Bosch, J.; van Nassauw, L.; Lantermann, K.; van Marck, E.; Timmermans, J.P. Effect of intestinal inflammation on the cell-specific expression of somatostatin receptor subtypes in the murine ileum. Neurogastroenterol. Motil. 2007, 19, 596–606. [Google Scholar] [CrossRef]
- Lupp, A.; Nagel, F.; Schulz, S. Reevaluation of sst1 somatostatin receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-7. Regul. Pept. 2013, 183, 1–6. [Google Scholar] [CrossRef]
- Rohrer, L.; Raulf, F.; Bruns, C.; Buettner, R.; Hofstaedter, F.; Schüle, R. Cloning and characterization of a fourth human somatostatin receptor. Proc. Natl. Acad. Sci. USA 1993, 90, 4196–4200. [Google Scholar] [CrossRef]
- Fischer, T.; Doll, C.; Jacobs, S.; Kolodziej, A.; Stumm, R.; Schulz, S. Reassessment of sst2 somatostatin receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-1. J. Clin. Endocrinol. Metab. 2008, 93, 4519–4524. [Google Scholar] [CrossRef]
- Chin, S.O.; Ku, C.R.; Kim, B.J.; Kim, S.W.; Park, K.H.; Song, K.H.; Oh, S.; Yoon, H.K.; Lee, E.J.; Lee, J.M.; et al. Medical Treatment with Somatostatin Analogues in Acromegaly: Position Statement. Endocrinol. Metab. 2019, 34, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Reisine, T.; Law, S.F.; Ihara, Y.; Kubota, A.; Kagimoto, S.; Seino, M.; Seino, Y.; Bell, G.I.; Seino, S. Somatostatin receptors, an expanding gene family: Cloning and functional characterization of human SSTR3, a protein coupled to adenylyl cyclase. Mol. Endocrinol. 1992, 6, 2136–2142. [Google Scholar] [CrossRef] [PubMed]
- Lupp, A.; Nagel, F.; Doll, C.; Röcken, C.; Evert, M.; Mawrin, C.; Saeger, W.; Schulz, S. Reassessment of sst3 somatostatin receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-5. Neuroendocrinology 2012, 96, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Demchyshyn, L.L.; Srikant, C.B.; Sunahara, R.K.; Kent, G.; Seeman, P.; Van Tol, H.H.; Panetta, R.; Patel, Y.C.; Niznik, H.B. Cloning and expression of a human somatostatin-14-selective receptor variant (somatostatin receptor 4) located on chromosome 20. Mol. Pharmacol. 1993, 43, 894–901. [Google Scholar]
- Schreff, M.; Schulz, S.; Händel, M.; Keilhoff, G.; Braun, H.; Pereira, G.; Klutzny, M.; Schmidt, H.; Wolf, G.; Höllt, V. Distribution, targeting, and internalization of the sst4 somatostatin receptor in rat brain. J. Neurosci. 2000, 20, 3785–3797. [Google Scholar] [CrossRef] [PubMed]
- Bär, K.J.; Schurigt, U.; Scholze, A.; Segond Von Banchet, G.; Stopfel, N.; Bräuer, R.; Halbhuber, K.J.; Schaible, H.G. The expression and localization of somatostatin receptors in dorsal root ganglion neurons of normal and monoarthritic rats. Neuroscience 2004, 127, 197–206. [Google Scholar] [CrossRef]
- Taniyama, Y.; Suzuki, T.; Mikami, Y.; Moriya, T.; Satomi, S.; Sasano, H. Systemic distribution of somatostatin receptor subtypes in human: An immunohistochemical study. Endocr. J. 2005, 52, 605–611. [Google Scholar] [CrossRef]
- Panetta, R.; Greenwood, M.T.; Warszynska, A.; Demchyshyn, L.L.; Day, R.; Niznik, H.B.; Srikant, C.B.; Patel, Y.C. Molecular cloning, functional characterization, and chromosomal localization of a human somatostatin receptor (somatostatin receptor type 5) with preferential affinity for somatostatin-28. Mol. Pharmacol. 1994, 45, 417–427. [Google Scholar]
- Takeda, J.; Fernald, A.A.; Yamagata, K.; Le Beau, M.M.; Bell, G.I. Localization of human somatostatin receptor 5 gene (SSTR5) to chromosome band 16p13.3 by fluorescence in situ hybridization. Genomics 1995, 26, 638–639. [Google Scholar] [CrossRef] [PubMed]
- Stollberg, S.; Kämmerer, D.; Neubauer, E.; Schulz, S.; Simonitsch-Klupp, I.; Kiesewetter, B.; Raderer, M.; Lupp, A. Differential somatostatin and CXCR4 chemokine receptor expression in MALT-type lymphoma of gastric and extragastric origin. J. Cancer Res. Clin. Oncol. 2016, 142, 2239–2247. [Google Scholar] [CrossRef] [PubMed]
- Gadelha, M.R.; Wildemberg, L.E.; Bronstein, M.D.; Gatto, F.; Ferone, D. Somatostatin receptor ligands in the treatment of acromegaly. Pituitary 2017, 20, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Pintér, E.; Helyes, Z.; Szolcsányi, J. Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol. Ther. 2006, 112, 440–456. [Google Scholar] [CrossRef] [PubMed]
- Casini, G.; Catalani, E.; Dal Monte, M.; Bagnoli, P. Functional aspects of the somatostatinergic system in the retina and the potential therapeutic role of somatostatin in retinal disease. Histol. Histopathol. 2005, 20, 615–632. [Google Scholar] [CrossRef]
- Engin, E.; Stellbrink, J.; Treit, D.; Dickson, C.T. Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: Behavioral and neurophysiological evidence. Neuroscience 2008, 157, 666–676. [Google Scholar] [CrossRef]
- Engin, E.; Treit, D. Anxiolytic and antidepressant actions of somatostatin: The role of sst2 and sst3 receptors. Psychopharmacology 2009, 206, 281–289. [Google Scholar] [CrossRef]
- Vasilaki, A.; Thermos, K. Somatostatin analogues as therapeutics in retinal disease. Pharmacol. Ther. 2009, 122, 324–333. [Google Scholar] [CrossRef]
- Ben-Shlomo, A.; Melmed, S. Pituitary somatostatin receptor signaling. Trends Endocrinol. Metab. 2010, 21, 123–133. [Google Scholar] [CrossRef]
- Stengel, A.; Karasawa, H.; Taché, Y. The role of brain somatostatin receptor 2 in the regulation of feeding and drinking behavior. Horm. Behav. 2015, 73, 15–22. [Google Scholar] [CrossRef]
- Prévôt, T.D.; Gastambide, F.; Viollet, C.; Henkous, N.; Martel, G.; Epelbaum, J.; Béracochéa, D.; Guillou, J.L. Roles of Hippocampal Somatostatin Receptor Subtypes in Stress Response and Emotionality. Neuropsychopharmacology 2017, 42, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Patel, Y.C. Somatostatin and its receptor family. Front. Neuroendocrinol. 1999, 20, 157–198. [Google Scholar] [CrossRef] [PubMed]
- Mergler, S.; Singh, V.; Grötzinger, C.; Kaczmarek, P.; Wiedenmann, B.; Strowski, M.Z. Characterization of voltage operated R-type Ca2+ channels in modulating somatostatin receptor subtype 2- and 3-dependent inhibition of insulin secretion from INS-1 cells. Cell. Signal. 2008, 20, 2286–2295. [Google Scholar] [CrossRef] [PubMed]
- Eigler, T.; Ben-Shlomo, A.; Zhou, C.; Khalafi, R.; Ren, S.G.; Melmed, S. Constitutive somatostatin receptor subtype-3 signaling suppresses growth hormone synthesis. Mol. Endocrinol. 2014, 28, 554–564. [Google Scholar] [CrossRef]
- Yao, Q.; Liu, Q.; Xu, H.; Wu, Z.; Zhou, L.; Gu, Z.; Gong, P.; Shen, J. Upregulated Expression of SSTR3 is Involved in Neuronal Apoptosis after Intracerebral Hemorrhage in Adult Rats. Cell Mol. Neurobiol. 2017, 37, 1407–1416. [Google Scholar] [CrossRef]
- Santis, S.; Kastellakis, A.; Kotzamani, D.; Pitarokoili, K.; Kokona, D.; Thermos, K. Somatostatin increases rat locomotor activity by activating sst2 and sst4 receptors in the striatum and via glutamatergic involvement. Naunyn Schmiedebergs Arch. Pharmacol. 2009, 379, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Gastambide, F.; Lepousez, G.; Viollet, C.; Loudes, C.; Epelbaum, J.; Guillou, J.L. Cooperation between hippocampal somatostatin receptor subtypes 4 and 2: Functional relevance in interactive memory systems. Hippocampus 2010, 20, 745–757. [Google Scholar] [CrossRef]
- Martínez, V.; Rivier, J.; Coy, D.; Taché, Y. Intracisternal injection of somatostatin receptor 5-preferring agonists induces a vagal cholinergic stimulation of gastric emptying in rats. J. Pharmacol. Exp. Ther. 2000, 293, 1099–1105. [Google Scholar]
- Stengel, A.; Taché, Y.F. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response. Front. Neurosci. 2017, 11, 231. [Google Scholar] [CrossRef]
- Costanzi, S.; Siegel, J.; Tikhonova, I.G.; Jacobson, K.A. Rhodopsin and the others: A historical perspective on structural studies of G protein-coupled receptors. Curr. Pharm. Des. 2009, 15, 3994–4002. [Google Scholar] [CrossRef]
- Kobilka, B.K. G protein coupled receptor structure and activation. Biochim. Biophys. Acta (BBA)—Biomembr. 2007, 1768, 794–807. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xue, L.; Wu, Z.B. Structure and Function of Somatostatin and its Receptors in Endocrinology. Endocr. Rev. 2024, bnae022. [Google Scholar] [CrossRef] [PubMed]
- Vanetti, M.; Kouba, M.; Wang, X.; Vogt, G.; Höllt, V. Cloning and expression of a novel mouse somatostatin receptor (SSTR2B). FEBS Lett. 1992, 311, 290–294. [Google Scholar] [CrossRef]
- Durán-Prado, M.; Gahete, M.D.; Martínez-Fuentes, A.J.; Luque, R.M.; Quintero, A.; Webb, S.M.; Benito-López, P.; Leal, A.; Schulz, S.; Gracia-Navarro, F.; et al. Identification and characterization of two novel truncated but functional isoforms of the somatostatin receptor subtype 5 differentially present in pituitary tumors. J. Clin. Endocrinol. Metab. 2009, 94, 2634–2643. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, M.T.; Robertson, L.A.; Patel, Y.C. Cloning of the gene encoding human somatostatin receptor 2: Sequence analysis of the 5′-flanking promoter region. Gene 1995, 159, 291–292. [Google Scholar] [CrossRef]
- Kiran, K.; Ansari, S.A.; Srivastava, R.; Lodhi, N.; Chaturvedi, C.P.; Sawant, S.V.; Tuli, R. The TATA-box sequence in the basal promoter contributes to determining light-dependent gene expression in plants. Plant Physiol. 2006, 142, 364–376. [Google Scholar] [CrossRef]
- Wu, W.-S.; Lai, F.-J. Functional redundancy of transcription factors explains why most binding targets of a transcription factor are not affected when the transcription factor is knocked out. BMC Syst. Biol. 2015, 9, S2. [Google Scholar] [CrossRef]
- Carruthers, A.M.; Warner, A.J.; Michel, A.D.; Feniuk, W.; Humphrey, P.P. Activation of adenylate cyclase by human recombinant sst5 receptors expressed in CHO-K1 cells and involvement of Galphas proteins. Br. J. Pharmacol. 1999, 126, 1221–1229. [Google Scholar] [CrossRef]
- Gromada, J.; Høy, M.; Buschard, K.; Salehi, A.; Rorsman, P. Somatostatin inhibits exocytosis in rat pancreatic alpha-cells by Gi2-dependent activation of calcineurin and depriming of secretory granules. J. Physiol. 2001, 535, 519–532. [Google Scholar] [CrossRef]
- Pan, M.G.; Florio, T.; Stork, P.J. G protein activation of a hormone-stimulated phosphatase in human tumor cells. Science 1992, 256, 1215–1217. [Google Scholar] [CrossRef]
- Csaba, Z.; Dournaud, P. Cellular biology of somatostatin receptors. Neuropeptides 2001, 35, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Durán-Prado, M.; Malagón, M.M.; Gracia-Navarro, F.; Castaño, J.P. Dimerization of G protein-coupled receptors: New avenues for somatostatin receptor signalling, control and functioning. Mol. Cell. Endocrinol. 2008, 286, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Böhm, S.K.; Grady, E.F.; Bunnett, N.W. Regulatory mechanisms that modulate signalling by G-protein-coupled receptors. Biochem. J. 1997, 322 Pt 1, 1–18. [Google Scholar] [CrossRef]
- Christofides, K.; Menon, R.; Jones, C.E. Endocytosis of G Protein-Coupled Receptors and Their Ligands: Is There a Role in Metal Trafficking? Cell Biochem. Biophys. 2018, 76, 329–337. [Google Scholar] [CrossRef]
- Fani, M.; Nicolas, G.P.; Wild, D. Somatostatin Receptor Antagonists for Imaging and Therapy. J. Nucl. Med. 2017, 58, 61s–66s. [Google Scholar] [CrossRef] [PubMed]
- Csaba, Z.; Dournaud, P. Internalization of somatostatin receptors in brain and periphery. Progress Mol. Biol. Transl. Sci. 2023, 196, 43–57. [Google Scholar] [CrossRef]
- Vasilaki, A.; Papasava, D.; Hoyer, D.; Thermos, K. The somatostatin receptor (sst1) modulates the release of somatostatin in the nucleus accumbens of the rat. Neuropharmacology 2004, 47, 612–618. [Google Scholar] [CrossRef]
- Tannenbaum, G.S.; Zhang, W.H.; Lapointe, M.; Zeitler, P.; Beaudet, A. Growth hormone-releasing hormone neurons in the arcuate nucleus express both Sst1 and Sst2 somatostatin receptor genes. Endocrinology 1998, 139, 1450–1453. [Google Scholar] [CrossRef]
- Lanneau, C.; Bluet-Pajot, M.T.; Zizzari, P.; Csaba, Z.; Dournaud, P.; Helboe, L.; Hoyer, D.; Pellegrini, E.; Tannenbaum, G.S.; Epelbaum, J.; et al. Involvement of the Sst1 somatostatin receptor subtype in the intrahypothalamic neuronal network regulating growth hormone secretion: An in vitro and in vivo antisense study. Endocrinology 2000, 141, 967–979. [Google Scholar] [CrossRef]
- Thermos, K.; Bagnoli, P.; Epelbaum, J.; Hoyer, D. The somatostatin sst1 receptor: An autoreceptor for somatostatin in brain and retina? Pharmacol. Ther. 2006, 110, 455–464. [Google Scholar] [CrossRef]
- Momiyama, T.; Zaborszky, L. Somatostatin presynaptically inhibits both GABA and glutamate release onto rat basal forebrain cholinergic neurons. J. Neurophysiol. 2006, 96, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Malcangio, M. GDNF and somatostatin in sensory neurones. Curr. Opin. Pharmacol. 2003, 3, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Imhof, A.K.; Glück, L.; Gajda, M.; Lupp, A.; Bräuer, R.; Schaible, H.G.; Schulz, S. Differential antiinflammatory and antinociceptive effects of the somatostatin analogs octreotide and pasireotide in a mouse model of immune-mediated arthritis. Arthritis Rheum. 2011, 63, 2352–2362. [Google Scholar] [CrossRef]
- Portela-Gomes, G.M.; Stridsberg, M.; Grimelius, L.; Oberg, K.; Janson, E.T. Expression of the five different somatostatin receptor subtypes in endocrine cells of the pancreas. Appl. Immunohistochem. Mol. Morphol. 2000, 8, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.P.; Norman, M.A.; Yang, J.; Cheung, A.; Moldovan, S.; Demayo, F.J.; Brunicardi, F.C. Double-gene ablation of SSTR1 and SSTR5 results in hyperinsulinemia and improved glucose tolerance in mice. Surgery 2004, 136, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.A. N-type Ca2+-channels in murine pancreatic beta-cells are inhibited by an exclusive coupling with somatostatin receptor subtype 1. Endocrinology 2009, 150, 741–748. [Google Scholar] [CrossRef]
- Garcia, P.D.; Myers, R.M. Pituitary cell line GH3 expresses two somatostatin receptor subtypes that inhibit adenylyl cyclase: Functional expression of rat somatostatin receptor subtypes 1 and 2 in human embryonic kidney 293 cells. Mol. Pharmacol. 1994, 45, 402–409. [Google Scholar]
- Hadcock, J.R.; Strnad, J.; Eppler, C.M. Rat somatostatin receptor type 1 couples to G proteins and inhibition of cyclic AMP accumulation. Mol. Pharmacol. 1994, 45, 410–416. [Google Scholar]
- Hershberger, R.E.; Newman, B.L.; Florio, T.; Bunzow, J.; Civelli, O.; Li, X.J.; Forte, M.; Stork, P.J. The somatostatin receptors SSTR1 and SSTR2 are coupled to inhibition of adenylyl cyclase in Chinese hamster ovary cells via pertussis toxin-sensitive pathways. Endocrinology 1994, 134, 1277–1285. [Google Scholar] [CrossRef]
- Hou, C.; Gilbert, R.L.; Barber, D.L. Subtype-specific signaling mechanisms of somatostatin receptors SSTR1 and SSTR2. J. Biol. Chem. 1994, 269, 10357–10362. [Google Scholar] [CrossRef]
- Patel, Y.C.; Srikant, C.B. Subtype selectivity of peptide analogs for all five cloned human somatostatin receptors (hsstr 1–5). Endocrinology 1994, 135, 2814–2817. [Google Scholar] [CrossRef]
- Chen, L.; Fitzpatrick, V.D.; Vandlen, R.L.; Tashjian, A.H., Jr. Both overlapping and distinct signaling pathways for somatostatin receptor subtypes SSTR1 and SSTR2 in pituitary cells. J. Biol. Chem. 1997, 272, 18666–18672. [Google Scholar] [CrossRef] [PubMed]
- Cervia, D.; Fiorini, S.; Pavan, B.; Biondi, C.; Bagnoli, P. Somatostatin (SRIF) modulates distinct signaling pathways in rat pituitary tumor cells; negative coupling of SRIF receptor subtypes 1 and 2 to arachidonic acid release. Naunyn Schmiedebergs Arch. Pharmacol. 2002, 365, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Buchan, A.M.; Lin, C.Y.; Choi, J.; Barber, D.L. Somatostatin, acting at receptor subtype 1, inhibits Rho activity, the assembly of actin stress fibers, and cell migration. J. Biol. Chem. 2002, 277, 28431–28438. [Google Scholar] [CrossRef] [PubMed]
- Duluc, C.; Moatassim-Billah, S.; Chalabi-Dchar, M.; Perraud, A.; Samain, R.; Breibach, F.; Gayral, M.; Cordelier, P.; Delisle, M.B.; Bousquet-Dubouch, M.P.; et al. Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance. EMBO Mol. Med. 2015, 7, 735–753. [Google Scholar] [CrossRef]
- Florio, T.; Yao, H.; Carey, K.D.; Dillon, T.J.; Stork, P.J. Somatostatin activation of mitogen-activated protein kinase via somatostatin receptor 1 (SSTR1). Mol. Endocrinol. 1999, 13, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Waser, B.; Liu, Q.; Laissue, J.A.; Schonbrunn, A. Subcellular distribution of somatostatin sst2A receptors in human tumors of the nervous and neuroendocrine systems: Membranous versus intracellular location. J. Clin. Endocrinol. Metab. 2000, 85, 3882–3891. [Google Scholar] [CrossRef]
- Gugger, M.; Waser, B.; Kappeler, A.; Schonbrunn, A.; Reubi, J.C. Cellular detection of sst2A receptors in human gastrointestinal tissue. Gut 2004, 53, 1431–1436. [Google Scholar] [CrossRef]
