Associations of SEMA7A, SEMA4D, ADAMTS10, and ADAM8 with KRAS, NRAS, BRAF, PIK3CA, and AKT Gene Mutations, Microsatellite Instability Status, and Cytokine Expression in Colorectal Cancer Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group Characteristics
2.2. Tissue Homogenization and Enzyme-Linked Immunosorbent Assay (ELISA) Analyses
2.3. Mutational Landscape Evaluation of CRC Tumors
2.4. Microsatellite Instability (MSI) Evaluation
2.5. Cytokine Screening Panel and Principal Component Analysis (PCA)
2.6. Gene Set Enrichment Analysis (GSEA) for SEMA7A, SEMA4D, ADAM8 and ADAMTS10 in CRC
2.7. Statistical Analyses
3. Results
3.1. Elevated Concentration of SEMA7A, SEMA4D, ADAM8, and ADAMTS10 in CRC Tissue
3.2. Associations between Expression of SEMA7A, SEMA4D, ADAM8, ADAMTS10, Clinicopathological Parameters, and MSI Status
3.3. Mutational Landscape in CRC Tumors Cohort and the Expression of the Examined Proteins
3.4. Correlations between the Expression of SEMA7A, SEMA4D, ADAM8, and ADAMTS10
3.5. Principal Component Analysis (PCA) for Cytokine Screening Panel
3.6. Gene Set Enrichment Analysis (GSEA) for High vs. Low SEMA7A, SEMA4D, ADAM8, ADAMTS10 Gene Expression in CRC Tumors
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borelli, B.; Antoniotti, C.; Carullo, M.; Germani, M.M.; Conca, V.; Masi, G. Immune-Checkpoint Inhibitors (ICIs) in Metastatic Colorectal Cancer (mCRC) Patients beyond Microsatellite Instability. Cancers 2022, 14, 4974. [Google Scholar] [CrossRef]
- Orlandi, E.; Giuffrida, M.; Trubini, S.; Luzietti, E.; Ambroggi, M.; Anselmi, E.; Capelli, P.; Romboli, A. Unraveling the Interplay of KRAS, NRAS, BRAF, and Micro-Satellite Instability in Non-Metastatic Colon Cancer: A Systematic Review. Diagnostics 2024, 14, 1001. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, N.; Rose-John, S.; Schmidt-Arras, D. ADAM-Mediated Signalling Pathways in Gastrointestinal Cancer Formation. Int. J. Mol. Sci. 2020, 21, 5133. [Google Scholar] [CrossRef] [PubMed]
- Wagner, W.; Ochman, B.; Wagner, W. Semaphorin 6 Family—An Important Yet Overlooked Group of Signaling Proteins Involved in Cancerogenesis. Cancers 2023, 15, 5536. [Google Scholar] [CrossRef]
- Kikutani, H.; Suzuki, K.; Kumanogoh, A. Immune Semaphorins: Increasing Members and Their Diverse Roles. Adv. Immunol. 2007, 93, 121–143. [Google Scholar] [PubMed]
- Chen, T.; Li, S.; Wang, L. Semaphorins in Tumor Microenvironment: Biological Mechanisms and Therapeutic Progress. Int. Immunopharmacol. 2024, 132, 112035. [Google Scholar] [CrossRef] [PubMed]
- Herd, C.S.; Yu, X.; Cui, Y.; Franz, A.W.E. Identification of the Extracellular Metallo-Endopeptidases ADAM and ADAMTS in the Yellow Fever Mosquito Aedes Aegypti. Insect Biochem. Mol. Biol. 2022, 148, 103815. [Google Scholar] [CrossRef]
- Edwards, D.R.; Handsley, M.M.; Pennington, C.J. The ADAM Metalloproteinases. Mol. Asp. Med. 2008, 29, 258–289. [Google Scholar] [CrossRef]
- Cal, S.; López-Otín, C. ADAMTS Proteases and Cancer. Matrix Biol. 2015, 44–46, 77–85. [Google Scholar] [CrossRef]
- Kelwick, R.; Desanlis, I.; Wheeler, G.N.; Edwards, D.R. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) Family. Genome Biol. 2015, 16, 113. [Google Scholar] [CrossRef]