- Peineau, S.; Guimiot, F.; Csaba, Z.; Jacquier, S.; Fafouri, A.; Schwendimann, L.; de Roux, N.; Schulz, S.; Gressens, P.; Auvin, S.; et al. Somatostatin receptors type 2 and 5 expression and localization during human pituitary development. Endocrinology 2014, 155, 33–39. [Google Scholar] [CrossRef]
- Schindler, M.; Holloway, S.; Humphrey, P.P.; Waldvogel, H.; Faull, R.L.; Berger, W.; Emson, P.C. Localization of the somatostatin sst2(a) receptor in human cerebral cortex, hippocampus and cerebellum. Neuroreport 1998, 9, 521–525. [Google Scholar] [CrossRef]
- Csaba, Z.; Pirker, S.; Lelouvier, B.; Simon, A.; Videau, C.; Epelbaum, J.; Czech, T.; Baumgartner, C.; Sperk, G.; Dournaud, P. Somatostatin receptor type 2 undergoes plastic changes in the human epileptic dentate gyrus. J. Neuropathol. Exp. Neurol. 2005, 64, 956–969. [Google Scholar] [CrossRef]
- Shi, T.J.; Xiang, Q.; Zhang, M.D.; Barde, S.; Kai-Larsen, Y.; Fried, K.; Josephson, A.; Glück, L.; Deyev, S.M.; Zvyagin, A.V.; et al. Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: Expression, trafficking and possible role in pain. Mol. Pain. 2014, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Lupp, A.; Hunder, A.; Petrich, A.; Nagel, F.; Doll, C.; Schulz, S. Reassessment of sst(5) somatostatin receptor expression in normal and neoplastic human tissues using the novel rabbit monoclonal antibody UMB-4. Neuroendocrinology 2011, 94, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Unger, N.; Ueberberg, B.; Schulz, S.; Saeger, W.; Mann, K.; Petersenn, S. Differential expression of somatostatin receptor subtype 1–5 proteins in numerous human normal tissues. Exp. Clin. Endocrinol. Diabetes 2012, 120, 482–489. [Google Scholar] [CrossRef]
- Karasawa, H.; Yakabi, S.; Wang, L.; Stengel, A.; Rivier, J.; Taché, Y. Brain somatostatin receptor 2 mediates the dipsogenic effect of central somatostatin and cortistatin in rats: Role in drinking behavior. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R793–R801. [Google Scholar] [CrossRef] [PubMed]
- Law, S.F.; Yasuda, K.; Bell, G.I.; Reisine, T. Gi alpha 3 and G(o) alpha selectively associate with the cloned somatostatin receptor subtype SSTR2. J. Biol. Chem. 1993, 268, 10721–10727. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Kwon, O.; Kim, J.; Kim, E.-K.; Park, H.K.; Lee, J.E.; Kim, K.L.; Choi, J.W.; Lim, S.; Seok, H.; et al. PDZ Domain-containing 1 (PDZK1) Protein Regulates Phospholipase C-β3 (PLC-β3)-specific Activation of Somatostatin by Forming a Ternary Complex with PLC-β3 and Somatostatin Receptors*. J. Biol. Chem. 2012, 287, 21012–21024. [Google Scholar] [CrossRef]
- Buscail, L.; Delesque, N.; Estève, J.P.; Saint-Laurent, N.; Prats, H.; Clerc, P.; Robberecht, P.; Bell, G.I.; Liebow, C.; Schally, A.V.; et al. Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: Mediation by human somatostatin receptor subtypes SSTR1 and SSTR2. Proc. Natl. Acad. Sci. USA 1994, 91, 2315–2319. [Google Scholar] [CrossRef]
- Reardon, D.B.; Dent, P.; Wood, S.L.; Kong, T.; Sturgill, T.W. Activation in vitro of somatostatin receptor subtypes 2, 3, or 4 stimulates protein tyrosine phosphatase activity in membranes from transfected Ras-transformed NIH 3T3 cells: Coexpression with catalytically inactive SHP-2 blocks responsiveness. Mol. Endocrinol. 1997, 11, 1062–1069. [Google Scholar] [CrossRef]
- Pagès, P.; Benali, N.; Saint-Laurent, N.; Estève, J.P.; Schally, A.V.; Tkaczuk, J.; Vaysse, N.; Susini, C.; Buscail, L. sst2 somatostatin receptor mediates cell cycle arrest and induction of p27(Kip1). Evidence for the role of SHP-1. J. Biol. Chem. 1999, 274, 15186–15193. [Google Scholar] [CrossRef]
- Theodoropoulou, M.; Zhang, J.; Laupheimer, S.; Paez-Pereda, M.; Erneux, C.; Florio, T.; Pagotto, U.; Stalla, G.K. Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression. Cancer Res. 2006, 66, 1576–1582. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Redman, P.; Ghose, D.; Hwang, H.; Liu, Y.; Ren, X.; Ding, L.J.; Liu, M.; Jones, K.J.; Xu, W. Shank Proteins Differentially Regulate Synaptic Transmission. eNeuro 2017, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pola, S.; Cattaneo, M.G.; Vicentini, L.M. Anti-migratory and anti-invasive effect of somatostatin in human neuroblastoma cells: Involvement of Rac and MAP kinase activity. J. Biol. Chem. 2003, 278, 40601–40606. [Google Scholar] [CrossRef]
- Torrisani, J.; Hanoun, N.; Laurell, H.; Lopez, F.; Maoret, J.J.; Souque, A.; Susini, C.; Cordelier, P.; Buscail, L. Identification of an upstream promoter of the human somatostatin receptor, hSSTR2, which is controlled by epigenetic modifications. Endocrinology 2008, 149, 3137–3147. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Chen, X.; Li, Q.; Zhou, C.; Li, J.; Ye, H.; Duan, S. SSTR2 promoter hypermethylation is associated with the risk and progression of laryngeal squamous cell carcinoma in males. Diagn. Pathol. 2016, 11, 10. [Google Scholar] [CrossRef]
- Lehmann, A.; Kliewer, A.; Schütz, D.; Nagel, F.; Stumm, R.; Schulz, S. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor. Mol. Cell Endocrinol. 2014, 387, 44–51. [Google Scholar] [CrossRef]
- Lesche, S.; Lehmann, D.; Nagel, F.; Schmid, H.A.; Schulz, S. Differential Effects of Octreotide and Pasireotide on Somatostatin Receptor Internalization and Trafficking in Vitro. J. Clin. Endocrinol. Metab. 2009, 94, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Günther, T.; Culler, M.; Schulz, S. Research Resource: Real-Time Analysis of Somatostatin and Dopamine Receptor Signaling in Pituitary Cells Using a Fluorescence-Based Membrane Potential Assay. Mol. Endocrinol. 2016, 30, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Patel, Y.C.; Srikant, C.B. Subtype-selective induction of wild-type p53 and apoptosis, but not cell cycle arrest, by human somatostatin receptor 3. Mol. Endocrinol. 1996, 10, 1688–1696. [Google Scholar] [CrossRef]
- Tulipano, G.; Stumm, R.; Pfeiffer, M.; Kreienkamp, H.J.; Höllt, V.; Schulz, S. Differential beta-arrestin trafficking and endosomal sorting of somatostatin receptor subtypes. J. Biol. Chem. 2004, 279, 21374–21382. [Google Scholar] [CrossRef]
- Einstein, E.B.; Patterson, C.A.; Hon, B.J.; Regan, K.A.; Reddi, J.; Melnikoff, D.E.; Mateer, M.J.; Schulz, S.; Johnson, B.N.; Tallent, M.K. Somatostatin signaling in neuronal cilia is critical for object recognition memory. J. Neurosci. 2010, 30, 4306–4314. [Google Scholar] [CrossRef]
- Aourz, N.; Portelli, J.; Coppens, J.; De Bundel, D.; Di Giovanni, G.; Van Eeckhaut, A.; Michotte, Y.; Smolders, I. Cortistatin-14 mediates its anticonvulsant effects via sst2 and sst3 but not ghrelin receptors. CNS Neurosci. Ther. 2014, 20, 662–670. [Google Scholar] [CrossRef]
- Farrell, S.R.; Raymond, I.D.; Foote, M.; Brecha, N.C.; Barnes, S. Modulation of voltage-gated ion channels in rat retinal ganglion cells mediated by somatostatin receptor subtype 4. J. Neurophysiol. 2010, 104, 1347–1354. [Google Scholar] [CrossRef]
- Fehlmann, D.; Langenegger, D.; Schuepbach, E.; Siehler, S.; Feuerbach, D.; Hoyer, D. Distribution and characterisation of somatostatin receptor mRNA and binding sites in the brain and periphery. J. Physiol. 2000, 94, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsen, E.; Carlsson, C.; Tiensuu Janson, E.; Sandler, S.; Stridsberg, M. Somatostatin receptor 1–5; expression profiles during rat development. Ups. J. Med. Sci. 2015, 120, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Panetta, R.; Patel, Y.C. Expression of mRNA for all five human somatostatin receptors (hSSTR1–5) in pituitary tumors. Life Sci. 1995, 56, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Waser, B.; Schaer, J.C.; Laissue, J.A. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med. 2001, 28, 836–846. [Google Scholar] [CrossRef]
- Raynor, K.; Lucki, I.; Reisine, T. Somatostatin receptors in the nucleus accumbens selectively mediate the stimulatory effect of somatostatin on locomotor activity in rats. J. Pharmacol. Exp. Ther. 1993, 265, 67–73. [Google Scholar] [PubMed]
- Scheich, B.; Gaszner, B.; Kormos, V.; László, K.; Ádori, C.; Borbély, É.; Hajna, Z.; Tékus, V.; Bölcskei, K.; Ábrahám, I.; et al. Somatostatin receptor subtype 4 activation is involved in anxiety and depression-like behavior in mouse models. Neuropharmacology 2016, 101, 204–215. [Google Scholar] [CrossRef]
- Scheich, B.; Csekő, K.; Borbély, É.; Ábrahám, I.; Csernus, V.; Gaszner, B.; Helyes, Z. Higher susceptibility of somatostatin 4 receptor gene-deleted mice to chronic stress-induced behavioral and neuroendocrine alterations. Neuroscience 2017, 346, 320–336. [Google Scholar] [CrossRef]
- Gorham, L.; Just, S.; Doods, H. Somatostatin 4 receptor activation modulates G-protein coupled inward rectifying potassium channels and voltage stimulated calcium signals in dorsal root ganglion neurons. Eur. J. Pharmacol. 2014, 736, 101–106. [Google Scholar] [CrossRef]
- Møller, L.N.; Stidsen, C.E.; Hartmann, B.; Holst, J.J. Somatostatin receptors. Biochim. Biophys. Acta 2003, 1616, 1–84. [Google Scholar] [CrossRef]
- Peverelli, E.; Lania, A.G.; Mantovani, G.; Beck-Peccoz, P.; Spada, A. Characterization of intracellular signaling mediated by human somatostatin receptor 5: Role of the DRY motif and the third intracellular loop. Endocrinology 2009, 150, 3169–3176. [Google Scholar] [CrossRef]
- Peverelli, E.; Busnelli, M.; Vitali, E.; Giardino, E.; Galés, C.; Lania, A.G.; Beck-Peccoz, P.; Chini, B.; Mantovani, G.; Spada, A. Specific roles of G(i) protein family members revealed by dissecting SST5 coupling in human pituitary cells. J. Cell Sci. 2013, 126, 638–644. [Google Scholar] [CrossRef] [PubMed]
- van der Hoek, J.; Lamberts, S.W.; Hofland, L.J. The somatostatin receptor subtype 5 in neuroendocrine tumours. Expert Opin. Investig. Drugs 2010, 19, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, G.F.; Feniuk, W.; Humphrey, P.P. Characterization of human recombinant somatostatin sst5 receptors mediating activation of phosphoinositide metabolism. Br. J. Pharmacol. 1997, 121, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, G.F.; Feniuk, W.; Humphrey, P.P. Homologous and heterologous desensitisation of somatostatin-induced increases in intracellular Ca2+ and inositol 1,4,5-trisphosphate in CHO-K1 cells expressing human recombinant somatostatin sst5 receptors. Eur. J. Pharmacol. 1997, 340, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Tallent, M.; Liapakis, G.; O’Carroll, A.M.; Lolait, S.J.; Dichter, M.; Reisine, T. Somatostatin receptor subtypes SSTR2 and SSTR5 couple negatively to an L-type Ca2+ current in the pituitary cell line AtT-20. Neuroscience 1996, 71, 1073–1081. [Google Scholar] [CrossRef]
- Cordelier, P.; Estève, J.-P.; Bousquet, C.; Delesque, N.; O’Carroll, A.-M.; Schally, A.V.; Vaysse, N.; Susini, C.; Buscail, L. Characterization of the antiproliferative signal mediated by the somatostatin receptor subtype sst5. Proc. Natl. Acad. Sci. USA 1997, 94, 9343–9348. [Google Scholar] [CrossRef]
- Ballarè, E.; Persani, L.; Lania, A.G.; Filopanti, M.; Giammona, E.; Corbetta, S.; Mantovani, S.; Arosio, M.; Beck-Peccoz, P.; Faglia, G.; et al. Mutation of somatostatin receptor type 5 in an acromegalic patient resistant to somatostatin analog treatment. J. Clin. Endocrinol. Metab. 2001, 86, 3809–3814. [Google Scholar] [CrossRef]
- Komatsuzaki, K.; Terashita, K.; Kinane, T.B.; Nishimoto, I. Somatostatin type V receptor activates c-Jun N-terminal kinases via Galpha(12) family G proteins. Biochem. Biophys. Res. Commun. 2001, 289, 1211–1217. [Google Scholar] [CrossRef]
- Peverelli, E.; Mantovani, G.; Calebiro, D.; Doni, A.; Bondioni, S.; Lania, A.; Beck-Peccoz, P.; Spada, A. The third intracellular loop of the human somatostatin receptor 5 is crucial for arrestin binding and receptor internalization after somatostatin stimulation. Mol. Endocrinol. 2008, 22, 676–688. [Google Scholar] [CrossRef]
- Ben-Shlomo, A.; Pichurin, O.; Barshop, N.J.; Wawrowsky, K.A.; Taylor, J.; Culler, M.D.; Chesnokova, V.; Liu, N.A.; Melmed, S. Selective regulation of somatostatin receptor subtype signaling: Evidence for constitutive receptor activation. Mol. Endocrinol. 2007, 21, 2565–2578. [Google Scholar] [CrossRef]
- Ben-Shlomo, A.; Zhou, C.; Pichurin, O.; Chesnokova, V.; Liu, N.A.; Culler, M.D.; Melmed, S. Constitutive somatostatin receptor activity determines tonic pituitary cell response. Mol. Endocrinol. 2009, 23, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Riaz, H.; Liang, A.; Khan, M.K.; Dong, P.; Han, L.; Shahzad, M.; Chong, Z.; Ahmad, S.; Hua, G.; Yang, L. Somatostatin and its receptors: Functional regulation in the development of mice Sertoli cells. J. Steroid Biochem. Mol. Biol. 2013, 138, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Duran-Prado, M.; Morell, M.; Delgado-Maroto, V.; Castaño, J.P.; Aneiros-Fernandez, J.; de Lecea, L.; Culler, M.D.; Hernandez-Cortes, P.; O’Valle, F.; Delgado, M. Cortistatin inhibits migration and proliferation of human vascular smooth muscle cells and decreases neointimal formation on carotid artery ligation. Circ. Res. 2013, 112, 1444–1455. [Google Scholar] [CrossRef]
- Dimitrakopoulou-Strauss, A.; Georgoulias, V.; Eisenhut, M.; Herth, F.; Koukouraki, S.; Mäcke, H.R.; Haberkorn, U.; Strauss, L.G. Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using 68Ga-DOTATOC PET and comparison with 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Muscarella, L.A.; D’Alessandro, V.; la Torre, A.; Copetti, M.; De Cata, A.; Parrella, P.; Sperandeo, M.; Pellegrini, F.; Frusciante, V.; Maiello, E.; et al. Gene expression of somatostatin receptor subtypes SSTR2a, SSTR3 and SSTR5 in peripheral blood of neuroendocrine lung cancer affected patients. Cell. Oncol. 2011, 34, 435–441. [Google Scholar] [CrossRef]
- Klomp, M.J.; Refardt, J.; van Koetsveld, P.M.; Campana, C.; Dalm, S.U.; Dogan, F.; van Velthuysen, M.F.; Feelders, R.A.; de Herder, W.W.; Hofland, J.; et al. Epigenetic regulation of SST(2) expression in small intestinal neuroendocrine tumors. Front. Endocrinol. 2023, 14, 1184436. [Google Scholar] [CrossRef]
- Chang, T.K.; Su, W.C.; Chen, Y.C.; Chen, P.J.; Li, C.C.; Yeh, Y.S.; Huang, C.W.; Tsai, H.L.; Wang, J.Y. Unknown-primary neuroendocrine neoplasms diagnosed by short-acting somatostatin test: Case series in one institution. Exp. Ther. Med. 2023, 25, 9. [Google Scholar] [CrossRef]
- Burns, L.; Naimi, B.; Ronan, M.; Xu, H.; Weber, H.C. Report of a Novel Molecular Profile in Malignant Insulinoma. J. Clin. Med. 2023, 12, 1280. [Google Scholar] [CrossRef] [PubMed]
- Waser, B.; Cescato, R.; Liu, Q.; Kao, Y.J.; Körner, M.; Christ, E.; Schonbrunn, A.; Reubi, J.C. Phosphorylation of sst2 receptors in neuroendocrine tumors after octreotide treatment of patients. Am. J. Pathol. 2012, 180, 1942–1949. [Google Scholar] [CrossRef] [PubMed]
- Righi, L.; Volante, M.; Tavaglione, V.; Billè, A.; Daniele, L.; Angusti, T.; Inzani, F.; Pelosi, G.; Rindi, G.; Papotti, M. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: A clinicopathologic and immunohistochemical study of 218 ‘clinically aggressive’ cases. Ann. Oncol. 2010, 21, 548–555. [Google Scholar] [CrossRef]
- Lapa, C.; Hänscheid, H.; Wild, V.; Pelzer, T.; Schirbel, A.; Werner, R.A.; Droll, S.; Herrmann, K.; Buck, A.K.; Lückerath, K. Somatostatin receptor expression in small cell lung cancer as a prognostic marker and a target for peptide receptor radionuclide therapy. Oncotarget 2016, 7, 20033–20040. [Google Scholar] [CrossRef]
- Kim, C.; Liu, S.V.; Subramaniam, D.S.; Torres, T.; Loda, M.; Esposito, G.; Giaccone, G. Phase I study of the (177)Lu-DOTA(0)-Tyr(3)-Octreotate (lutathera) in combination with nivolumab in patients with neuroendocrine tumors of the lung. J. Immunother. Cancer 2020, 8, e000980. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, J.; Kim, Y.-i.; Yang, D.-H.; Yoo, C.; Park, I.J.; Ryoo, B.-Y.; Ryu, J.-S.; Hong, S.-M. Somatostatin receptor 2 (SSTR2) expression is associated with better clinical outcome and prognosis in rectal neuroendocrine tumors. Sci. Rep. 2024, 14, 4047. [Google Scholar] [CrossRef]
- Kaemmerer, D.; Träger, T.; Hoffmeister, M.; Sipos, B.; Hommann, M.; Sänger, J.; Schulz, S.; Lupp, A. Inverse expression of somatostatin and CXCR4 chemokine receptors in gastroenteropancreatic neuroendocrine neoplasms of different malignancy. Oncotarget 2015, 6, 27566–27579. [Google Scholar] [CrossRef]
- Qian, Z.R.; Li, T.; Ter-Minassian, M.; Yang, J.; Chan, J.A.; Brais, L.K.; Masugi, Y.; Thiaglingam, A.; Brooks, N.; Nishihara, R. Association between somatostatin receptor expression and clinical outcomes in neuroendocrine tumors. Pancreas 2016, 45, 1386. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, G.; Nakanishi, Y.; Watanabe, N.; Honma, T.; Obana, Y.; Seki, T.; Ohni, S.; Nemoto, N. Expression of Somatostatin Receptor (SSTR) Subtypes (SSTR-1, 2A, 3, 4 and 5) in Neuroendocrine Tumors Using Real-time RT-PCR Method and Immunohistochemistry. Acta Histochem. Cytochem. 2012, 45, 167–176. [Google Scholar] [CrossRef]
- Schulz, S.; Pauli, S.U.; Schulz, S.; Händel, M.; Dietzmann, K.; Firsching, R.; Höllt, V. Immunohistochemical determination of five somatostatin receptors in meningioma reveals frequent overexpression of somatostatin receptor subtype sst2A. Clin. Cancer Res. 2000, 6, 1865–1874. [Google Scholar]