- Ochman, B.; Mielcarska, S.; Kula, A.; Dawidowicz, M.; Robotycka, J.; Piecuch, J.; Szrot, M.; Dzięgielewska-Gęsiak, S.; Muc-Wierzgoń, M.; Waniczek, D.; et al. Do Elevated YKL-40 Levels Drive the Immunosuppressive Tumor Microenvironment in Colorectal Cancer? Assessment of the Association of the Expression of YKL-40, MMP-8, IL17A, and PD-L1 with Coexisting Type 2 Diabetes, Obesity, and Active Smoking. Curr. Issues Mol. Biol. 2023, 45, 2781–2797. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, M.; Kula, A.; Mielcarska, S.; Kiczmer, P.; Skiba, H.; Krygier, M.; Chrabańska, M.; Piecuch, J.; Szrot, M.; Robotycka, J.; et al. B7H4 Expression Is More Frequent in MSS Status Colorectal Cancer and Is Negatively Associated with Tumour Infiltrating Lymphocytes. Cells 2023, 12, 861. [Google Scholar] [CrossRef]
- Mielcarska, S.; Dawidowicz, M.; Kula, A.; Kiczmer, P.; Skiba, H.; Krygier, M.; Chrabańska, M.; Piecuch, J.; Szrot, M.; Ochman, B.; et al. B7H3 Role in Reshaping Immunosuppressive Landscape in MSI and MSS Colorectal Cancer Tumours. Cancers 2023, 15, 3136. [Google Scholar] [CrossRef] [PubMed]
- Kula, A.; Dawidowicz, M.; Mielcarska, S.; Kiczmer, P.; Skiba, H.; Krygier, M.; Chrabańska, M.; Piecuch, J.; Szrot, M.; Robotycka, J.; et al. Overexpression and Role of HHLA2, a Novel Immune Checkpoint, in Colorectal Cancer. Int. J. Mol. Sci. 2023, 24, 5876. [Google Scholar] [CrossRef]
- The Gene Ontology Consortium; Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; et al. The Gene Ontology Knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for Taxonomy-Based Analysis of Pathways and Genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Dampier, C.H.; Devall, M.; Jennelle, L.T.; Díez-Obrero, V.; Plummer, S.J.; Moreno, V.; Casey, G. Oncogenic Features in Histologically Normal Mucosa: Novel Insights into Field Effect from a Mega-Analysis of Colorectal Transcriptomes. Clin. Transl. Gastroenterol. 2020, 11, e00210. [Google Scholar] [CrossRef]
- org.Hs.eg.db. Available online: http://bioconductor.org/packages/org.Hs.eg.db/ (accessed on 15 July 2024).
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) Hallmark Gene Set Collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global Burden of Colorectal Cancer in 2020 and 2040: Incidence and Mortality Estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Abbasi-Kangevari, M.; Abd-Rabu, R.; Abidi, H.; Abu-Gharbieh, E.; Acuna, J.M.; Adhikari, S.; Advani, S.M.; Afzal, M.S.; Meybodi, M.A.; et al. Global, Regional, and National Burden of Colorectal Cancer and Its Risk Factors, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol. Hepatol. 2022, 7, 627–647. [Google Scholar] [CrossRef]
- Cardoso, R.; Guo, F.; Heisser, T.; Hackl, M.; Ihle, P.; De Schutter, H.; Van Damme, N.; Valerianova, Z.; Atanasov, T.; Májek, O.; et al. Colorectal Cancer Incidence, Mortality, and Stage Distribution in European Countries in the Colorectal Cancer Screening Era: An International Population-Based Study. Lancet Oncol. 2021, 22, 1002–1013. [Google Scholar] [CrossRef]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The Consensus Molecular Subtypes of Colorectal Cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef]
- Joanito, I.; Wirapati, P.; Zhao, N.; Nawaz, Z.; Yeo, G.; Lee, F.; Eng, C.L.P.; Macalinao, D.C.; Kahraman, M.; Srinivasan, H.; et al. Single-Cell and Bulk Transcriptome Sequencing Identifies Two Epithelial Tumor Cell States and Refines the Consensus Molecular Classification of Colorectal Cancer. Nat. Genet. 2022, 54, 963–975. [Google Scholar] [CrossRef]