- Agopiantz, M.; Carnot, M.; Denis, C.; Martin, E.; Gauchotte, G. Hormone Receptor Expression in Meningiomas: A Systematic Review. Cancers 2023, 15, 980. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, Y.; Wang, Y.; Liu, L.; Lou, J.; Deng, Y.; Zhao, P.; Shao, A. Clinical Significance of Somatostatin Receptor (SSTR) 2 in Meningioma. Front. Oncol. 2020, 10, 1633. [Google Scholar] [CrossRef] [PubMed]
- Leijon, H.; Remes, S.; Hagström, J.; Louhimo, J.; Mäenpää, H.; Schalin-Jäntti, C.; Miettinen, M.; Haglund, C.; Arola, J. Variable somatostatin receptor subtype expression in 151 primary pheochromocytomas and paragangliomas. Hum. Pathol. 2019, 86, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Luo, Y.; Li, M.; Luo, R.; Chen, L.; Gao, X.; Jiang, J.; Liu, Y.; Lu, Z.; Zhang, J. Somatostatin receptor subtype 2A expression and genetics in 184 paragangliomas: A single center retrospective observational study. Endocrine 2024, 85, 398–406. [Google Scholar] [CrossRef]
- Parvizi, N.; Alsafi, A.; Vergine, M.; Ramachandran, R.; Martin, N.; Palazzo, F.; Pinato, D.; Sharma, R.; Meeran, K.; Dina, R. Expression of Somatostatin Receptors in Phaeochromocytoma and Paragangliomas. In Proceedings of the Endocrine Abstracts; Bioscientifica: Bristol, UK, 2012. [Google Scholar]
- Kaemmerer, D.; Sänger, J.; Arsenic, R.; D’Haese, J.G.; Neumann, J.; Schmitt-Graeff, A.; Wirtz, R.M.; Schulz, S.; Lupp, A. Evaluation of somatostatin, CXCR4 chemokine and endothelin A receptor expression in a large set of paragangliomas. Oncotarget 2017, 8, 89958–89969. [Google Scholar] [CrossRef]
- Hertelendi, M.; Belguenani, O.; Cherfi, A.; Folitar, I.; Kollar, G.; Polack, B.D. Efficacy and Safety of [177Lu]Lu-DOTA-TATE in Adults with Inoperable or Metastatic Somatostatin Receptor-Positive Pheochromocytomas/Paragangliomas, Bronchial and Unknown Origin Neuroendocrine Tumors, and Medullary Thyroid Carcinoma: A Systematic Literature Review. Biomedicines 2023, 11, 1024. [Google Scholar] [CrossRef] [PubMed]
- Adelman, D.T.; Liebert, K.J.; Nachtigall, L.B.; Lamerson, M.; Bakker, B. Acromegaly: The disease, its impact on patients, and managing the burden of long-term treatment. Int. J. Gen. Med. 2013, 6, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Gatto, F.; Biermasz, N.R.; Feelders, R.A.; Kros, J.M.; Dogan, F.; van der Lely, A.J.; Neggers, S.J.; Lamberts, S.W.; Pereira, A.M.; Ferone, D.; et al. Low beta-arrestin expression correlates with the responsiveness to long-term somatostatin analog treatment in acromegaly. Eur. J. Endocrinol. 2016, 174, 651–662. [Google Scholar] [CrossRef]
- Ferone, D.; de Herder, W.W.; Pivonello, R.; Kros, J.M.; van Koetsveld, P.M.; de Jong, T.; Minuto, F.; Colao, A.; Lamberts, S.W.; Hofland, L.J. Correlation of in vitro and in vivo somatotropic adenoma responsiveness to somatostatin analogs and dopamine agonists with immunohistochemical evaluation of somatostatin and dopamine receptors and electron microscopy. J. Clin. Endocrinol. Metab. 2008, 93, 1412–1417. [Google Scholar] [CrossRef]
- Gatto, F.; Feelders, R.A.; van der Pas, R.; Kros, J.M.; Waaijers, M.; Sprij-Mooij, D.; Neggers, S.J.; van der Lelij, A.J.; Minuto, F.; Lamberts, S.W.; et al. Immunoreactivity score using an anti-sst2A receptor monoclonal antibody strongly predicts the biochemical response to adjuvant treatment with somatostatin analogs in acromegaly. J. Clin. Endocrinol. Metab. 2013, 98, E66–E71. [Google Scholar] [CrossRef]
- Wildemberg, L.E.; Neto, L.V.; Costa, D.F.; Nasciuti, L.E.; Takiya, C.M.; Alves, L.M.; Rebora, A.; Minuto, F.; Ferone, D.; Gadelha, M.R. Low somatostatin receptor subtype 2, but not dopamine receptor subtype 2 expression predicts the lack of biochemical response of somatotropinomas to treatment with somatostatin analogs. J. Endocrinol. Investig. 2013, 36, 38–43. [Google Scholar] [CrossRef]
- Obari, A.; Sano, T.; Ohyama, K.; Kudo, E.; Qian, Z.R.; Yoneda, A.; Rayhan, N.; Mustafizur Rahman, M.; Yamada, S. Clinicopathological features of growth hormone-producing pituitary adenomas: Difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr. Pathol. 2008, 19, 82–91. [Google Scholar] [CrossRef]
- Mayr, B.; Buslei, R.; Theodoropoulou, M.; Stalla, G.K.; Buchfelder, M.; Schöfl, C. Molecular and functional properties of densely and sparsely granulated GH-producing pituitary adenomas. Eur. J. Endocrinol. 2013, 169, 391–400. [Google Scholar] [CrossRef]
- Kato, M.; Inoshita, N.; Sugiyama, T.; Tani, Y.; Shichiri, M.; Sano, T.; Yamada, S.; Hirata, Y. Differential expression of genes related to drug responsiveness between sparsely and densely granulated somatotroph adenomas. Endocr. J. 2012, 59, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Brzana, J.; Yedinak, C.G.; Gultekin, S.H.; Delashaw, J.B.; Fleseriu, M. Growth hormone granulation pattern and somatostatin receptor subtype 2A correlate with postoperative somatostatin receptor ligand response in acromegaly: A large single center experience. Pituitary 2013, 16, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Montella, L.; Ottaviano, M.; Morra, R.; Pietroluongo, E.; De Placido, P.; Tortora, M.; Sorrentino, C.; Facchini, G.; De Placido, S.; Giuliano, M.; et al. The Never-Ending History of Octreotide in Thymic Tumors: A Vintage or A Contemporary Drug? Cancers 2022, 14, 774. [Google Scholar] [CrossRef] [PubMed]
- Ferone, D.; van Hagen, M.P.; Kwekkeboom, D.J.; van Koetsveld, P.M.; Mooy, D.M.; Lichtenauer-Kaligis, E.; Schönbrunn, A.; Colao, A.; Lamberts, S.W.; Hofland, L.J. Somatostatin receptor subtypes in human thymoma and inhibition of cell proliferation by octreotide in vitro. J. Clin. Endocrinol. Metab. 2000, 85, 1719–1726. [Google Scholar] [CrossRef]
- Anderson, B.; Nostedt, J.; Girgis, S.; Dixon, T.; Agrawal, V.; Wiebe, E.; Senior, P.A.; Shapiro, A.M. Insulinoma or non-insulinoma pancreatogenous hypoglycemia? A diagnostic dilemma. J. Surg. Case Rep. 2016, 2016, rjw188. [Google Scholar] [CrossRef]
- Peltola, E.; Vesterinen, T.; Leijon, H.; Hannula, P.; Huhtala, H.; Mäkinen, M.; Nieminen, L.; Pirinen, E.; Rönty, M.; Söderström, M.; et al. Immunohistochemical somatostatin receptor expression in insulinomas. Apmis 2023, 131, 152–160. [Google Scholar] [CrossRef]
- Casar-Borota, O.; Heck, A.; Schulz, S.; Nesland, J.M.; Ramm-Pettersen, J.; Lekva, T.; Alafuzoff, I.; Bollerslev, J. Expression of SSTR2a, but not of SSTRs 1, 3, or 5 in somatotroph adenomas assessed by monoclonal antibodies was reduced by octreotide and correlated with the acute and long-term effects of octreotide. J. Clin. Endocrinol. Metab. 2013, 98, E1730–E1739. [Google Scholar] [CrossRef]
- Gabalec, F.; Drastikova, M.; Cesak, T.; Netuka, D.; Masopust, V.; Machac, J.; Marek, J.; Cap, J.; Beranek, M. Dopamine 2 and somatostatin 1–5 receptors coexpression in clinically non-functioning pituitary adenomas. Physiol. Res. 2015, 64, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Lupp, A.; Mendoza, N.; Martin, N.; Beschorner, R.; Honegger, J.; Schlegel, J.; Shively, T.; Pulz, E.; Schulz, S.; et al. SSTR3 is a putative target for the medical treatment of gonadotroph adenomas of the pituitary. Endocr. Relat. Cancer 2015, 22, 111–119. [Google Scholar] [CrossRef]
- Bertherat, J.; Tenenbaum, F.; Perlemoine, K.; Videau, C.; Alberini, J.L.; Richard, B.; Dousset, B.; Bertagna, X.; Epelbaum, J. Somatostatin receptors 2 and 5 are the major somatostatin receptors in insulinomas: An in vivo and in vitro study. J. Clin. Endocrinol. Metab. 2003, 88, 5353–5360. [Google Scholar] [CrossRef] [PubMed]
- Portela-Gomes, G.M.; Stridsberg, M.; Grimelius, L.; Rorstad, O.; Janson, E.T. Differential expression of the five somatostatin receptor subtypes in human benign and malignant insulinomas—Predominance of receptor subtype 4. Endocr. Pathol. 2007, 18, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Papotti, M.; Macri’, L.; Pagani, A.; Aloi, F.; Bussolati, G. Quantitation of somatostatin receptor type 2 in neuroendocrine (Merkel cell) carcinoma of the skin by competitive RT-PCR. Endocr. Pathol. 1999, 10, 37–46. [Google Scholar] [CrossRef]
- Gardair, C.; Samimi, M.; Touzé, A.; Coursaget, P.; Lorette, G.; Caille, A.; Wierzbicka, E.; Croué, A.; Avenel-Audran, M.; Aubin, F.; et al. Somatostatin Receptors 2A and 5 Are Expressed in Merkel Cell Carcinoma with No Association with Disease Severity. Neuroendocrinology 2015, 101, 223–235. [Google Scholar] [CrossRef]
- Anderson, A.; Qazi, J.; Shantha, E.; Takagishi, S.; Iyer, J.G.; Blom, A.; Behnia, F.S.; Vesselle, H.; Nghiem, P.; Bhatia, S. Therapeutic targeting of somatostatin receptors in patients with metastatic Merkel cell carcinoma: A retrospective case series. J. Clin. Oncol. 2015, 33, e20031. [Google Scholar] [CrossRef]
- Fagerstedt, K.W.; Vesterinen, T.; Leijon, H.; Sihto, H.; Böhling, T.; Arola, J. Somatostatin receptor expression in Merkel cell carcinoma: Correlation with clinical data. Acta Oncol. 2023, 62, 1001–1007. [Google Scholar] [CrossRef]
- Schartinger, V.H.; Falkeis, C.; Laimer, K.; Sprinzl, G.M.; Riechelmann, H.; Rasse, M.; Virgolini, I.; Dudás, J. Neuroendocrine differentiation in head and neck squamous cell carcinoma. J. Laryngol. Otol. 2012, 126, 1261–1270. [Google Scholar] [CrossRef]
- Lum, S.S.; Fletcher, W.S.; O’Dorisio, M.S.; Nance, R.W.; Pommier, R.F.; Caprara, M. Distribution and functional significance of somatostatin receptors in malignant melanoma. World J. Surg. 2001, 25, 407–412. [Google Scholar] [CrossRef]
- Caruntu, A.; Scheau, C.; Tampa, M.; Georgescu, S.R.; Caruntu, C.; Tanase, C. Complex Interaction among Immune, Inflammatory, and Carcinogenic Mechanisms in the Head and Neck Squamous Cell Carcinoma. Adv. Exp. Med. Biol. 2021, 1335, 11–35. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Lu, T.; Bi, G.; Hu, Z.; Liang, J.; Bian, Y.; Feng, M.; Zhan, C. PLK1 regulating chemoradiotherapy sensitivity of esophageal squamous cell carcinoma through pentose phosphate pathway/ferroptosis. Biomed. Pharmacother. 2023, 168, 115711. [Google Scholar] [CrossRef] [PubMed]
- Tampa, M.; Georgescu, S.R.; Mitran, C.I.; Mitran, M.I.; Matei, C.; Scheau, C.; Constantin, C.; Neagu, M. Recent Advances in Signaling Pathways Comprehension as Carcinogenesis Triggers in Basal Cell Carcinoma. J. Clin. Med. 2020, 9, 3010. [Google Scholar] [CrossRef]
- Mizumoto, A.; Ohashi, S.; Hirohashi, K.; Amanuma, Y.; Matsuda, T.; Muto, M. Molecular Mechanisms of Acetaldehyde-Mediated Carcinogenesis in Squamous Epithelium. Int. J. Mol. Sci. 2017, 18, 1943. [Google Scholar] [CrossRef]
- Loh, K.S.; Waser, B.; Tan, L.K.; Ruan, R.S.; Stauffer, E.; Reubi, J.C. Somatostatin receptors in nasopharyngeal carcinoma. Virchows Arch. 2002, 441, 444–448. [Google Scholar] [CrossRef]
- Fan, S.; Zheng, H.; Zhan, Y.; Luo, J.; Zang, H.; Wang, H.; Wang, W.; Xu, Y. Somatostatin receptor2 (SSTR2) expression, prognostic implications, modifications and potential therapeutic strategies associates with head and neck squamous cell carcinomas. Crit. Rev. Oncol. Hematol. 2024, 193, 104223. [Google Scholar] [CrossRef]
- Harda, K.; Szabo, Z.; Szabo, E.; Olah, G.; Fodor, K.; Szasz, C.; Mehes, G.; Schally, A.V.; Halmos, G. Somatostatin Receptors as Molecular Targets in Human Uveal Melanoma. Molecules 2018, 23, 1535. [Google Scholar] [CrossRef]
- Valsecchi, M.E.; Coronel, M.; Intenzo, C.M.; Kim, S.M.; Witkiewicz, A.K.; Sato, T. Somatostatin receptor scintigraphy in patients with metastatic uveal melanoma. Melanoma Res. 2013, 23, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; Grigorakis, S.I.; Watt, H.L.; Sasi, R.; Snell, L.; Watson, P.; Chaudhari, S. Somatostatin receptors in primary human breast cancer: Quantitative analysis of mRNA for subtypes 1–5 and correlation with receptor protein expression and tumor pathology. Breast Cancer Res. Treat. 2005, 92, 175–186. [Google Scholar] [CrossRef]
- Zou, Y.; Tan, H.; Zhao, Y.; Zhou, Y.; Cao, L. Expression and selective activation of somatostatin receptor subtypes induces cell cycle arrest in cancer cells. Oncol. Lett. 2019, 17, 1723–1731. [Google Scholar] [CrossRef]
- Hall, G.H.; Turnbull, L.W.; Richmond, I.; Helboe, L.; Atkin, S.L. Localisation of somatostatin and somatostatin receptors in benign and malignant ovarian tumours. Br. J. Cancer 2002, 87, 86–90. [Google Scholar] [CrossRef]
- Schulz, S.; Schmitt, J.; Quednow, C.; Roessner, A.; Weise, W. Immunohistochemical detection of somatostatin receptors in human ovarian tumors. Gynecol. Oncol. 2002, 84, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, S.; Allison, D.B.; Chauhan, A. Comprehensive Assessment of Somatostatin Receptors in Various Neoplasms: A Systematic Review. Pharmaceutics 2022, 14, 1394. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, L.; Li, X.; Zhang, Y. Expression of somatostatin and its receptor 1–5 in endometriotic tissues and cells. Exp. Ther. Med. 2018, 16, 3777–3784. [Google Scholar] [CrossRef]
- Chapron, C.; Marcellin, L.; Borghese, B.; Santulli, P. Rethinking mechanisms, diagnosis and management of endometriosis. Nat. Rev. Endocrinol. 2019, 15, 666–682. [Google Scholar] [CrossRef] [PubMed]
- Bedaiwy, M.A.; Alfaraj, S.; Yong, P.; Casper, R. New developments in the medical treatment of endometriosis. Fertil. Steril. 2017, 107, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Halmos, G.; Schally, A.V.; Sun, B.; Davis, R.; Bostwick, D.G.; Plonowski, A. High expression of somatostatin receptors and messenger ribonucleic acid for its receptor subtypes in organ-confined and locally advanced human prostate cancers. J. Clin. Endocrinol. Metab. 2000, 85, 2564–2571. [Google Scholar]
- Sinisi, A.A.; Bellastella, A.; Prezioso, D.; Nicchio, M.R.; Lotti, T.; Salvatore, M.; Pasquali, D. Different expression patterns of somatostatin receptor subtypes in cultured epithelial cells from human normal prostate and prostate cancer. J. Clin. Endocrinol. Metab. 1997, 82, 2566–2569. [Google Scholar] [CrossRef]
- Kosari, F.; Munz, J.M.; Savci-Heijink, C.D.; Spiro, C.; Klee, E.W.; Kube, D.M.; Tillmans, L.; Slezak, J.; Karnes, R.J.; Cheville, J.C.; et al. Identification of prognostic biomarkers for prostate cancer. Clin. Cancer Res. 2008, 14, 1734–1743. [Google Scholar] [CrossRef]
- Pedraza-Arévalo, S.; Hormaechea-Agulla, D.; Gómez-Gómez, E.; Requena, M.J.; Selth, L.A.; Gahete, M.D.; Castaño, J.P.; Luque, R.M. Somatostatin receptor subtype 1 as a potential diagnostic marker and therapeutic target in prostate cancer. Prostate 2017, 77, 1499–1511. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, Q.; Cheung, K.F.; Kang, W.; Dong, Y.; Lung, R.W.; Tong, J.H.; To, K.F.; Sung, J.J.; Yu, J. Somatostatin receptor 1, a novel EBV-associated CpG hypermethylated gene, contributes to the pathogenesis of EBV-associated gastric cancer. Br. J. Cancer 2013, 108, 2557–2564. [Google Scholar] [CrossRef] [PubMed]
- Werner, C.; Dirsch, O.; Dahmen, U.; Grimm, M.-O.; Schulz, S.; Lupp, A. Evaluation of somatostatin and CXCR4 receptor expression in a large set of prostate cancer samples using tissue microarrays and well-characterized monoclonal antibodies. Transl. Oncol. 2020, 13, 100801. [Google Scholar] [CrossRef] [PubMed]
- Hennigs, J.K.; Müller, J.; Adam, M.; Spin, J.M.; Riedel, E.; Graefen, M.; Bokemeyer, C.; Sauter, G.; Huland, H.; Schlomm, T.; et al. Loss of somatostatin receptor subtype 2 in prostate cancer is linked to an aggressive cancer phenotype, high tumor cell proliferation and predicts early metastatic and biochemical relapse. PLoS ONE 2014, 9, e100469. [Google Scholar] [CrossRef]
- Romiti, A.; Di Rocco, R.; Milione, M.; Ruco, L.; Ziparo, V.; Zullo, A.; Duranti, E.; Sarcina, I.; Barucca, V.; D’Antonio, C.; et al. Somatostatin receptor subtype 2 A (SSTR2A) and HER2 expression in gastric adenocarcinoma. Anticancer. Res. 2012, 32, 115–119. [Google Scholar]
- Hu, C.; Yi, C.; Hao, Z.; Cao, S.; Li, H.; Shao, X.; Zhang, J.; Qiao, T.; Fan, D. The effect of somatostatin and SSTR3 on proliferation and apoptosis of gastric cancer cells. Cancer Biol. Ther. 2004, 3, 726–730. [Google Scholar] [CrossRef]
- Chen, W.; Ding, R.; Tang, J.; Li, H.; Chen, C.; Zhang, Y.; Zhang, Q.; Zhu, X. Knocking Out SST Gene of BGC823 Gastric Cancer Cell by CRISPR/Cas9 Enhances Migration, Invasion and Expression of SEMA5A and KLF2. Cancer Manag. Res. 2020, 12, 1313–1321. [Google Scholar] [CrossRef]
- Casini Raggi, C.; Calabrò, A.; Renzi, D.; Briganti, V.; Cianchi, F.; Messerini, L.; Valanzano, R.; Cameron Smith, M.; Cortesini, C.; Tonelli, F.; et al. Quantitative evaluation of somatostatin receptor subtype 2 expression in sporadic colorectal tumor and in the corresponding normal mucosa. Clin. Cancer Res. 2002, 8, 419–427. [Google Scholar] [PubMed]
- Ferjoux, G.; Bousquet, C.; Cordelier, P.; Benali, N.; Lopez, F.; Rochaix, P.; Buscail, L.; Susini, C. Signal transduction of somatostatin receptors negatively controlling cell proliferation. J. Physiol. 2000, 94, 205–210. [Google Scholar] [CrossRef]
- Dasgupta, P. Somatostatin analogues: Multiple roles in cellular proliferation, neoplasia, and angiogenesis. Pharmacol. Ther. 2004, 102, 61–85. [Google Scholar] [CrossRef]
- War, S.A.; Kumar, U. Coexpression of human somatostatin receptor-2 (SSTR2) and SSTR3 modulates antiproliferative signaling and apoptosis. J. Mol. Signal. 2012, 7, 5. [Google Scholar] [CrossRef]
- Teijeiro, R.; Rios, R.; Costoya, J.A.; Castro, R.; Bello, J.L.; Devesa, J.; Arce, V.M. Activation of human somatostatin receptor 2 promotes apoptosis through a mechanism that is independent from induction of p53. Cell Physiol. Biochem. 2002, 12, 31–38. [Google Scholar] [CrossRef]
- Liu, H.L.; Huo, L.; Wang, L. Octreotide inhibits proliferation and induces apoptosis of hepatocellular carcinoma cells. Acta Pharmacol. Sin. 2004, 25, 1380–1386. [Google Scholar] [PubMed]
- Lasfer, M.; Vadrot, N.; Schally, A.V.; Nagy, A.; Halmos, G.; Pessayre, D.; Feldmann, G.; Reyl-Desmars, F.J. Potent induction of apoptosis in human hepatoma cell lines by targeted cytotoxic somatostatin analogue AN-238. J. Hepatol. 2005, 42, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Chao, T.C.; Chao, H.H.; Chen, M.F.; Lin, J.D. Somatostatin modulates the function of Kupffer cells. Regul. Pept. 1997, 69, 143–149. [Google Scholar] [CrossRef]
- Dalm, V.A.; Hofland, L.J.; Lamberts, S.W. Future clinical prospects in somatostatin/cortistatin/somatostatin receptor field. Mol. Cell Endocrinol. 2008, 286, 262–277. [Google Scholar] [CrossRef] [PubMed]
- Reynaert, H.; Rombouts, K.; Vandermonde, A.; Urbain, D.; Kumar, U.; Bioulac-Sage, P.; Pinzani, M.; Rosenbaum, J.; Geerts, A. Expression of somatostatin receptors in normal and cirrhotic human liver and in hepatocellular carcinoma. Gut 2004, 53, 1180–1189. [Google Scholar] [CrossRef]
- Lang, A.; Sakhnini, E.; Fidder, H.H.; Maor, Y.; Bar-Meir, S.; Chowers, Y. Somatostatin inhibits pro-inflammatory cytokine secretion from rat hepatic stellate cells. Liver Int. 2005, 25, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C.; Waser, B.; Cescato, R.; Gloor, B.; Stettler, C.; Christ, E. Internalized somatostatin receptor subtype 2 in neuroendocrine tumors of octreotide-treated patients. J. Clin. Endocrinol. Metab. 2010, 95, 2343–2350. [Google Scholar] [CrossRef]
- Benuck, M.; Marks, N. Differences in the degradation of hypothalamic releasing factors by rat and human serum. Life Sci. 1976, 19, 1271–1276. [Google Scholar] [CrossRef]
- Grant, N.; Clark, D.; Garsky, V.; Jaunakais, I.; McGregor, W.; Sarantakis, D. Dissociation of somatostatin effects. Peptides inhibiting the release of growth hormone but not glucagon or insulin in rats. Life Sci. 1976, 19, 629–631. [Google Scholar] [CrossRef]
- Brown, M.; Rivier, J.; Vale, W. Somatostatin: Analogs with selected biological activities. Science 1977, 196, 1467–1469. [Google Scholar] [CrossRef]
- Meyers, C.; Arimura, A.; Gordin, A.; Fernandez-Durango, R.; Coy, D.H.; Schally, A.V.; Drouin, J.; Ferland, L.; Beaulieu, M.; Labrie, F. Somatostatin analogs which inhibit glucagon and growth hormone more than insulin release. Biochem. Biophys. Res. Commun. 1977, 74, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Coy, D.H.; Meyers, C.; Arimura, A.; Schally, A.V.; Redding, T.W. Observations on the growth hormone, insulin, and glucagon release-inhibiting activities of somatostatin analogues. Metabolism 1978, 27, 1407–1410. [Google Scholar] [CrossRef] [PubMed]
- Patel, Y.C.; Reichlin, S. Somatostatin in hypothalamus, extrahypothalamic brain, and peripheral tissues of the rat. Endocrinology 1978, 102, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Shimon, I.; Yan, X.; Taylor, J.E.; Weiss, M.H.; Culler, M.D.; Melmed, S. Somatostatin receptor (SSTR) subtype-selective analogues differentially suppress in vitro growth hormone and prolactin in human pituitary adenomas. Novel potential therapy for functional pituitary tumors. J. Clin. Investig. 1997, 100, 2386–2392. [Google Scholar] [CrossRef]
- Afargan, M.; Janson, E.T.; Gelerman, G.; Rosenfeld, R.; Ziv, O.; Karpov, O.; Wolf, A.; Bracha, M.; Shohat, D.; Liapakis, G.; et al. Novel long-acting somatostatin analog with endocrine selectivity: Potent suppression of growth hormone but not of insulin. Endocrinology 2001, 142, 477–486. [Google Scholar] [CrossRef]
- Gomes-Porras, M.; Cárdenas-Salas, J.; Álvarez-Escolá, C. Somatostatin Analogs in Clinical Practice: A Review. Int. J. Mol. Sci. 2020, 21, 1682. [Google Scholar] [CrossRef]
- Fattah, S.; Brayden, D.J. Progress in the Formulation and Delivery of Somatostatin Analogs for Acromegaly. Ther. Deliv. 2017, 8, 867–878. [Google Scholar] [CrossRef]
- Wang, J.; Yadav, V.; Smart, A.L.; Tajiri, S.; Basit, A.W. Toward oral delivery of biopharmaceuticals: An assessment of the gastrointestinal stability of 17 peptide drugs. Mol. Pharm. 2015, 12, 966–973. [Google Scholar] [CrossRef]
- Bauer, W.; Briner, U.; Doepfner, W.; Haller, R.; Huguenin, R.; Marbach, P.; Petcher, T.J.; Pless, J. SMS 201–995: A very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci. 1982, 31, 1133–1140. [Google Scholar] [CrossRef]
- Levy, M.J.; Bejon, P.; Barakat, M.; Goadsby, P.J.; Meeran, K. Acromegaly: A Unique Human Headache Model. Headache J. Head. Face Pain. 2003, 43, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Bolanowski, M.; Kałużny, M.; Witek, P.; Jawiarczyk-Przybyłowska, A. Pasireotide-a novel somatostatin receptor ligand after 20 years of use. Rev. Endocr. Metab. Disord. 2022, 23, 601–620. [Google Scholar] [CrossRef] [PubMed]
- Girard, P.M.; Goldschmidt, E.; Vittecoq, D.; Massip, P.; Gastiaburu, J.; Meyohas, M.C.; Coulaud, J.P.; Schally, A.V. Vapreotide, a somatostatin analogue, in cryptosporidiosis and other AIDS-related diarrhoeal diseases. AIDS 1992, 6, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Dimech, J.; Feniuk, W.; Humphrey, P.P. Antagonist effects of seglitide (MK 678) at somatostatin receptors in guinea-pig isolated right atria. Br. J. Pharmacol. 1993, 109, 898–899. [Google Scholar] [CrossRef] [PubMed]
- Betoin, F.; Ardid, D.; Herbet, A.; Aumaitre, O.; Kemeny, J.L.; Duchene-Marullaz, P.; Lavarenne, J.; Eschalier, A. Evidence for a central long-lasting antinociceptive effect of vapreotide, an analog of somatostatin, involving an opioidergic mechanism. J. Pharmacol. Exp. Ther. 1994, 269, 7–14. [Google Scholar]
- Bétoin, F.; Advenier, C.; Fardin, V.; Wilcox, G.; Lavarenne, J.; Eschalier, A. In vitro and in vivo evidence for a tachykinin NK1 receptor antagonist effect of vapreotide, an analgesic cyclic analog of somatostatin. Eur. J. Pharmacol. 1995, 279, 241–249. [Google Scholar] [CrossRef]
- Ritz, M.A.; Drewe, J.; Ziel, A.; Hildebrand, P.; Schneider, P.; Lahlou, N.; Beglinger, C. The effects of vapreotide, a somatostatin analogue, on gastric acidity, gallbladder emptying and hormone release after 1 week of continuous subcutaneous infusion in normal subjects. Br. J. Clin. Pharmacol. 1999, 47, 195–201. [Google Scholar] [CrossRef]
- Calès, P.; Masliah, C.; Bernard, B.; Garnier, P.P.; Silvain, C.; Szostak-Talbodec, N.; Bronowicki, J.P.; Ribard, D.; Botta-Fridlund, D.; Hillon, P.; et al. Early administration of vapreotide for variceal bleeding in patients with cirrhosis. N. Engl. J. Med. 2001, 344, 23–28. [Google Scholar] [CrossRef]
- Eloubeidi, M.A.; Arguedas, M.R. Early administration of vapreotide for variceal bleeding in patients with cirrhosis. Gastrointest. Endosc. 2002, 55, 135–137. [Google Scholar] [CrossRef]
- Veal, N.; Moal, F.; Oberti, F.; Vuillemin, E.; Calés, P. Hemodynamic effects of acute and chronic administration of vapreotide in rats with cirrhosis. Dig. Dis. Sci. 2003, 48, 154–161. [Google Scholar] [CrossRef]
- Calès, P. Vapreotide acetate for the treatment of esophageal variceal bleeding. Expert Rev. Gastroenterol. Hepatol. 2008, 2, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Fortune, B.E.; Jackson, J.; Leonard, J.; Trotter, J.F. Vapreotide: A somatostatin analog for the treatment of acute variceal bleeding. Expert Opin. Pharmacother. 2009, 10, 2337–2342. [Google Scholar] [CrossRef] [PubMed]
- Spitsin, S.; Tuluc, F.; Meshki, J.; Ping Lai, J.; Tustin Iii, R.; Douglas, S.D. Analog of somatostatin vapreotide exhibits biological effects in vitro via interaction with neurokinin-1 receptor. Neuroimmunomodulation 2013, 20, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Patch, D.; Burroughs, A. Vapreotide in variceal bleeding. J. Hepatol. 2002, 37, 167–168. [Google Scholar] [CrossRef]
- Abdellatif, A.A.H.; Abou-Taleb, H.A.; Abd El Ghany, A.A.; Lutz, I.; Bouazzaoui, A. Targeting of somatostatin receptors expressed in blood cells using quantum dots coated with vapreotide. Saudi Pharm. J. 2018, 26, 1162–1169. [Google Scholar] [CrossRef]
- Thakur, M.; Kolan, H.; Rifat, S.; Li, J.; Rux, A.; John, E.; Halmos, G.; Schally, A. Vapreotide labeled with Tc-99m for imaging tumors. Int. J. Oncol. 1996, 9, 445–451. [Google Scholar] [CrossRef]
- O’Byrne, K.J.; Dobbs, N.; Propper, D.J.; Braybrooke, J.P.; Koukourakis, M.I.; Mitchell, K.; Woodhull, J.; Talbot, D.C.; Schally, A.V.; Harris, A.L. Phase II study of RC-160 (vapreotide), an octapeptide analogue of somatostatin, in the treatment of metastatic breast cancer. Br. J. Cancer 1999, 79, 1413–1418. [Google Scholar] [CrossRef]
- Feng, Q.; Yu, M.Z.; Wang, J.C.; Hou, W.J.; Gao, L.Y.; Ma, X.F.; Pei, X.W.; Niu, Y.J.; Liu, X.Y.; Qiu, C.; et al. Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles. Biomaterials 2014, 35, 5028–5038. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, P.; Gűnther, T.; Schulz, S. Pharmacological Characterization of Veldoreotide as a Somatostatin Receptor 4 Agonist. Life 2021, 11, 1075. [Google Scholar] [CrossRef]
- Veber, D.F.; Saperstein, R.; Nutt, R.F.; Freidinger, R.M.; Brady, S.F.; Curley, P.; Perlow, D.S.; Paleveda, W.J.; Colton, C.D.; Zacchei, A.G.; et al. A super active cyclic hexapeptide analog of somatostatin. Life Sci. 1984, 34, 1371–1378. [Google Scholar] [CrossRef]
- Battershill, P.E.; Clissold, S.P. Octreotide. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in conditions associated with excessive peptide secretion. Drugs 1989, 38, 658–702. [Google Scholar] [CrossRef] [PubMed]
- Novartis Pharmaceuticals Corporation. Sandostatin. In Octreotide Acetate Injection; Novartis Pharmaceuticals Corporation: East Hanover, NJ, USA, 2002. [Google Scholar]
- Cendros, J.M.; Peraire, C.; Trocóniz, I.F.; Obach, R. Pharmacokinetics and population pharmacodynamic analysis of lanreotide Autogel. Metabolism 2005, 54, 1276–1281. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. FDA Approved Products: Mycapssa (Octreotide) Oral Delayed-Release Capsules; Center for Drug Evaluation and Research, Ed.; FDA: Silver Spring, MD, USA, 2020; p. 20.
- U.S. Food and Drug Administration. FDA Approved Drug Products: Signifor (Pasireotide Diaspartate) Injection, for Subcutaneous Use; Center for Drug Evaluation and Research, Ed.; FDA: Silver Spring, MD, USA, 2012; p. 27.
- U.S. Food and Drug Administration. FDA Approved Drug Products: Somatuline Depot (Lanreotide) for Subcutaneous Injection; Center for Drug Evaluation and Research, Ed.; FDA: Silver Spring, MD, USA, 2019; p. 27.
- Corica, G.; Ceraudo, M.; Campana, C.; Nista, F.; Cocchiara, F.; Boschetti, M.; Zona, G.; Criminelli, D.; Ferone, D.; Gatto, F. Octreotide-Resistant Acromegaly: Challenges and Solutions. Ther. Clin. Risk Manag. 2020, 16, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Gadelha, M.R.; Wildemberg, L.E.; Kasuki, L. The Future of Somatostatin Receptor Ligands in Acromegaly. J. Clin. Endocrinol. Metab. 2022, 107, 297–308. [Google Scholar] [CrossRef]
- Banerjee, I.; Salomon-Estebanez, M.; Shah, P.; Nicholson, J.; Cosgrove, K.E.; Dunne, M.J. Therapies and outcomes of congenital hyperinsulinism-induced hypoglycaemia. Diabet. Med. 2019, 36, 9–21. [Google Scholar] [CrossRef]
- Ruuska, T.; Ramírez Escalante, Y.; Vaittinen, S.; Gardberg, M.; Kiviniemi, A.; Marjamäki, P.; Kemppainen, J.; Jyrkkiö, S.; Minn, H. Somatostatin receptor expression in lymphomas: A source of false diagnosis of neuroendocrine tumor at 68Ga-DOTANOC PET/CT imaging. Acta Oncol. 2018, 57, 283–289. [Google Scholar] [CrossRef]
- Cives, M.; Strosberg, J.R. Gastroenteropancreatic Neuroendocrine Tumors. CA Cancer J. Clin. 2018, 68, 471–487. [Google Scholar] [CrossRef]
- Guida, M.; D’Alò, A.; Mangia, A.; Di Pinto, F.; Sonnessa, M.; Albano, A.; Sciacovelli, A.; Asabella, A.N.; Fucci, L. Somatostatin Receptors in Merkel-Cell Carcinoma: A Therapeutic Opportunity Using Somatostatin Analog alone or in Association with Checkpoint Inhibitors Immunotherapy. A Case Report. Front. Oncol. 2020, 10, 1073. [Google Scholar] [CrossRef]
- Akaike, T.; Qazi, J.; Anderson, A.; Behnia, F.S.; Shinohara, M.M.; Akaike, G.; Hippe, D.S.; Thomas, H.; Takagishi, S.R.; Lachance, K.; et al. High somatostatin receptor expression and efficacy of somatostatin analogues in patients with metastatic Merkel cell carcinoma. Br. J. Dermatol. 2021, 184, 319–327. [Google Scholar] [CrossRef]
- de Herder, W.W.; Hofland, J. Insulinoma. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233. [Google Scholar] [CrossRef]
- Samonakis, D.N.; Moschandreas, J.; Arnaoutis, T.; Skordilis, P.; Leontidis, C.; Vafiades, I.; Kouroumalis, E. Treatment of hepatocellular carcinoma with long acting somatostatin analogues. Oncol. Rep. 2002, 9, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Puig-Domingo, M.; Bernabéu, I.; Picó, A.; Biagetti, B.; Gil, J.; Alvarez-Escolá, C.; Jordà, M.; Marques-Pamies, M.; Soldevila, B.; Gálvez, M.-A.; et al. Pasireotide in the Personalized Treatment of Acromegaly. Front. Endocrinol. 2021, 12, 648411. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, J.M. Hyperglycemia induced by pasireotide in patients with Cushing’s disease or acromegaly. Pituitary 2016, 19, 536–543. [Google Scholar] [CrossRef]
- Kvols, L.K.; Oberg, K.E.; O’Dorisio, T.M.; Mohideen, P.; de Herder, W.W.; Arnold, R.; Hu, K.; Zhang, Y.; Hughes, G.; Anthony, L.; et al. Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumors refractory or resistant to octreotide LAR: Results from a phase II study. Endocr. Relat. Cancer 2012, 19, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Plöckinger, U.; Wiedenmann, B. Neuroendocrine tumors. Biotherapy. Best. Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 145–162. [Google Scholar] [CrossRef]
- Ro, C.; Chai, W.; Yu, V.E.; Yu, R. Pancreatic neuroendocrine tumors: Biology, diagnosis, and treatment. Chin. J. Cancer 2013, 32, 312–324. [Google Scholar] [CrossRef]
- Cives, M.; Strosberg, J. The expanding role of somatostatin analogs in gastroenteropancreatic and lung neuroendocrine tumors. Drugs 2015, 75, 847–858. [Google Scholar] [CrossRef]
- Hofland, L.J.; Lamberts, S.W.J. Somatostatin receptors and disease: Role of receptor subtypes. Baillière’s Clin. Endocrinol. Metab. 1996, 10, 163–176. [Google Scholar] [CrossRef]
- De Conno, F.; Saita, L.; Ripamonti, C.; Ventafridda, V. Subcutaneous octreotide in the treatment of pain in advanced cancer patients. J. Pain Symptom Manag. 1994, 9, 34–38. [Google Scholar] [CrossRef]
- Murphy, E.; Prommer, E.E.; Mihalyo, M.; Wilcock, A. Octreotide. J. Pain Symptom Manag. 2010, 40, 142–148. [Google Scholar] [CrossRef]
- Lamberts, S.W.J.; Hofland, L.J. ANNIVERSARY REVIEW: Octreotide, 40 years later. Eur. J. Endocrinol. 2019, 181, R173–R183. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Merola, B.; Ferone, D.; Lombardi, G. Acromegaly. J. Clin. Endocrinol. Metab. 1997, 82, 2777–2781. [Google Scholar] [CrossRef]
- Maffei, P.; Tamagno, G.; Nardelli, G.B.; Videau, C.; Menegazzo, C.; Milan, G.; Calcagno, A.; Martini, C.; Vettor, R.; Epelbaum, J.; et al. Effects of octreotide exposure during pregnancy in acromegaly. Clin. Endocrinol. 2010, 72, 668–677. [Google Scholar] [CrossRef]
- Borna, R.M.; Jahr, J.S.; Kmiecik, S.; Mancuso, K.F.; Kaye, A.D. Pharmacology of Octreotide: Clinical Implications for Anesthesiologists and Associated Risks. Anesthesiol. Clin. 2017, 35, 327–339. [Google Scholar] [CrossRef]
- Boyle, P.J.; Justice, K.; Krentz, A.J.; Nagy, R.J.; Schade, D.S. Octreotide reverses hyperinsulinemia and prevents hypoglycemia induced by sulfonylurea overdoses. J. Clin. Endocrinol. Metab. 1993, 76, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Carr, R.; Zed, P.J. Octreotide for sulfonylurea-induced hypoglycemia following overdose. Ann. Pharmacother. 2002, 36, 1727–1732. [Google Scholar] [CrossRef]
- Hassan, Z.; Wright, J. Use of octreotide acetate to prevent rebound hypoglycaemia in sulfonylurea overdose. Emerg. Med. J. 2007, 24, 580–581. [Google Scholar] [CrossRef] [PubMed]
- Glatstein, M.; Scolnik, D.; Bentur, Y. Octreotide for the treatment of sulfonylurea poisoning. Clin. Toxicol. 2012, 50, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Genuth, S. Should sulfonylureas remain an acceptable first-line add-on to metformin therapy in patients with type 2 diabetes? No, it’s time to move on! Diabetes Care 2015, 38, 170–175. [Google Scholar] [CrossRef]
- Sola, D.; Rossi, L.; Schianca, G.P.; Maffioli, P.; Bigliocca, M.; Mella, R.; Corlianò, F.; Fra, G.P.; Bartoli, E.; Derosa, G. Sulfonylureas and their use in clinical practice. Arch. Med. Sci. 2015, 11, 840–848. [Google Scholar] [CrossRef]
- Vaughan, E.M.; Rueda, J.J.; Samson, S.L.; Hyman, D.J. Reducing the Burden of Diabetes Treatment: A Review of Low-cost Oral Hypoglycemic Medications. Curr. Diabetes Rev. 2020, 16, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Neagu, M.; Constantin, C.; Surcel, M.; Munteanu, A.; Scheau, C.; Savulescu-Fiedler, I.; Caruntu, C. Diabetic neuropathy: A NRF2 disease? J. Diabetes 2023, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Groth, C.M.; Banzon, E.R. Octreotide for the treatment of hypoglycemia after insulin glargine overdose. J. Emerg. Med. 2013, 45, 194–198. [Google Scholar] [CrossRef]
- Harvey, M.; Cave, G. Octreotide may attenuate absorption and ameliorate toxicity following enteric drug overdose. Med. Hypotheses 2013, 81, 424–425. [Google Scholar] [CrossRef]
- James, R.A.; Rhodes, M.; Rose, P.; Kendall-Taylor, P. Biliary colic on abrupt withdrawal of octreotide. Lancet 1991, 338, 1527. [Google Scholar] [CrossRef]
- Sadoul, J.L.; Benchimol, D.; Thyss, A.; Freychet, P. Acute pancreatitis following octreotide withdrawal. Am. J. Med. 1991, 90, 763–764. [Google Scholar] [CrossRef]
- Sadoul, J.L.; Benchimol, D.; Thyss, A.; Freychet, P. Side-effects of octreotide withdrawal. Lancet 1992, 339, 376. [Google Scholar] [CrossRef]
- Trobonjaca, Z.; Radosević-Stasić, B.; Crncević, Z.; Rukavina, D. Modulatory effects of octreotide on anti-CD3 and dexamethasone-induced apoptosis of murine thymocytes. Int. Immunopharmacol. 2001, 1, 1753–1764. [Google Scholar] [CrossRef]
- Petrović-Dergović, D.M.; Rakin, A.K.; Dimitrijević, L.A.; Ristovski, J.S.; Kustrimović, N.Z.; Mićić, M.V. Changes in thymus size, cellularity and relation between thymocyte subpopulations in young adult rats induced by somatostatin-14. Neuropeptides 2007, 41, 485–493. [Google Scholar] [CrossRef]
- Sedqi, M.; Roy, S.; Mohanraj, D.; Ramakrishnan, S.; Loh, H.H. Activation of rat thymocytes selectively upregulates the expression of somatostatin receptor subtype-1. Biochem. Mol. Biol. Int. 1996, 38, 103–112. [Google Scholar] [PubMed]
- Solomou, K.; Ritter, M.A.; Palmer, D.B. Somatostatin is expressed in the murine thymus and enhances thymocyte development. Eur. J. Immunol. 2002, 32, 1550–1559. [Google Scholar] [CrossRef]
- Palmieri, G.; Lastoria, S.; Colao, A.; Vergara, E.; Varrella, P.; Biondi, E.; Selleri, C.; Catalano, L.; Lombardi, G.; Bianco, A.R.; et al. Successful treatment of a patient with a thymoma and pure red-cell aplasia with octreotide and prednisone. N. Engl. J. Med. 1997, 336, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Zaucha, R.; Zaucha, J.M.; Jassem, J. Resolution of thymoma-related pure red cell aplasia after octreotide treatment. Acta Oncol. 2007, 46, 864–865. [Google Scholar] [CrossRef]
- Kertesz, G.P.; Hauser, P.; Varga, P.; Dabasi, G.; Schuler, D.; Garami, M. Advanced pediatric inoperable thymus carcinoma (type C thymoma): Case report on a novel therapeutic approach. J. Pediatr. Hematol. Oncol. 2007, 29, 774–775. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.; Sekiya, M.; Miura, K.; Yoshimi, K.; Suzuki, T.; Seyama, K.; Izumi, H.; Uekusa, T.; Takahashi, K. Refractory recurrent thymoma successfully treated with long-acting somatostatin analogue and prednisolone. Intern. Med. 2009, 48, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
- Pettit, L.; El-Modir, A. The role of somatostatin analogues in the treatment of advanced malignant thymomas: Case report and review of the literature. Br. J. Radiol. 2011, 84, e7–e10. [Google Scholar] [CrossRef]
- Mei, Z.; Wang, H.; Ren, S.; Wei, J.; Gu, Y. Metastatic thymic carcinoid responds to chemoradiation and octreotide: A case report. Medicine 2018, 97, e13286. [Google Scholar] [CrossRef]
- Sorejs, O.; Pesek, M.; Finek, J.; Fiala, O. Octreotide in the treatment of malignant thymoma—Case report. Rep. Pract. Oncol. Radiother. 2020, 25, 882–885. [Google Scholar] [CrossRef] [PubMed]
- Loehrer, P.J.; Wang, W.; Johnson, D.H.; Aisner, S.C.; Ettinger, D.S. Octreotide alone or with prednisone in patients with advanced thymoma and thymic carcinoma: An Eastern Cooperative Oncology Group Phase II Trial. J. Clin. Oncol. 2004, 22, 293–299. [Google Scholar] [CrossRef]
- Kirzinger, L.; Boy, S.; Marienhagen, J.; Schuierer, G.; Neu, R.; Ried, M.; Hofmann, H.S.; Wiebe, K.; Ströbel, P.; May, C.; et al. Octreotide LAR and Prednisone as Neoadjuvant Treatment in Patients with Primary or Locally Recurrent Unresectable Thymic Tumors: A Phase II Study. PLoS ONE 2016, 11, e0168215. [Google Scholar] [CrossRef]
- Ottaviano, M.; Damiano, V.; Tortora, M.; Capuano, M.; Perrone, P.; Forino, C.; Matano, E.; Palmieri, G. P1.17-015 Long Acting Octreotide plus Prednisone in Advanced Thymic Epithelial Tumors: A Real Life Clinical Experience. J. Thorac. Oncol. 2017, 12, S2066. [Google Scholar] [CrossRef]
- Vortmeyer, A.O.; Huang, S.; Lubensky, I.; Zhuang, Z. Non-islet origin of pancreatic islet cell tumors. J. Clin. Endocrinol. Metab. 2004, 89, 1934–1938. [Google Scholar] [CrossRef] [PubMed]
- Cives, M.; Strosberg, J. An update on gastroenteropancreatic neuroendocrine tumors. Oncology 2014, 28, 749–756. [Google Scholar] [PubMed]
- Williams, E.D.; Sandler, M. The classification of carcinoid tum ours. Lancet 1963, 1, 238–239. [Google Scholar] [CrossRef] [PubMed]
- Papotti, M.; Bongiovanni, M.; Volante, M.; Allìa, E.; Landolfi, S.; Helboe, L.; Schindler, M.; Cole, S.L.; Bussolati, G. Expression of somatostatin receptor types 1–5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch. 2002, 440, 461–475. [Google Scholar] [CrossRef]
- Faggiano, A. Long-acting somatostatin analogs and well differentiated neuroendocrine tumors: A 20-year-old story. J. Endocrinol. Investig. 2024, 47, 35–46. [Google Scholar] [CrossRef]
- Curt, A.M.; Rada Popa Ilie, I.; Căinap, C.; Bălăcescu, O.; Ghervan, C. MicroRNAs and Treatment with Somatostatin Analogs in Gastro-Entero-Pancreatic Neuroendocrine Neoplasms: Challenges in Personalized Medicine. J. Gastrointest. Liver Dis. 2020, 29, 647–659. [Google Scholar] [CrossRef]
- Ruggeri, R.M.; Aini, I.; Gay, S.; Grossrubatscher, E.M.; Mancini, C.; Tarsitano, M.G.; Zamponi, V.; Isidori, A.M.; Colao, A.; Faggiano, A. Efficacy and tolerability of somatostatin analogues according to gender in patients with neuroendocrine tumors. Rev. Endocr. Metab. Disord. 2024, 25, 383–398. [Google Scholar] [CrossRef]
- Rubin, J.; Ajani, J.; Schirmer, W.; Venook, A.P.; Bukowski, R.; Pommier, R.; Saltz, L.; Dandona, P.; Anthony, L. Octreotide acetate long-acting formulation versus open-label subcutaneous octreotide acetate in malignant carcinoid syndrome. J. Clin. Oncol. 1999, 17, 600–606. [Google Scholar] [CrossRef]
- O’Toole, D.; Ducreux, M.; Bommelaer, G.; Wemeau, J.L.; Bouché, O.; Catus, F.; Blumberg, J.; Ruszniewski, P. Treatment of carcinoid syndrome: A prospective crossover evaluation of lanreotide versus octreotide in terms of efficacy, patient acceptability, and tolerance. Cancer 2000, 88, 770–776. [Google Scholar] [CrossRef]
- Gade, A.K.; Olariu, E.; Douthit, N.T. Carcinoid Syndrome: A Review. Cureus 2020, 12, e7186. [Google Scholar] [CrossRef] [PubMed]
- Rubin de Celis Ferrari, A.C.; Glasberg, J.; Riechelmann, R.P. Carcinoid syndrome: Update on the pathophysiology and treatment. Clinics 2018, 73, e490s. [Google Scholar] [CrossRef]
- Kaltsas, G.; Caplin, M.; Davies, P.; Ferone, D.; Garcia-Carbonero, R.; Grozinsky-Glasberg, S.; Hörsch, D.; Tiensuu Janson, E.; Kianmanesh, R.; Kos-Kudla, B.; et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Pre- and Perioperative Therapy in Patients with Neuroendocrine Tumors. Neuroendocrinology 2017, 105, 245–254. [Google Scholar] [CrossRef]
- Massimino, K.; Harrskog, O.; Pommier, S.; Pommier, R. Octreotide LAR and bolus octreotide are insufficient for preventing intraoperative complications in carcinoid patients. J. Surg. Oncol. 2013, 107, 842–846. [Google Scholar] [CrossRef]
- Condron, M.E.; Pommier, S.J.; Pommier, R.F. Continuous infusion of octreotide combined with perioperative octreotide bolus does not prevent intraoperative carcinoid crisis. Surgery 2016, 159, 358–365. [Google Scholar] [CrossRef]
- Strosberg, J.R.; Al-Toubah, T.; El-Haddad, G.; Reidy Lagunes, D.; Bodei, L. Sequencing of Somatostatin-Receptor-Based Therapies in Neuroendocrine Tumor Patients. J. Nucl. Med. 2024, 65, 340–348. [Google Scholar] [CrossRef]
- Epelboym, I.; Mazeh, H. Zollinger-Ellison syndrome: Classical considerations and current controversies. Oncologist 2014, 19, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Thakker, R.V.; Newey, P.J.; Walls, G.V.; Bilezikian, J.; Dralle, H.; Ebeling, P.R.; Melmed, S.; Sakurai, A.; Tonelli, F.; Brandi, M.L. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J. Clin. Endocrinol. Metab. 2012, 97, 2990–3011. [Google Scholar] [CrossRef]
- Papotti, M.; Croce, S.; Bellò, M.; Bongiovanni, M.; Allìa, E.; Schindler, M.; Bussolati, G. Expression of somatostatin receptor types 2, 3 and 5 in biopsies and surgical specimens of human lung tumours. Correlation with preoperative octreotide scintigraphy. Virchows Arch. 2001, 439, 787–797. [Google Scholar] [CrossRef]
- Lamberts, S.W. The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr. Rev. 1991, 12, 450–478. [Google Scholar] [CrossRef] [PubMed]
- Janson, E.T.; Oberg, K. Long-term management of the carcinoid syndrome. Treatment with octreotide alone and in combination with alpha-interferon. Acta Oncol. 1993, 32, 225–229. [Google Scholar] [CrossRef]
- Krenning, E.P.; Valkema, R.; Kwekkeboom, D.J.; de Herder, W.W.; van Eijck, C.H.; de Jong, M.; Pauwels, S.; Reubi, J.C. Molecular imaging as in vivo molecular pathology for gastroenteropancreatic neuroendocrine tumors: Implications for follow-up after therapy. J. Nucl. Med. 2005, 46 (Suppl. S1), 76s–82s. [Google Scholar]
- Reubi, J.C.; Schaer, J.C.; Waser, B.; Mengod, G. Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization. Cancer Res. 1994, 54, 3455–3459. [Google Scholar] [PubMed]
- Reubi, J.C.; Kappeler, A.; Waser, B.; Schonbrunn, A.; Laissue, J. Immunohistochemical localization of somatostatin receptor sst2A in human pancreatic islets. J. Clin. Endocrinol. Metab. 1998, 83, 3746–3749. [Google Scholar] [CrossRef]
- Janson, E.T.; Stridsberg, M.; Gobl, A.; Westlin, J.E.; Oberg, K. Determination of somatostatin receptor subtype 2 in carcinoid tumors by immunohistochemical investigation with somatostatin receptor subtype 2 antibodies. Cancer Res. 1998, 58, 2375–2378. [Google Scholar] [PubMed]
- Kimura, N.; Pilichowska, M.; Date, F.; Kimura, I.; Schindler, M. Immunohistochemical expression of somatostatin type 2A receptor in neuroendocrine tumors. Clin. Cancer Res. 1999, 5, 3483–3487. [Google Scholar]
- Reubi, J.C.; Laissue, J.A.; Waser, B.; Steffen, D.L.; Hipkin, R.W.; Schonbrunn, A. Immunohistochemical detection of somatostatin sst2a receptors in the lymphatic, smooth muscular, and peripheral nervous systems of the human gastrointestinal tract: Facts and artifacts. J. Clin. Endocrinol. Metab. 1999, 84, 2942–2950. [Google Scholar] [CrossRef]
- Papotti, M.; Croce, S.; Macrì, L.; Funaro, A.; Pecchioni, C.; Schindler, M.; Bussolati, G. Correlative immunohistochemical and reverse transcriptase polymerase chain reaction analysis of somatostatin receptor type 2 in neuroendocrine tumors of the lung. Diagn. Mol. Pathol. 2000, 9, 47–57. [Google Scholar] [CrossRef]
- Körner, M.; Eltschinger, V.; Waser, B.; Schonbrunn, A.; Reubi, J.C. Value of immunohistochemistry for somatostatin receptor subtype sst2A in cancer tissues: Lessons from the comparison of anti-sst2A antibodies with somatostatin receptor autoradiography. Am. J. Surg. Pathol. 2005, 29, 1642–1651. [Google Scholar] [CrossRef]
- Volante, M.; Brizzi, M.P.; Faggiano, A.; La Rosa, S.; Rapa, I.; Ferrero, A.; Mansueto, G.; Righi, L.; Garancini, S.; Capella, C.; et al. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: A proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod. Pathol. 2007, 20, 1172–1182. [Google Scholar] [CrossRef] [PubMed]
- Tsuta, K.; Wistuba, I.I.; Moran, C.A. Differential expression of somatostatin receptors 1–5 in neuroendocrine carcinoma of the lung. Pathol. Res. Pract. 2012, 208, 470–474. [Google Scholar] [CrossRef]
- Raso, M.G.; Bota-Rabassedas, N.; Wistuba, I.I. Pathology and Classification of SCLC. Cancers 2021, 13, 820. [Google Scholar] [CrossRef]
- Şen, F.; Sheikh, G.T.; von Hinten, J.; Schindele, A.; Kircher, M.; Dierks, A.; Pfob, C.H.; Serfling, S.E.; Buck, A.K.; Pelzer, T.; et al. In-Vivo Somatostatin-Receptor Expression in Small Cell Lung Cancer as a Prognostic Image Biomarker and Therapeutic Target. Cancers 2023, 15, 3595. [Google Scholar] [CrossRef]
- Kruglyak, K.M.; Lin, E.; Ong, F.S. Next-Generation Sequencing and Applications to the Diagnosis and Treatment of Lung Cancer. Adv. Exp. Med. Biol. 2016, 890, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Cainap, C.; Balacescu, O.; Cainap, S.S.; Pop, L.A. Next Generation Sequencing Technology in Lung Cancer Diagnosis. Biology 2021, 10, 864. [Google Scholar] [CrossRef]
- Shabani Azim, F.; Houri, H.; Ghalavand, Z.; Nikmanesh, B. Next Generation Sequencing in Clinical Oncology: Applications, Challenges and Promises: A Review Article. Iran. J. Public Health 2018, 47, 1453–1457. [Google Scholar] [PubMed]
- Perry, R.R.; Vinik, A.I. Endocrine tumors of the gastrointestinal tract. Annu. Rev. Med. 1996, 47, 57–68. [Google Scholar] [CrossRef]
- van Essen, M.; Krenning, E.P.; Kam, B.L.; de Herder, W.W.; Feelders, R.A.; Kwekkeboom, D.J. Salvage therapy with (177)Lu-octreotate in patients with bronchial and gastroenteropancreatic neuroendocrine tumors. J. Nucl. Med. 2010, 51, 383–390. [Google Scholar] [CrossRef]
- Kwekkeboom, D.J.; Krenning, E.P. Peptide Receptor Radionuclide Therapy in the Treatment of Neuroendocrine Tumors. Hematol. Oncol. Clin. N. Am. 2016, 30, 179–191. [Google Scholar] [CrossRef]
- Cives, M.; Strosberg, J. Radionuclide Therapy for Neuroendocrine Tumors. Curr. Oncol. Rep. 2017, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Brabander, T.; van der Zwan, W.A.; Teunissen, J.J.M.; Kam, B.L.R.; Feelders, R.A.; de Herder, W.W.; van Eijck, C.H.J.; Franssen, G.J.H.; Krenning, E.P.; Kwekkeboom, D.J. Long-Term Efficacy, Survival, and Safety of [(177)Lu-DOTA(0),Tyr(3)]octreotate in Patients with Gastroenteropancreatic and Bronchial Neuroendocrine Tumors. Clin. Cancer Res. 2017, 23, 4617–4624. [Google Scholar] [CrossRef] [PubMed]
- van der Zwan, W.A.; Brabander, T.; Kam, B.L.R.; Teunissen, J.J.M.; Feelders, R.A.; Hofland, J.; Krenning, E.P.; de Herder, W.W. Salvage peptide receptor radionuclide therapy with [(177)Lu-DOTA,Tyr(3)]octreotate in patients with bronchial and gastroenteropancreatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 704–717. [Google Scholar] [CrossRef] [PubMed]
- Mihalache, O.; Doran, H.; Poiană, C.; Bîrligea, A.; Cîrstea, M.O.; Pătraşcu, T. Pancreatic Neuroendocrine Tumors—Case Series and Literature Review. Chirurgia 2019, 114, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Krausz, Y.; Bar-Ziv, J.; de Jong, R.B.; Ish-Shalom, S.; Chisin, R.; Shibley, N.; Glaser, B. Somatostatin-receptor scintigraphy in the management of gastroenteropancreatic tumors. Am. J. Gastroenterol. 1998, 93, 66–70. [Google Scholar] [CrossRef]
- Shi, W.; Johnston, C.F.; Buchanan, K.D.; Ferguson, W.R.; Laird, J.D.; Crothers, J.G.; McIlrath, E.M. Localization of neuroendocrine tumours with [111In] DTPA-octreotide scintigraphy (Octreoscan): A comparative study with CT and MR imaging. Qjm 1998, 91, 295–301. [Google Scholar] [CrossRef]
- Krausz, Y.; Freedman, N.; Rubinstein, R.; Lavie, E.; Orevi, M.; Tshori, S.; Salmon, A.; Glaser, B.; Chisin, R.; Mishani, E.; et al. 68Ga-DOTA-NOC PET/CT imaging of neuroendocrine tumors: Comparison with 111In-DTPA-octreotide (OctreoScan®). Mol. Imaging Biol. 2011, 13, 583–593. [Google Scholar] [CrossRef]
- Hofman, M.S.; Kong, G.; Neels, O.C.; Eu, P.; Hong, E.; Hicks, R.J. High management impact of Ga-68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours. J. Med. Imaging Radiat. Oncol. 2012, 56, 40–47. [Google Scholar] [CrossRef]
- Wild, D.; Bomanji, J.B.; Benkert, P.; Maecke, H.; Ell, P.J.; Reubi, J.C.; Caplin, M.E. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J. Nucl. Med. 2013, 54, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Arora, S.; Mukherjee, A.; Pal, S.; Sahni, P.; Garg, P.; Khadgawat, R.; Thulkar, S.; Bal, C.; Kumar, R. Predictive value of 68Ga-DOTANOC PET/CT in patients with suspicion of neuroendocrine tumors: Is its routine use justified? Clin. Nucl. Med. 2014, 39, 37–43. [Google Scholar] [CrossRef]
- Sharma, P.; Arora, S.; Dhull, V.S.; Naswa, N.; Kumar, R.; Ammini, A.C.; Bal, C. Evaluation of 68Ga-DOTANOC PET/CT imaging in a large exclusive population of pancreatic neuroendocrine tumors. Abdom. Imaging 2015, 40, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Arora, S.; Karunanithi, S.; Khadgawat, R.; Durgapal, P.; Sharma, R.; Kandasamy, D.; Bal, C.; Kumar, R. Somatostatin receptor based PET/CT imaging with 68Ga-DOTA-Nal3-octreotide for localization of clinically and biochemically suspected insulinoma. Q. J. Nucl. Med. Mol. Imaging 2016, 60, 69–76. [Google Scholar]
- Eschbach, R.S.; Hofmann, M.; Späth, L.; Sheikh, G.T.; Delker, A.; Lindner, S.; Jurkschat, K.; Wängler, C.; Wängler, B.; Schirrmacher, R.; et al. Comparison of somatostatin receptor expression in patients with neuroendocrine tumours with and without somatostatin analogue treatment imaged with [18F]SiTATE. Front. Oncol. 2023, 13, 992316. [Google Scholar] [CrossRef]
- Chahid, Y.; Hashimi, K.; van de Garde, E.M.W.; Klümpen, H.J.; Hendrikse, N.H.; Booij, J.; Verberne, H.J. The Influence of Long-Acting Somatostatin Analogs on 68Ga-DOTATATE Uptake in Patients with Neuroendocrine Tumors. Clin. Nucl. Med. 2023, 48, 757–762. [Google Scholar] [CrossRef]
- Poletto, G.; Cecchin, D.; Sperti, S.; Filippi, L.; Realdon, N.; Evangelista, L. Head-to-Head Comparison between Peptide-Based Radiopharmaceutical for PET and SPECT in the Evaluation of Neuroendocrine Tumors: A Systematic Review. Curr. Issues Mol. Biol. 2022, 44, 5516–5530. [Google Scholar] [CrossRef] [PubMed]
- Matasar, M.J.; Zelenetz, A.D. Overview of lymphoma diagnosis and management. Radiol. Clin. N. Am. 2008, 46, 175–198. [Google Scholar] [CrossRef] [PubMed]
- Zamfir, M.-A.; Moraru, L.; Dobrea, C.; Scheau, A.-E.; Iacob, S.; Moldovan, C.; Scheau, C.; Caruntu, C.; Caruntu, A. Hematologic Malignancies Diagnosed in the Context of the mRNA COVID-19 Vaccination Campaign: A Report of Two Cases. Medicina 2022, 58, 874. [Google Scholar] [CrossRef]
- Dalm, V.A.; Hofland, L.J.; Mooy, C.M.; Waaijers, M.A.; van Koetsveld, P.M.; Langerak, A.W.; Staal, F.T.; van der Lely, A.J.; Lamberts, S.W.; van Hagen, M.P. Somatostatin receptors in malignant lymphomas: Targets for radiotherapy? J. Nucl. Med. 2004, 45, 8–16. [Google Scholar]
- Ferone, D.; Semino, C.; Boschetti, M.; Cascini, G.L.; Minuto, F.; Lastoria, S. Initial staging of lymphoma with octreotide and other receptor imaging agents. Semin. Nucl. Med. 2005, 35, 176–185. [Google Scholar] [CrossRef]
- Raderer, M.; Traub, T.; Formanek, M.; Virgolini, I.; Österreicher, C.; Fiebiger, W.; Penz, M.; Jäger, U.; Pont, J.; Chott, A. Somatostatin-receptor scintigraphy for staging and follow-up of patients with extraintestinal marginal zone B-cell lymphoma of the mucosa associated lymphoid tissue (MALT)-type. Br. J. Cancer 2001, 85, 1462–1466. [Google Scholar] [CrossRef]
- Lugtenburg, P.J.; Löwenberg, B.; Valkema, R.; Oei, H.-Y.; Lamberts, S.W.; Eijkemans, M.J.; van Putten, W.L.; Krenning, E.P. Somatostatin receptor scintigraphy in the initial staging of low-grade non-Hodgkin’s lymphomas. J. Nucl. Med. 2001, 42, 222–229. [Google Scholar] [PubMed]
- Toker, C. Trabecular carcinoma of the skin. Arch. Dermatol. 1972, 105, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.C.; Stang, A.; DeCaprio, J.A.; Cerroni, L.; Lebbé, C.; Veness, M.; Nghiem, P. Merkel cell carcinoma. Nat. Rev. Dis. Primers 2017, 3, 17077. [Google Scholar] [CrossRef]
- Apraiz, A.; Benedicto, A.; Marquez, J.; Agüera-Lorente, A.; Asumendi, A.; Olaso, E.; Arteta, B. Innate Lymphoid Cells in the Malignant Melanoma Microenvironment. Cancers 2020, 12, 3177. [Google Scholar] [CrossRef] [PubMed]
- Reynaert, H.; Colle, I. Treatment of Advanced Hepatocellular Carcinoma with Somatostatin Analogues: A Review of the Literature. Int. J. Mol. Sci. 2019, 20, 4811. [Google Scholar] [CrossRef] [PubMed]
- Midorikawa, Y.; Takayama, T.; Shimada, K.; Nakayama, H.; Higaki, T.; Moriguchi, M.; Nara, S.; Tsuji, S.; Tanaka, M. Marginal survival benefit in the treatment of early hepatocellular carcinoma. J. Hepatol. 2013, 58, 306–311. [Google Scholar] [CrossRef]
- Midorikawa, Y.; Takayama, T.; Higaki, T.; Nakayama, H.; Yamamoto, M.; Ariizumi, S.; Shimada, K.; Kokudo, N.; Tsuji, S.; Tsuchiya, K.; et al. Early hepatocellular carcinoma as a signaling lesion for subsequent malignancy. Jpn. J. Clin. Oncol. 2016, 46, 1102–1107. [Google Scholar] [CrossRef]
- Ebisawa, K.; Midorikawa, Y.; Higaki, T.; Nakayama, H.; Tsuji, S.; Nishimaki, H.; Haradome, H.; Abe, O.; Sugitani, M.; Moriyama, M.; et al. Natural history of nonenhancing lesions incidentally detected during the diagnosis of hepatocellular carcinoma. Surgery 2016, 160, 654–660. [Google Scholar] [CrossRef]
- Yagi, R.; Midorikawa, Y.; Moriguchi, M.; Nakayama, H.; Aramaki, O.; Yamazaki, S.; Higaki, T.; Takayama, T. Liver resection for recurrent hepatocellular carcinoma to improve survivability: A proposal of indication criteria. Surgery 2018, 163, 1250–1256. [Google Scholar] [CrossRef]
- Shi, Y.; Taherifard, E.; Saeed, A.; Saeed, A. MASLD-Related HCC: A Comprehensive Review of the Trends, Pathophysiology, Tumor Microenvironment, Surveillance, and Treatment Options. Curr. Issues Mol. Biol. 2024, 46, 5965–5983. [Google Scholar] [CrossRef]
- Khaznadar, F.; Khaznadar, O.; Petrovic, A.; Hefer, M.; Gjoni, F.; Gjoni, S.; Steiner, J.; Smolic, M.; Bojanic, K. MAFLD Pandemic: Updates in Pharmacotherapeutic Approach Development. Curr. Issues Mol. Biol. 2024, 46, 6300–6314. [Google Scholar] [CrossRef] [PubMed]
- Wiese, S.; Voiosu, A.; Hove, J.D.; Danielsen, K.V.; Voiosu, T.; Grønbaek, H.; Møller, H.J.; Genovese, F.; Reese-Petersen, A.L.; Mookerjee, R.P.; et al. Fibrogenesis and inflammation contribute to the pathogenesis of cirrhotic cardiomyopathy. Aliment. Pharmacol. Ther. 2020, 52, 340–350. [Google Scholar] [CrossRef]
- Choe, J.W.; Hyun, J.J.; Kim, B.; Han, K.D. Influence of Metabolic Syndrome on Cancer Risk in HBV Carriers: A Nationwide Population Based Study Using the National Health Insurance Service Database. J. Clin. Med. 2021, 10, 2401. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Kim, J.H.; Lee, S.S.; Kim, H.J.; Cha, R.R.; Cho, H.C.; Lee, J.M.; Ha, C.Y.; Kim, H.J.; Kim, T.H.; et al. Impact of acute kidney injury on survival in patients with chronic hepatitis C: A retrospective cohort study. BMC Infect. Dis. 2021, 21, 301. [Google Scholar] [CrossRef] [PubMed]
- Fattovich, G.; Stroffolini, T.; Zagni, I.; Donato, F. Hepatocellular carcinoma in cirrhosis: Incidence and risk factors. Gastroenterology 2004, 127, S35–S50. [Google Scholar] [CrossRef] [PubMed]
- Kalambokis, G.; Fotopoulos, A.; Economou, M.; Tsianos, E.V. Octreotide in the treatment of refractory ascites of cirrhosis. Scand. J. Gastroenterol. 2006, 41, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.X.; Zhou, H.B.; Wang, Q.; Zou, S.S.; Wang, H.; Hu, H.P. The effectiveness of the treatment of octreotide on chylous ascites after liver cirrhosis. Dig. Dis. Sci. 2009, 54, 1783–1788. [Google Scholar] [CrossRef]
- Kouroumalis, E.; Skordilis, P.; Thermos, K.; Vasilaki, A.; Moschandrea, J.; Manousos, O.N. Treatment of hepatocellular carcinoma with octreotide: A randomised controlled study. Gut 1998, 42, 442–447. [Google Scholar] [CrossRef]
- Wu, P.; Gu, X.Y.; Jiang, Z. Efficacy of octreotide in advanced hepatocellular carcinoma: A clinical trial. Chin. J. Hepatobiliary Surg. 2001, 7, 766–768. [Google Scholar]
- Pan, D.Y.; Qiao, J.G.; Chen, J.W.; Huo, Y.C.; Zhou, Y.K.; Shi, H.A. Tamoxifen combined with octreotide or regular chemotherapeutic agents in treatment of primary liver cancer: A randomized controlled trial. Hepatobiliary Pancreat. Dis. Int. 2003, 2, 211–215. [Google Scholar]
- Yang, M.N.; Xiao, B.; Wang, X.L.; Xue, Y.P. Effects of octreotide in elderly patients with advanced primary hepatic cancer. J. Clin. Med. Pract. 2003, 4, 302–304. [Google Scholar] [CrossRef]
- Patsanas, T.; Kapetanos, D.; Ilias, A.; Gessiou, C.; Tzarou, V.; Kokozidis, G.; Kitis, G. Octreotide in the treatment of inoperable hepatocellular carcinoma. Ann. Gastroenterol. 2004, 17, 69–74. [Google Scholar]
- Treiber, G.; Wex, T.; Röcken, C.; Fostitsch, P.; Malfertheiner, P. Impact of biomarkers on disease survival and progression in patients treated with octreotide for advanced hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2006, 132, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Dimitroulopoulos, D.; Xinopoulos, D.; Tsamakidis, K.; Zisimopoulos, A.; Andriotis, E.; Panagiotakos, D.; Fotopoulou, A.; Chrysohoou, C.; Bazinis, A.; Daskalopoulou, D.; et al. Long acting octreotide in the treatment of advanced hepatocellular cancer and overexpression of somatostatin receptors: Randomized placebo-controlled trial. World J. Gastroenterol. 2007, 13, 3164–3170. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.Q.; Chen, Z.Q.; Ma, Y.L. Clinical study of octreotide for advanced hepatocellular carcinoma. Hainan Med. J. 2007, 18, 19–20. [Google Scholar]
- Montella, L.; Addeo, R.; Caraglia, M.; Faiola, V.; Guarrasi, R.; Vincenzi, B.; Palmeri, A.; Capasso, E.; Nocera, V.; Tarantino, L.; et al. Vascular endothelial growth factor monitoring in advanced hepatocellular carcinoma patients treated with radiofrequency ablation plus octreotide: A single center experience. Oncol. Rep. 2008, 20, 385–390. [Google Scholar] [CrossRef]
- Shah, U.; O’Neil, B.; Allen, J.; Goldberg, R.M.; Bernard, S.; Moore, D.; Venook, A.P.; Morse, M.M. A Phase II Study of Long-Acting Octreotide in Patients with Advanced Hepatocellular Carcinoma and CLIP Score of 3 or Higher. Gastrointest. Cancer Res. 2009, 3, 45–48. [Google Scholar]
- Zhang, B.; Xu, F. The clinical observation of octreotide in the treatment of 45 patients with advanced primary liver carcinoma. J. Basic Clin. Oncol. 2010, 23, 52. [Google Scholar]
- Prete, S.D.; Montella, L.; Caraglia, M.; Maiorino, L.; Cennamo, G.; Montesarchio, V.; Piai, G.; Febbraro, A.; Tarantino, L.; Capasso, E.; et al. Sorafenib plus octreotide is an effective and safe treatment in advanced hepatocellular carcinoma: Multicenter phase II So.LAR. study. Cancer Chemother. Pharmacol. 2010, 66, 837–844. [Google Scholar] [CrossRef]
- Caraglia, M.; Giuberti, G.; Marra, M.; Addeo, R.; Montella, L.; Murolo, M.; Sperlongano, P.; Vincenzi, B.; Naviglio, S.; Prete, S.D.; et al. Oxidative stress and ERK1/2 phosphorylation as predictors of outcome in hepatocellular carcinoma patients treated with sorafenib plus octreotide LAR. Cell Death Dis. 2011, 2, e150. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, L.; Mu, Y. Somatostatin receptor subtypes 2 and 5 are associated with better survival in operable hepatitis B-related hepatocellular carcinoma following octreotide long-acting release treatment. Oncol. Lett. 2013, 6, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Wei, B.; Chen, S.; Xie, Y.M.; Zhang, M.G.; Zhang, L.H.; Huang, Z.Y.; Tang, C.W. Adjuvant celecoxib and lanreotide following transarterial chemoembolisation for unresectable hepatocellular carcinoma: A randomized pilot study. Oncotarget 2017, 8, 48303–48312. [Google Scholar] [CrossRef] [PubMed]
- Raderer, M.; Hejna, M.H.; Muller, C.; Kornek, G.V.; Kurtaran, A.; Virgolini, I.; Fiebieger, W.; Hamilton, G.; Scheithauer, W. Treatment of hepatocellular cancer with the long acting somatostatin analog lanreotide in vitro and in vivo. Int. J. Oncol. 2000, 16, 1197–1201. [Google Scholar] [CrossRef]
- Yuen, M.F.; Poon, R.T.; Lai, C.L.; Fan, S.T.; Lo, C.M.; Wong, K.W.; Wong, W.M.; Wong, B.C. A randomized placebo-controlled study of long-acting octreotide for the treatment of advanced hepatocellular carcinoma. Hepatology 2002, 36, 687–691. [Google Scholar] [CrossRef]
- Rabe, C.; Pilz, T.; Allgaier, H.P.; Halm, U.; Strasser, C.; Wettstein, M.; Sauerbruch, T.; Caselmann, W.H. Clinical outcome of a cohort of 63 patients with hepatocellular carcinoma treated with octreotide. Z. Gastroenterol. 2002, 40, 395–400. [Google Scholar] [CrossRef]
- Plentz, R.R.; Tillmann, H.L.; Kubicka, S.; Bleck, J.S.; Gebel, M.; Manns, M.P.; Rudolph, K.L. Hepatocellular carcinoma and octreotide: Treatment results in prospectively assigned patients with advanced tumor and cirrhosis stage. J. Gastroenterol. Hepatol. 2005, 20, 1422–1428. [Google Scholar] [CrossRef]
- Cebon, J.; Findlay, M.; Hargreaves, C.; Stockler, M.; Thompson, P.; Boyer, M.; Roberts, S.; Poon, A.; Scott, A.M.; Kalff, V.; et al. Somatostatin receptor expression, tumour response, and quality of life in patients with advanced hepatocellular carcinoma treated with long-acting octreotide. Br. J. Cancer 2006, 95, 853–861. [Google Scholar] [CrossRef]
- Verset, G.; Verslype, C.; Reynaert, H.; Borbath, I.; Langlet, P.; Vandebroek, A.; Peeters, M.; Houbiers, G.; Francque, S.; Arvanitakis, M.; et al. Efficacy of the combination of long-acting release octreotide and tamoxifen in patients with advanced hepatocellular carcinoma: A randomised multicentre phase III study. Br. J. Cancer 2007, 97, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Becker, G.; Allgaier, H.P.; Olschewski, M.; Zahringer, A.; Blum, H.E.; Group, H.S. Long-acting octreotide versus placebo for treatment of advanced HCC: A randomized controlled double-blind study. Hepatology 2007, 45, 9–15. [Google Scholar] [CrossRef]
- Barbare, J.C.; Bouche, O.; Bonnetain, F.; Dahan, L.; Lombard-Bohas, C.; Faroux, R.; Raoul, J.L.; Cattan, S.; Lemoine, A.; Blanc, J.F.; et al. Treatment of advanced hepatocellular carcinoma with long-acting octreotide: A phase III multicentre, randomised, double blind placebo-controlled study. Eur. J. Cancer 2009, 45, 1788–1797. [Google Scholar] [CrossRef]
- Lanreotide. In Drugs and Lactation Database (LactMed®); National Institute of Child Health and Human Development: Bethesda, MD, USA, 2006.
- Paulson, S.; Ray, D.; Aranha, S.; Scales, A.; Wang, Y.; Liu, E. Lanreotide Depot to Treat Gastroenteropancreatic Neuroendocrine Tumors in a US Community Oncology Setting: A Prospective, Observational Study. Oncol. Ther. 2022, 10, 463–479. [Google Scholar] [CrossRef] [PubMed]
- Lepage, C.; Phelip, J.M.; Lievre, A.; Le-Malicot, K.; Dahan, L.; Tougeron, D.; Toumpanakis, C.; Di-Fiore, F.; Lombard-Bohas, C.; Borbath, I.; et al. Lanreotide as maintenance therapy after first-line treatment in patients with non-resectable duodeno-pancreatic neuroendocrine tumours: An international double-blind, placebo-controlled randomised phase II trial—Prodige 31 REMINET: An FFCD study. Eur. J. Cancer 2022, 175, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Sills, E.S.; Wood, S.H.; Tan, S.L.; Ibach, D.M. Neuroendocrine tumor chromogranin A response following synthetic somatostatin analog (lanreotide): Early observations from an isolated duodenal neoplasm. Neuro Endocrinol. Lett. 2023, 44, 265–269. [Google Scholar]
- Hautefeuille, V.; Walter, T.; Do Cao, C.; Coriat, R.; Dominguez, S.; Mineur, L.; Cadiot, G.; Terrebonne, E.; Sobhani, I.; Gueguen, D.; et al. OPERA: Perception of information in patients with gastroenteropancreatic neuroendocrine tumors on lanreotide autogel. Eur. J. Endocrinol. 2023, 189, 281–289. [Google Scholar] [CrossRef]
- O’Toole, D.; Kunz, P.L.; Webb, S.M.; Goldstein, G.; Khawaja, S.; McDonnell, M.; Boiziau, S.; Gueguen, D.; Houchard, A.; Ribeiro-Oliveira, A., Jr.; et al. PRESTO 2: An International Survey to Evaluate Patients’ Injection Experiences with the Latest Devices/Formulations of Long-Acting Somatostatin Analog Therapies for Neuroendocrine Tumors or Acromegaly. Adv. Ther. 2023, 40, 671–690. [Google Scholar] [CrossRef]
- Hernando, J.; Kolarova, T.; Verslype, C.; Kaltsas, G.; Houchard, A.; Gueguen, D.; De Herder, W.W. Satisfaction with injection experience of patients with neuroendocrine tumors enrolled on lanreotide autogel patient support programs: Results from the international HomeLAN survey. J. Neuroendocrinol. 2023, 35, e13281. [Google Scholar] [CrossRef]
- Raj, N.; Cruz, E.; O’Shaughnessy, S.; Calderon, C.; Chou, J.F.; Capanu, M.; Heffernan, O.; DeMore, A.; Punn, S.; Le, T.; et al. A Randomized Trial Evaluating Patient Experience and Preference between Octreotide Long-Acting Release and Lanreotide for Treatment of Well-Differentiated Neuroendocrine Tumors. JCO Oncol. Pract. 2022, 18, e1533–e1541. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.; Lahner, H.; Hörsch, D.; Rinke, A.; Denecke, T.; Koch, A.; Regnault, B.; Helbig, D.; Hoffmanns, P.; Raderer, M. Combined Lanreotide Autogel and Temozolomide Treatment of Progressive Pancreatic and Intestinal Neuroendocrine Tumors: The Phase II SONNET Study. Oncologist 2024, 29, e643–e654. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Munir, M.; Syed, O.; Mehta, V.; Kaur, R.; Kumar, A.; Sridhar, A.; Sood, A.; Gupta, R. An update on the safety of lanreotide autogel for the treatment of patients with neuroendocrine tumors. Expert Opin. Drug Saf. 2024, 23, 949–957. [Google Scholar] [CrossRef]
- Shiraishi, K.; Akai, T.; Tomita, T.; Hayashi, R.; Minamisaka, T.; Kuroda, S. Pituitary apoplexy in endocrinologically silent adenoma during somatostatin analog administration for pancreatic neuroendocrine tumor: A case report. Neuropathology 2024, 44, 247–251. [Google Scholar] [CrossRef]
- Pasireotide. In Drugs and Lactation Database (LactMed®); National Institute of Child Health and Human Development: Bethesda, MD, USA, 2006.
- Bruns, C.; Lewis, I.; Briner, U.; Meno-Tetang, G.; Weckbecker, G. SOM230: A novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur. J. Endocrinol. 2002, 146, 707–716. [Google Scholar] [CrossRef]
- Hofland, L.J.; Lamberts, S.W. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr. Rev. 2003, 24, 28–47. [Google Scholar] [CrossRef] [PubMed]
- Ronga, G.; Salerno, G.; Procaccini, E.; Mauro, L.; Annovazzi, A.; Barone, R.; Mellozzi, M.; Tamburrano, G.; Signore, A. 111In-octreotide scintigraphy in metastatic medullary thyroid carcinoma before and after octreotide therapy: In vivo evidence of the possible down-regulation of somatostatin receptors. Q. J. Nucl. Med. 1995, 39, 134–136. [Google Scholar] [PubMed]
- Li, M.; Li, W.; Kim, H.J.; Yao, Q.; Chen, C.; Fisher, W.E. Characterization of somatostatin receptor expression in human pancreatic cancer using real-time RT-PCR. J. Surg. Res. 2004, 119, 130–137. [Google Scholar] [CrossRef]
- Schmid, H.A.; Schoeffter, P. Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinology 2004, 80 (Suppl. S1), 47–50. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.J.; Gönen, M.; Brennan, M.F.; Bucknor, A.A.; Robinson, L.M.; Pappas, M.M.; Carlucci, K.E.; D’Angelica, M.I.; DeMatteo, R.P.; Kingham, T.P.; et al. Pasireotide for postoperative pancreatic fistula. N. Engl. J. Med. 2014, 370, 2014–2022. [Google Scholar] [CrossRef]
- Efstathiadou, Z.A.; Divaris, E.; Michou, A.; Kyriakopoulos, G.; Kita, M.D. Complete and sustained remission of hypercortisolism with pasireotide treatment of an adrenocorticotropic hormone (ACTH)-secreting thoracic neuroendocrine tumor: An n-of-1 trial. Endocr. J. 2023, 70, 229–232. [Google Scholar] [CrossRef]
- Sanoff, H.K.; Kim, R.; Ivanova, A.; Alistar, A.; McRee, A.J.; O’Neil, B.H. Everolimus and pasireotide for advanced and metastatic hepatocellular carcinoma. Investig. New Drugs 2015, 33, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Feun, L.G.; Wangpaichitr, M.; Li, Y.Y.; Kwon, D.; Richman, S.P.; Hosein, P.J.; Savaraj, N. Phase II trial of SOM230 (pasireotide LAR) in patients with unresectable hepatocellular carcinoma. J. Hepatocell. Carcinoma 2018, 5, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.N., Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstrom, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.; et al. Imaging dopamine receptors in the human brain by positron tomography. Science 1983, 221, 1264–1266. [Google Scholar] [CrossRef]
- Pishdad, R.; Treglia, G.; Mehta, A.; Santhanam, P. Somatostatin receptor imaging of thyroid tissue and differentiated thyroid cancer using gallium-68-labeled radiotracers—A review of clinical studies. Endocrine 2024, 85, 566–575. [Google Scholar] [CrossRef]
- Sakellis, C.; Jacene, H.A. Neuroendocrine Tumors: Diagnostics. PET Clin. 2024, 19, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Mallak, N.; O’Brien, S.R.; Pryma, D.A.; Mittra, E. Theranostics in Neuroendocrine Tumors. Cancer J. 2024, 30, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Parihar, A.S.; Bodei, L.; Hope, T.A.; Mallak, N.; Millo, C.; Prasad, K.; Wilson, D.; Zukotynski, K.; Mittra, E. Somatostatin Receptor Imaging and Theranostics: Current Practice and Future Prospects. J. Nucl. Med. 2021, 62, 1323–1329. [Google Scholar] [CrossRef]
- Bass, R.T.; Buckwalter, B.L.; Patel, B.P.; Pausch, M.H.; Price, L.A.; Strnad, J.; Hadcock, J.R. Identification and characterization of novel somatostatin antagonists. Mol. Pharmacol. 1996, 50, 709–715. [Google Scholar] [PubMed]
- Ginj, M.; Zhang, H.; Waser, B.; Cescato, R.; Wild, D.; Wang, X.; Erchegyi, J.; Rivier, J.; Mäcke, H.R.; Reubi, J.C. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc. Natl. Acad. Sci. USA 2006, 103, 16436–16441. [Google Scholar] [CrossRef]
- Wild, D.; Fani, M.; Behe, M.; Brink, I.; Rivier, J.E.; Reubi, J.C.; Maecke, H.R.; Weber, W.A. First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J. Nucl. Med. 2011, 52, 1412–1417. [Google Scholar] [CrossRef]
- Fani, M.; Braun, F.; Waser, B.; Beetschen, K.; Cescato, R.; Erchegyi, J.; Rivier, J.E.; Weber, W.A.; Maecke, H.R.; Reubi, J.C. Unexpected sensitivity of sst2 antagonists to N-terminal radiometal modifications. J. Nucl. Med. 2012, 53, 1481–1489. [Google Scholar] [CrossRef]
- Modarai, S.R.; Opdenaker, L.M.; Viswanathan, V.; Fields, J.Z.; Boman, B.M. Somatostatin signaling via SSTR1 contributes to the quiescence of colon cancer stem cells. BMC Cancer 2016, 16, 941. [Google Scholar] [CrossRef]
- Kasprzak, A.; Geltz, A. The State-of-the-Art Mechanisms and Antitumor Effects of Somatostatin in Colorectal Cancer: A Review. Biomedicines 2024, 12, 578. [Google Scholar] [CrossRef]
- Kimura, N.; Hayafuji, C.; Kimura, N. Characterization of 17-beta-estradiol-dependent and -independent somatostatin receptor subtypes in rat anterior pituitary. J. Biol. Chem. 1989, 264, 7033–7040. [Google Scholar] [CrossRef] [PubMed]
- Seredycz, L.I.; Lautt, W.W. Hemorrhage results in hepatic insulin-sensitizing substance-dependent insulin resistance mediated by somatostatin in rats. Neuroendocrinology 2006, 84, 94–102. [Google Scholar] [CrossRef]
- Ikeda, H.; Kotani, A.; Koshikawa, N.; Cools, A.R. Somatostatin receptors in the nucleus accumbens modulate dopamine-dependent but not acetylcholine-dependent turning behaviour of rats. Neuroscience 2009, 159, 974–981. [Google Scholar] [CrossRef]
- Ionov, I.D.; Pushinskaya, I.I. Somatostatin antagonist induces catalepsy in the aged rat. Psychopharmacology 2013, 227, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Peng, Y.; He, Z.; Wei, L.; Jin, W.; Wang, X.; Chang, M. Intrahippocampal injection of Cortistatin-14 impairs recognition memory consolidation in mice through activation of sst2, ghrelin and GABAA/B receptors. Brain Res. 2017, 1666, 38–47. [Google Scholar] [CrossRef]
- Ionov, I.D.; Pushinskaya, I.I.; Gorev, N.P.; Frenkel, D.D. Cyclosomatostatin- and haloperidol-induced catalepsy in Wistar rats: Differential responsiveness to sleep deprivation. Neurosci. Lett. 2018, 684, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Ionov, I.D.; Pushinskaya, I.I.; Roslavtseva, L.A.; Severtsev, N.N. Brain sites mediating cyclosomatostatin-induced catalepsy in Wistar rats: A specific role for the nigrostriatal system and locus coeruleus. Brain Res. 2018, 1691, 26–33. [Google Scholar] [CrossRef]
- Ionov, I.D.; Pushinskaya, I.I.; Gorev, N.P.; Frenkel, D.D. Cyclosomatostatin-induced catalepsy in aged rats: Specific change of brain c-Fos protein expression in the lateral entorhinal cortex. Brain Res. Bull. 2020, 159, 79–86. [Google Scholar] [CrossRef]
- Sekiya, H.; Yokota, N.; Takemi, S.; Nakayama, K.; Okada, H.; Sakai, T.; Sakata, I. The inhibitory effect of somatostatin on gastric motility in Suncus murinus. J. Smooth Muscle Res. 2020, 56, 69–81. [Google Scholar] [CrossRef]
- Ionov, I.D.; Pushinskaya, I.I.; Gorev, N.P.; Frenkel, D.D.; Severtsev, N.N. Anticataleptic activity of nicotine in rats: Involvement of the lateral entorhinal cortex. Psychopharmacology 2021, 238, 2471–2483. [Google Scholar] [CrossRef]
- Croze, M.L.; Flisher, M.F.; Guillaume, A.; Tremblay, C.; Noguchi, G.M.; Granziera, S.; Vivot, K.; Castillo, V.C.; Campbell, S.A.; Ghislain, J.; et al. Free fatty acid receptor 4 inhibitory signaling in delta cells regulates islet hormone secretion in mice. Mol. Metab. 2021, 45, 101166. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Unzueta, I.; Benedicto, A.; Telleria, U.; Sanz, E.; Márquez, J. Improving the Antitumor Effect of Chemotherapy with Ocoxin as a Novel Adjuvant Agent to Treat Prostate Cancer. Nutrients 2023, 15, 2536. [Google Scholar] [CrossRef] [PubMed]
- Shalhout, S.Z.; Miller, D.M.; Emerick, K.S.; Kaufman, H.L. Therapy with oncolytic viruses: Progress and challenges. Nat. Rev. Clin. Oncol. 2023, 20, 160–177. [Google Scholar] [CrossRef]
- Kaur, R.; Bhardwaj, A.; Gupta, S. Cancer treatment therapies: Traditional to modern approaches to combat cancers. Mol. Biol. Rep. 2023, 50, 9663–9676. [Google Scholar] [CrossRef]
- Sprecher, U.; Mohr, P.; Martin, R.E.; Maerki, H.P.; Sanchez, R.A.; Binggeli, A.; Künnecke, B.; Christ, A.D. Novel, non-peptidic somatostatin receptor subtype 5 antagonists improve glucose tolerance in rodents. Regul. Pept. 2010, 159, 19–27. [Google Scholar] [CrossRef]
- Hirose, H.; Yamasaki, T.; Ogino, M.; Mizojiri, R.; Tamura-Okano, Y.; Yashiro, H.; Muraki, Y.; Nakano, Y.; Sugama, J.; Hata, A.; et al. Discovery of novel 5-oxa-2,6-diazaspiro[3.4]oct-6-ene derivatives as potent, selective, and orally available somatostatin receptor subtype 5 (SSTR5) antagonists for treatment of type 2 diabetes mellitus. Bioorganic Med. Chem. 2017, 25, 4175–4193. [Google Scholar] [CrossRef]
- Feniuk, W.; Jarvie, E.; Luo, J.; Humphrey, P.P. Selective somatostatin sst2 receptor blockade with the novel cyclic octapeptide, CYN-154806. Neuropharmacology 2000, 39, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, K.; Endoh, T.; Hayashi, S.; Aihara, T. Activation of Muscarinic Acetylcholine Receptor Subtype 4 Is Essential for Cholinergic Stimulation of Gastric Acid Secretion: Relation to D Cell/Somatostatin. Front. Pharmacol. 2016, 7, 278. [Google Scholar] [CrossRef]
- He, S.; Ye, Z.; Truong, Q.; Shah, S.; Du, W.; Guo, L.; Dobbelaar, P.H.; Lai, Z.; Liu, J.; Jian, T.; et al. The Discovery of MK-4256, a Potent SSTR3 Antagonist as a Potential Treatment of Type 2 Diabetes. ACS Med. Chem. Lett. 2012, 3, 484–489. [Google Scholar] [CrossRef]
- Hocart, S.J.; Jain, R.; Murphy, W.A.; Taylor, J.E.; Coy, D.H. Highly potent cyclic disulfide antagonists of somatostatin. J. Med. Chem. 1999, 42, 1863–1871. [Google Scholar] [CrossRef]
- Rossowski, W.J.; Cheng, B.L.; Taylor, J.E.; Datta, R.; Coy, D.H. Human urotensin II-induced aorta ring contractions are mediated by protein kinase C, tyrosine kinases and Rho-kinase: Inhibition by somatostatin receptor antagonists. Eur. J. Pharmacol. 2002, 438, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Feniuk, W.; Dimech, J.; Jarvie, E.M.; Humphrey, P.P. Further evidence from functional studies for somatostatin receptor heterogeneity in guinea-pig isolated ileum, vas deferens and right atrium. Br. J. Pharmacol. 1995, 115, 975–980. [Google Scholar] [CrossRef]
- Liu, W.; Shao, P.P.; Liang, G.B.; Bawiec, J.; He, J.; Aster, S.D.; Wu, M.; Chicchi, G.; Wang, J.; Tsao, K.L.; et al. Discovery and Pharmacology of a Novel Somatostatin Subtype 5 (SSTR5) Antagonist: Synergy with DPP-4 Inhibition. ACS Med. Chem. Lett. 2018, 9, 1082–1087. [Google Scholar] [CrossRef]
- Saveanu, A.; Lavaque, E.; Gunz, G.; Barlier, A.; Kim, S.; Taylor, J.E.; Culler, M.D.; Enjalbert, A.; Jaquet, P. Demonstration of enhanced potency of a chimeric somatostatin-dopamine molecule, BIM-23A387, in suppressing growth hormone and prolactin secretion from human pituitary somatotroph adenoma cells. J. Clin. Endocrinol. Metab. 2002, 87, 5545–5552. [Google Scholar] [CrossRef] [PubMed]
- Jaquet, P.; Gunz, G.; Saveanu, A.; Dufour, H.; Taylor, J.; Dong, J.; Kim, S.; Moreau, J.P.; Enjalbert, A.; Culler, M.D. Efficacy of chimeric molecules directed towards multiple somatostatin and dopamine receptors on inhibition of GH and prolactin secretion from GH-secreting pituitary adenomas classified as partially responsive to somatostatin analog therapy. Eur. J. Endocrinol. 2005, 153, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Rocheville, M.; Lange, D.C.; Kumar, U.; Patel, S.C.; Patel, R.C.; Patel, Y.C. Receptors for dopamine and somatostatin: Formation of hetero-oligomers with enhanced functional activity. Science 2000, 288, 154–157. [Google Scholar] [CrossRef]
- Miki, Y. Hormone-Dependent Cancers: New Aspects on Biochemistry and Molecular Pathology. Int. J. Mol. Sci. 2023, 24, 10830. [Google Scholar] [CrossRef]
- Ulm, M.; Ramesh, A.V.; McNamara, K.M.; Ponnusamy, S.; Sasano, H.; Narayanan, R. Therapeutic advances in hormone-dependent cancers: Focus on prostate, breast and ovarian cancers. Endocr. Connect. 2019, 8, R10–R26. [Google Scholar] [CrossRef] [PubMed]
- Emons, G. Hormone-Dependent Cancers: Molecular Mechanisms and Therapeutical Implications. Cells 2023, 12, 110. [Google Scholar] [CrossRef]
- Stueven, A.K.; Kayser, A.; Wetz, C.; Amthauer, H.; Wree, A.; Tacke, F.; Wiedenmann, B.; Roderburg, C.; Jann, H. Somatostatin Analogues in the Treatment of Neuroendocrine Tumors: Past, Present and Future. Int. J. Mol. Sci. 2019, 20, 3049. [Google Scholar] [CrossRef]
- Kong, G.; Callahan, J.; Hofman, M.S.; Pattison, D.A.; Akhurst, T.; Michael, M.; Eu, P.; Hicks, R.J. High clinical and morphologic response using (90)Y-DOTA-octreotate sequenced with (177)Lu-DOTA-octreotate induction peptide receptor chemoradionuclide therapy (PRCRT) for bulky neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 476–489. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int. J. Mol. Sci. 2023, 25, 436. [Google Scholar] [CrossRef] [PubMed]
- Angelousi, A.; Koumarianou, A.; Chatzellis, E.; Kaltsas, G. Resistance of neuroendocrine tumours to somatostatin analogs. Expert Rev. Endocrinol. Metab. 2023, 18, 33–52. [Google Scholar] [CrossRef]
- Siddiqui, Z.; Marginean, H.; Leung, M.; Asmis, T.; Vickers, M.; Goodwin, R. Real world use of lanreotide in neuroendocrine tumors. J. Gastrointest. Oncol. 2023, 14, 1488–1495. [Google Scholar] [CrossRef]
- Hatzoglou, A.; Bakogeorgou, E.; Kampa, M.; Panagiotou, S.; Martin, P.M.; Loukas, S.; Castanas, E. Somatostatin and opioid receptors in mammary tissue. Role in cancer cell growth. Adv. Exp. Med. Biol. 2000, 480, 55–63. [Google Scholar] [CrossRef]
- Drewe, J.; Sieber, C.C.; Mottet, C.; Wullschleger, C.; Larsen, F.; Beglinger, C. Dose-dependent gastrointestinal effects of the somatostatin analog lanreotide in healthy volunteers. Clin. Pharmacol. Ther. 1999, 65, 413–419. [Google Scholar] [CrossRef]
- Juliana, C.A.; Chai, J.; Arroyo, P.; Rico-Bautista, E.; Betz, S.F.; De León, D.D. A selective nonpeptide somatostatin receptor 5 agonist effectively decreases insulin secretion in hyperinsulinism. J. Biol. Chem. 2023, 299, 104816. [Google Scholar] [CrossRef]
- George, J.; Ramage, J.; White, B.; Srirajaskanthan, R. The role of serotonin inhibition within the treatment of carcinoid syndrome. Endocr. Oncol. 2023, 3, e220077. [Google Scholar] [CrossRef] [PubMed]
- Melhorn, P.; Kretschmer-Chott, E.; Wolff, L.; Haug, A.; Mazal, P.; Raderer, M.; Kiesewetter, B. Treatment patterns and oncological outcome of patients with advanced small intestinal neuroendocrine tumors: Real-world data from the Medical University of Vienna. Ther. Adv. Med. Oncol. 2022, 14, 17588359221138389. [Google Scholar] [CrossRef]
- Caruntu, A.; Moraru, L.; Surcel, M.; Munteanu, A.; Costache, D.O.; Tanase, C.; Constantin, C.; Scheau, C.; Neagu, M.; Caruntu, C. Persistent Changes of Peripheral Blood Lymphocyte Subsets in Patients with Oral Squamous Cell Carcinoma. Healthcare 2022, 10, 342. [Google Scholar] [CrossRef]
- König, R.; Zhou, W. Signal transduction in T helper cells: CD4 coreceptors exert complex regulatory effects on T cell activation and function. Curr. Issues Mol. Biol. 2004, 6, 1–15. [Google Scholar] [CrossRef]
- Lee, H.W.; Park, C.; Joung, J.G.; Kang, M.; Chung, Y.S.; Oh, W.J.; Yeom, S.Y.; Park, W.Y.; Kim, T.J.; Seo, S.I. Renal Cell Carcinoma-Infiltrating CD3low Vγ9Vδ1 T Cells Represent Potentially Novel Anti-Tumor Immune Players. Curr. Issues Mol. Biol. 2021, 43, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Machado-Alba, J.E.; Machado-Duque, M.E.; Gaviria-Mendoza, A.; Arsof-Saab, I.N.; Castellanos-Moreno, C.A.; Botero, L.; Triana, L. Prescription patterns of somatostatin analogs in patients with acromegaly and neuroendocrine tumors. J. Endocrinol. Investig. 2023, 46, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.L.; Patchett, S.; Anderson, J.V.; Farthing, M.J.; Besser, G.M.; Wass, J.A. Prevalence of Helicobacter pylori in acromegalic patients during treatment with octreotide. Clin. Endocrinol. 1995, 43, 683–687. [Google Scholar] [CrossRef]
- Anderson, J.V.; Catnach, S.; Lowe, D.G.; Fairclough, P.D.; Besser, G.M.; Wass, J.A. Prevalence of gastritis in patients with acromegaly: Untreated and during treatment with octreotide. Clin. Endocrinol. 1992, 37, 227–232. [Google Scholar] [CrossRef]
- Xu, W.F.; Wang, Y.; Huang, H.; Wu, J.W.; Che, Y.; Ding, C.J.; Zhang, Q.; Cao, W.L.; Cao, L.J. Octreotide-based therapies effectively protect mice from acute and chronic gastritis. Eur. J. Pharmacol. 2022, 928, 174976. [Google Scholar] [CrossRef] [PubMed]
- Thán, M.; Németh, J.; Szilvássy, Z.; Pintér, E.; Helyes, Z.; Szolcsányi, J. Systemic anti-inflammatory effect of somatostatin released from capsaicin-sensitive vagal and sciatic sensory fibres of the rat and guinea-pig. Eur. J. Pharmacol. 2000, 399, 251–258. [Google Scholar] [CrossRef]
- Szolcsányi, J.; Barthó, L. Capsaicin-sensitive afferents and their role in gastroprotection: An update. J. Physiol. Paris. 2001, 95, 181–188. [Google Scholar] [CrossRef]
- Periferakis, A.T.; Periferakis, A.; Periferakis, K.; Caruntu, A.; Badarau, I.A.; Savulescu-Fiedler, I.; Scheau, C.; Caruntu, C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023, 15, 4097. [Google Scholar] [CrossRef]
- Petran, E.M.; Periferakis, A.; Troumpata, L.; Periferakis, A.-T.; Scheau, A.-E.; Badarau, I.A.; Periferakis, K.; Caruntu, A.; Savulescu-Fiedler, I.; Sima, R.-M.; et al. Capsaicin: Emerging Pharmacological and Therapeutic Insights. Curr. Issues Mol. Biol. 2024, 46, 7895–7943. [Google Scholar] [CrossRef]
- Jancsó, G.; Király, E.; Such, G.; Joó, F.; Nagy, A. Neurotoxic effect of capsaicin in mammals. Acta Physiol. Hung. 1987, 69, 295–313. [Google Scholar] [PubMed]
- Ritter, S.; Dinh, T.T. Capsaicin-induced neuronal degeneration in the brain and retina of preweanling rats. J. Comp. Neurol. 1990, 296, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Satyanarayana, M.N. Capsaicin and gastric ulcers. Crit. Rev. Food Sci. Nutr. 2006, 46, 275–328. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, S.R.; Sârbu, M.I.; Matei, C.; Ilie, M.A.; Caruntu, C.; Constantin, C.; Neagu, M.; Tampa, M. Capsaicin: Friend or Foe in Skin Cancer and Other Related Malignancies? Nutrients 2017, 9, 1365. [Google Scholar] [CrossRef]
- Scheau, C.; Mihai, L.; Bădărău, I.; Caruntu, C. Emerging applications of some important natural compounds in the field of oncology. Farmacia 2020, 68, 984–991. [Google Scholar] [CrossRef]
- Dumitrache, M.D.; Jieanu, A.S.; Scheau, C.; Badarau, I.A.; Popescu, G.D.A.; Caruntu, A.; Costache, D.O.; Costache, R.S.; Constantin, C.; Neagu, M.; et al. Comparative effects of capsaicin in chronic obstructive pulmonary disease and asthma (Review). Exp. Ther. Med. 2021, 22, 917. [Google Scholar] [CrossRef]
- Popescu, G.D.A.; Scheau, C.; Badarau, I.A.; Dumitrache, M.D.; Caruntu, A.; Scheau, A.E.; Costache, D.O.; Costache, R.S.; Constantin, C.; Neagu, M.; et al. The Effects of Capsaicin on Gastrointestinal Cancers. Molecules 2020, 26, 94. [Google Scholar] [CrossRef]
- Scheau, C.; Badarau, I.A.; Caruntu, C.; Mihai, G.L.; Didilescu, A.C.; Constantin, C.; Neagu, M. Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma. Molecules 2019, 24, 2350. [Google Scholar] [CrossRef]
- Srinivasan, K. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef]
- Bencze, N.; Schvarcz, C.; Kriszta, G.; Danics, L.; Szőke, É.; Balogh, P.; Szállási, Á.; Hamar, P.; Helyes, Z.; Botz, B. Desensitization of Capsaicin-Sensitive Afferents Accelerates Early Tumor Growth via Increased Vascular Leakage in a Murine Model of Triple Negative Breast Cancer. Front. Oncol. 2021, 11, 685297. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, C.; Zhou, J.; Huo, M. Somatostatin Receptor-Mediated Tumor-Targeting Nanocarriers Based on Octreotide-PEG Conjugated Nanographene Oxide for Combined Chemo and Photothermal Therapy. Small 2016, 12, 3578–3590. [Google Scholar] [CrossRef]
- Aiello, P.; Consalvi, S.; Poce, G.; Raguzzini, A.; Toti, E.; Palmery, M.; Biava, M.; Bernardi, M.; Kamal, M.A.; Perry, G.; et al. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin. Cancer Biol. 2021, 69, 150–165. [Google Scholar] [CrossRef]
- Khan, H.; Ullah, H.; Martorell, M.; Valdes, S.E.; Belwal, T.; Tejada, S.; Sureda, A.; Kamal, M.A. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin. Cancer Biol. 2021, 69, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Matei, A.-M.; Caruntu, C.; Tampa, M.; Georgescu, S.R.; Matei, C.; Constantin, M.M.; Constantin, T.V.; Calina, D.; Ciubotaru, D.A.; Badarau, I.A.; et al. Applications of Nanosized-Lipid-Based Drug Delivery Systems in Wound Care. Appl. Sci. 2021, 11, 4915. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Luan, S.; Zhou, J.; Xiao, X.; Yang, Y.; Mao, C.; Fang, P.; Chen, L.; Zeng, X.; et al. The development and progress of nanomedicine for esophageal cancer diagnosis and treatment. Semin. Cancer Biol. 2022, 86, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 2019, 34, 20180032. [Google Scholar] [CrossRef]
- Chiu, H.Y.; Hsieh, Y.J.; Tsai, P.S. Acupuncture to Reduce Sleep Disturbances in Perimenopausal and Postmenopausal Women: A Systematic Review and Meta-analysis. Obstet. Gynecol. 2016, 127, 507–515. [Google Scholar] [CrossRef]
- Fu, H.; Sun, J.; Tan, Y.; Zhou, H.; Xu, W.; Zhou, J.; Chen, D.; Zhang, C.; Zhu, X.; Zhang, Y.; et al. Effects of acupuncture on the levels of serum estradiol and pituitary estrogen receptor beta in a rat model of induced super ovulation. Life Sci. 2018, 197, 109–113. [Google Scholar] [CrossRef]
- Dong, X.L.; Ran, J.K.; Zhang, H.J.; Chen, K.; Li, H.X. Acupuncture combined with medication improves endocrine hormone levels and ovarian reserve function in poor ovarian response patients undergoing in vitro fertilization-embryo transplantation. Zhen Ci Yan Jiu 2019, 44, 599–604. [Google Scholar] [CrossRef]
- Li, X.; Wu, Z.; Chen, Y.; Cai, R.; Wang, Z. Effect of Acupuncture on Simple Obesity and Serum Levels of Prostaglandin E and Leptin in Sprague-Dawley Rats. Comput. Math. Methods Med. 2021, 2021, 6730274. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Z.; Guo, T.; Zhuang, L.; Gao, X. Effect of acupuncture on menopausal hot flushes and serum hormone levels: A systematic review and meta-analysis. Acupunct. Med. 2022, 40, 289–298. [Google Scholar] [CrossRef]
- Amorim, D.; Brito, I.; Caseiro, A.; Figueiredo, J.P.; Pinto, A.; Macedo, I.; Machado, J. Electroacupuncture and acupuncture in the treatment of anxiety—A double blinded randomized parallel clinical trial. Complement. Ther. Clin. Pract. 2022, 46, 101541. [Google Scholar] [CrossRef]
- Periferakis, K.; Periferakis, A. Treating gout caused by renal insufficiency with acupuncture and moxibustion: A case report. Rom. J. Clin. Res. 2023, 6, 36–43. [Google Scholar]
- O’Regan, D.; Filshie, J. Acupuncture and cancer. Auton. Neurosci. 2010, 157, 96–100. [Google Scholar] [CrossRef]
- Yang, J.; Wahner-Roedler, D.L.; Zhou, X.; Johnson, L.A.; Do, A.; Pachman, D.R.; Chon, T.Y.; Salinas, M.; Millstine, D.; Bauer, B.A. Acupuncture for palliative cancer pain management: Systematic review. BMJ Support. Palliat. Care 2021, 11, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Z.; Huang, S.; Qiu, X.; Lao, L.; Huang, Y.; Zhang, Z.J. Acupuncture for cancer-related insomnia: A systematic review and meta-analysis. Phytomedicine 2022, 102, 154160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.W.; Hou, W.B.; Pu, F.L.; Wang, X.F.; Wang, Y.R.; Yang, M.; Cheng, K.; Wang, Y.; Robinson, N.; Liu, J.P. Acupuncture for cancer-related conditions: An overview of systematic reviews. Phytomedicine 2022, 106, 154430. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.X.; Li, C.Y.; Ji, C.F.; Yang, B.; Li, W.M. The role of substance P and somatostatin in acupuncture and moxibustion-induced postsynaptic inhibition. Zhen Ci Yan Jiu 1993, 18, 290–295. [Google Scholar]
- Jin, H.O.; Zhou, L.; Lee, K.Y.; Chang, T.M.; Chey, W.Y. Inhibition of acid secretion by electrical acupuncture is mediated via beta-endorphin and somatostatin. Am. J. Physiol. 1996, 271, G524–G530. [Google Scholar] [CrossRef]
- Ruan, H.Z.; Li, X.C.; Li, H.D.; Zhao, B.Y. Somatostatin and electroacupuncture inhibited c-fos expression in spinal cord of arthritic rats. Zhongguo Yao Li Xue Bao 1997, 18, 474–476. [Google Scholar]
- Lin, Y.P.; Yi, S.X.; Yan, J.; Chang, X.R. Effect of acupuncture at Foot-Yangming Meridian on gastric mucosal blood flow, gastric motility and brain-gut peptide. World J. Gastroenterol. 2007, 13, 2229–2233. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.L.; Li, Y.; Wei, H.F.; Ren, X.X.; Sun, J.; Zhang, L.F.; Zhu, J. Effect of electro-acupuncture at different acupoints on neuropeptide and somatostatin in rat brain with irritable bowel syndrome. Chin. J. Integr. Med. 2012, 18, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.R.; Xiao, R.F.; Peng, Z.P.; Zuo, H.N.; Zhu, K.; Wang, S.M. Effect of acupuncture at “Zusanli” (ST 36 and “Taichong” (LR 3) on gastrointestinal hormone levels in rats with diarrhea type irritable bowel syndrome. Zhen Ci Yan Jiu 2012, 37, 363–368. [Google Scholar] [PubMed]
- Shao, Y.; Lai, X.S.; Gong, Y.Z.; Yan, B.; He, L.L.; Luo, R.; Tang, C.Z. Effects of electroacupuncture on plasma and cerebral somatostatin and beta-EP contents and learning-memory ability in vascular dementia rats. Zhen Ci Yan Jiu 2008, 33, 98–102. [Google Scholar]
- Tian, Q.; Wang, L.; Yao, L.; Zhang, L.; Zhang, H. Effects of Zusanli electroacupuncture on somatostatin expression in the rat brainstem. J. Mol. Neurosci. 2013, 49, 28–37. [Google Scholar] [CrossRef]
- Yi, S.X.; Yang, R.D.; Yan, J.; Chang, X.R.; Ling, Y.P. Effect of electro-acupuncture at Foot-Yangming Meridian on somatostatin and expression of somatostatin receptor genes in rabbits with gastric ulcer. World J. Gastroenterol. 2006, 12, 1761–1765. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, Y.; Kuang, P.; Wu, W.; Zhang, F.; Liu, J. Effects of electro-acupuncture on somatostatin and pancreatic polypeptide in ischemic cerebrovascular diseases. J. Tradit. Chin. Med. 1999, 19, 54–58. [Google Scholar]
- Wang, P.; Yang, J.; Liu, G.; Chen, H.; Yang, F. Effects of moxibustion at head-points on levels of somatostatin and arginine vasopressin from cerebrospinal fluid in patients with vascular dementia: A randomized controlled trial. Zhong Xi Yi Jie He Xue Bao 2010, 8, 636–640. [Google Scholar] [CrossRef]
- Fang, Z. Expression of somatostatin mRNA and coexistence of SOM mRNA and 5-HT in nucleus raphe dorsalis following noxious stimulation and electroacupuncture analgesia. Zhen Ci Yan Jiu 1996, 21, 22–26. [Google Scholar] [PubMed]
- Guo, Y.; Luo, R.; Wang, J.; Zhao, Y. Effect of somatostatin on functions of acupuncture meridians. Zhen Ci Yan Jiu 2011, 36, 307–312. [Google Scholar] [PubMed]
- Andras, I.; Crisan, D.; Cata, E.; Tamas-Szora, A.; Caraiani, C.; Coman, R.T.; Bungardean, C.; Mirescu, C.; Coman, I.; Crisan, N. MRI-TRUS fusion guided prostate biopsy—Initial experience and assessment of the role of contralateral lobe systematic biopsy. Med. Ultrason. 2019, 21, 37–44. [Google Scholar] [CrossRef]
- Cata, E.D.; Andras, I.; Telecan, T.; Tamas-Szora, A.; Coman, R.T.; Stanca, D.V.; Coman, I.; Crisan, N. MRI-targeted prostate biopsy: The next step forward! Med. Pharm. Rep. 2021, 94, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Malik, D.; Pant, V.; Sen, I.; Thakral, P.; Das, S.S.; Cb, V. The Role of PET-CT-Guided Metabolic Biopsies in Improving Yield of Inconclusive Anatomical Biopsies: A Review of 5 Years in a Teaching Hospital. Diagnostics 2023, 13, 2221. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-h.; Xiao, L.-f.; Liu, H.-w.; Yang, Z.-q.; Liang, X.-x.; Chen, Y.; Lei, J.; Deng, Z.-m. PET/CT-guided versus CT-guided percutaneous core biopsies in the diagnosis of bone tumors and tumor-like lesions: Which is the better choice? Cancer Imaging 2019, 19, 69. [Google Scholar] [CrossRef]
- Cerci, J.J.; Bogoni, M.; Cerci, R.J.; Masukawa, M.; Neto, C.C.; Krauzer, C.; Fanti, S.; Sakamoto, D.G.; Barreiros, R.B.; Nanni, C. PET/CT-guided biopsy of suspected lung lesions requires less rebiopsy than CT-guided biopsy due to inconclusive results. J. Nucl. Med. 2021, 62, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Popa, G.A.; Preda, E.M.; Scheau, C.; Vilciu, C.; Lupescu, I.G. Updates in MRI characterization of the thymus in myasthenic patients. J. Med. Life 2012, 5, 206–210. [Google Scholar]
- Li, H.R.; Gao, J.; Jin, C.; Jiang, J.H.; Ding, J.Y. Comparison between CT and MRI in the Diagnostic Accuracy of Thymic Masses. J. Cancer 2019, 10, 3208–3213. [Google Scholar] [CrossRef]
- Hernandez Vargas, S.; Kossatz, S.; Voss, J.; Ghosh, S.C.; Tran Cao, H.S.; Simien, J.; Reiner, T.; Dhingra, S.; Fisher, W.E.; Azhdarinia, A. Specific Targeting of Somatostatin Receptor Subtype-2 for Fluorescence-Guided Surgery. Clin. Cancer Res. 2019, 25, 4332–4342. [Google Scholar] [CrossRef]
- Dragosloveanu, S.; Petre, M.A.; Gherghe, M.E.; Nedelea, D.G.; Scheau, C.; Cergan, R. Overall Accuracy of Radiological Digital Planning for Total Hip Arthroplasty in a Specialized Orthopaedics Hospital. J. Clin. Med. 2023, 12, 4503. [Google Scholar] [CrossRef]
- Chatalic, K.L.; Kwekkeboom, D.J.; de Jong, M. Radiopeptides for Imaging and Therapy: A Radiant Future. J. Nucl. Med. 2015, 56, 1809–1812. [Google Scholar] [CrossRef]
- Fortunati, E.; Bonazzi, N.; Zanoni, L.; Fanti, S.; Ambrosini, V. Molecular imaging Theranostics of Neuroendocrine Tumors. Semin. Nucl. Med. 2023, 53, 539–554. [Google Scholar] [CrossRef]
- Acker, G.; Kluge, A.; Lukas, M.; Conti, A.; Pasemann, D.; Meinert, F.; Anh Nguyen, P.T.; Jelgersma, C.; Loebel, F.; Budach, V.; et al. Impact of 68Ga-DOTATOC PET/MRI on robotic radiosurgery treatment planning in meningioma patients: First experiences in a single institution. Neurosurg. Focus 2019, 46, E9. [Google Scholar] [CrossRef]
- Dragosloveanu, S.; Petre, M.A.; Capitanu, B.S.; Dragosloveanu, C.D.M.; Cergan, R.; Scheau, C. Initial Learning Curve for Robot-Assisted Total Knee Arthroplasty in a Dedicated Orthopedics Center. J. Clin. Med. 2023, 12, 6950. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Deng, J.; Li, H.; Ji, Z.; Wen, J. Laparoscopic resection of a paraganglioma behind the retrohepatic segment of the inferior vena cava: A case report and literature review. Front. Endocrinol. 2023, 14, 1171045. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Martínez, A.D.; van den Dungen, R.; Dogan-Oruc, F.; van Koetsveld, P.M.; Culler, M.D.; de Herder, W.W.; Luque, R.M.; Feelders, R.A.; Hofland, L.J. Effects of novel somatostatin-dopamine chimeric drugs in 2D and 3D cell culture models of neuroendocrine tumors. Endocr. Relat. Cancer 2019, 26, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Timofticiuc, I.A.; Călinescu, O.; Iftime, A.; Dragosloveanu, S.; Caruntu, A.; Scheau, A.E.; Badarau, I.A.; Didilescu, A.C.; Caruntu, C.; Scheau, C. Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications. J. Funct. Biomater. 2023, 15, 7. [Google Scholar] [CrossRef]
- Periferakis, A.; Periferakis, A.T.; Troumpata, L.; Dragosloveanu, S.; Timofticiuc, I.A.; Georgatos-Garcia, S.; Scheau, A.E.; Periferakis, K.; Caruntu, A.; Badarau, I.A.; et al. Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction. Biomimetics 2024, 9, 154. [Google Scholar] [CrossRef]
- Kiseljak-Vassiliades, K.; Xu, M.; Mills, T.S.; Smith, E.E.; Silveira, L.J.; Lillehei, K.O.; Kerr, J.M.; Kleinschmidt-DeMasters, B.K.; Wierman, M.E. Differential somatostatin receptor (SSTR) 1–5 expression and downstream effectors in histologic subtypes of growth hormone pituitary tumors. Mol. Cell. Endocrinol. 2015, 417, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Hankus, J.; Tomaszewska, R. Neuroendocrine neoplasms and somatostatin receptor subtypes expression. Nucl. Med. Rev. Cent. East. Eur. 2016, 19, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, V.; Hepworth, M.B.; Luty, J.S.; Kelly, E.; Henderson, G. Somatostatin receptor desensitization in NG108-15 cells. A consequence of receptor sequestration. J. Biol. Chem. 1998, 273, 33174–33183. [Google Scholar] [CrossRef] [PubMed]
Receptor | First Cloning | MR * | Length | Chromosomal Location | Major Tissue Sites | References |
---|---|---|---|---|---|---|
SSTR1 | 1992 | 45,000 | 391 | 14q13 | Brain/CNS, gastrointestinal tract, pancreas | [27,28,29,30,31] |
SSTR2 | 1992 | 41,305 | 369 | 17q24 | Brain/CNS, gastrointestinal tract, pancreas, lymph tissue, adrenal glands | [27,32,33,34] |
SSTR3 | 1992 | 46,000 | 418 | 22q13.1 | Brain/CNS, pancreas, gastrointestinal tract, lymph tissue, adrenal glands | [35,36] |
SSTR4 | 1993 | 45,000 | 388 | 20p11.2 | Brain/CNS, retina, placenta | [32,37,38,39,40] |
SSTR5 | 1994 | 39,000 | 364 | 16p13.3 | Brain/CNS, pancreas, gastrointestinal tract, lymph tissue, adrenal glands, aortic smooth muscle cells, Sertoli cells | [5,41,42,43,44] |
SSTR | Functions | References |
---|---|---|
SSTR1 | Inhibition of GH, prolactin and calcitonin secretion, (possible) anti-inflammatory and anti-nociceptive, regulation of hippocampal function | [5,20,45] |
SSTR2 | Inhibition of gastrin, histamine, growth hormone, adrenocorticotropin, glucagon, insulin, TSH, interferon-γ secretion, modulation of eating and drinking behavior, inhibition of stress responses, antidepressant effects, retinal neuroprotection | [20,46,47,48,49,50,51,52] |
SSTR3 | Cell proliferation reduction and apoptosis induction, insulin release inhibition, growth hormone release inhibition | [20,53,54,55,56] |
SSTR4 | Learning and memory, locomotor activity increase, possible modulation of behavioral responses | [5,20,57,58] |
SSTR5 | Inhibition of growth hormone, adrenocorticotropin, insulin, glucagon-like peptide-1 and amylase secretion, (possible) anti-stress function, (possible) gastric emptying mediation | [5,20,59,60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Periferakis, A.; Tsigas, G.; Periferakis, A.-T.; Tone, C.M.; Hemes, D.A.; Periferakis, K.; Troumpata, L.; Badarau, I.A.; Scheau, C.; Caruntu, A.; et al. Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Curr. Issues Mol. Biol. 2024, 46, 9721-9759. https://doi.org/10.3390/cimb46090578
Periferakis A, Tsigas G, Periferakis A-T, Tone CM, Hemes DA, Periferakis K, Troumpata L, Badarau IA, Scheau C, Caruntu A, et al. Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Current Issues in Molecular Biology. 2024; 46(9):9721-9759. https://doi.org/10.3390/cimb46090578
Chicago/Turabian StylePeriferakis, Argyrios, Georgios Tsigas, Aristodemos-Theodoros Periferakis, Carla Mihaela Tone, Daria Alexandra Hemes, Konstantinos Periferakis, Lamprini Troumpata, Ioana Anca Badarau, Cristian Scheau, Ana Caruntu, and et al. 2024. "Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias" Current Issues in Molecular Biology 46, no. 9: 9721-9759. https://doi.org/10.3390/cimb46090578
APA StylePeriferakis, A., Tsigas, G., Periferakis, A. -T., Tone, C. M., Hemes, D. A., Periferakis, K., Troumpata, L., Badarau, I. A., Scheau, C., Caruntu, A., Savulescu-Fiedler, I., Caruntu, C., & Scheau, A. -E. (2024). Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Current Issues in Molecular Biology, 46(9), 9721-9759. https://doi.org/10.3390/cimb46090578