- Cervantes, A.; Adam, R.; Roselló, S.; Arnold, D.; Normanno, N.; Taïeb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; et al. Metastatic Colorectal Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2023, 34, 10–32. [Google Scholar] [CrossRef] [PubMed]
- Cathomas, G. PIK3CA in Colorectal Cancer. Front. Oncol. 2014, 4, 35. [Google Scholar] [CrossRef]
- De Roock, W.; De Vriendt, V.; Normanno, N.; Ciardiello, F.; Tejpar, S. KRAS, BRAF, PIK3CA, and PTEN Mutations: Implications for Targeted Therapies in Metastatic Colorectal Cancer. Lancet Oncol. 2011, 12, 594–603. [Google Scholar] [CrossRef]
- Zeissig, M.N.; Ashwood, L.M.; Kondrashova, O.; Sutherland, K.D. Next Batter up! Targeting Cancers with KRAS-G12D Mutations. Trends Cancer 2023, 9, 955–967. [Google Scholar] [CrossRef]
- Mahdi, Y.; Khmou, M.; Souadka, A.; Agouri, H.E.; Ech-Charif, S.; Mounjid, C.; Khannoussi, B.E. Correlation between KRAS and NRAS Mutational Status and Clinicopathological Features in 414 Cases of Metastatic Colorectal Cancer in Morocco: The Largest North African Case Series. BMC Gastroenterol. 2023, 23, 193. [Google Scholar] [CrossRef] [PubMed]
- Benmokhtar, S.; Laraqui, A.; Hilali, F.; Bajjou, T.; El Zaitouni, S.; Jafari, M.; Baba, W.; Elannaz, H.; Lahlou, I.A.; Hafsa, C.; et al. RAS/RAF/MAPK Pathway Mutations as Predictive Biomarkers in Middle Eastern Colorectal Cancer: A Systematic Review. Clin. Med Insights Oncol. 2024, 18, 11795549241255651. [Google Scholar] [CrossRef] [PubMed]
- Koulouridi, A.; Karagianni, M.; Messaritakis, I.; Sfakianaki, M.; Voutsina, A.; Trypaki, M.; Bachlitzanaki, M.; Koustas, E.; Karamouzis, M.V.; Ntavatzikos, A.; et al. Prognostic Value of KRAS Mutations in Colorectal Cancer Patients. Cancers 2022, 14, 3320. [Google Scholar] [CrossRef] [PubMed]
- Ucar, G.; Ergun, Y.; Aktürk Esen, S.; Acikgoz, Y.; Dirikoc, M.; Esen, İ.; Bal, Ö.; Uncu, D. Prognostic and Predictive Value of KRAS Mutation Number in Metastatic Colorectal Cancer. Medicine 2020, 99, e22407. [Google Scholar] [CrossRef]
- Zeng, J.; Fan, W.; Li, J.; Wu, G.; Wu, H. KRAS/NRAS Mutations Associated with Distant Metastasis and BRAF/PIK3CA Mutations Associated with Poor Tumor Differentiation in Colorectal Cancer. Int. J. Gen. Med. 2023, 16, 4109–4120. [Google Scholar] [CrossRef]
- Benmokhtar, S.; Laraqui, A.; El Boukhrissi, F.; Hilali, F.; Bajjou, T.; Jafari, M.; Elzaitouni, S.; Baba, W.; El Mchichi, B.; Elannaz, H.; et al. Clinical Significance of Somatic Mutations in RAS/RAF/MAPK Signaling Pathway in Moroccan and North African Colorectal Cancer Patients. Asian Pac. J. Cancer Prev. 2022, 23, 3725–3733. [Google Scholar] [CrossRef]
- De Stefano, A.; Carlomagno, C. Beyond KRAS: Predictive Factors of the Efficacy of Anti-EGFR Monoclonal Antibodies in the Treatment of Metastatic Colorectal Cancer. World J. Gastroenterol. 2014, 20, 9732–9743. [Google Scholar] [CrossRef]
- Hamarsheh, S.; Groß, O.; Brummer, T.; Zeiser, R. Immune Modulatory Effects of Oncogenic KRAS in Cancer. Nat. Commun. 2020, 11, 5439. [Google Scholar] [CrossRef]
- E, J.; Xing, J.; Gong, H.; He, J.; Zhang, W. Combine MEK Inhibition with PI3K/mTOR Inhibition Exert Inhibitory Tumor Growth Effect on KRAS and PIK3CA Mutation CRC Xenografts Due to Reduced Expression of VEGF and Matrix Metallopeptidase-9. Tumor Biol. 2015, 36, 1091–1097. [Google Scholar] [CrossRef]
- De Roock, W.; Jonker, D.J.; Di Nicolantonio, F.; Sartore-Bianchi, A.; Tu, D.; Siena, S.; Lamba, S.; Arena, S.; Frattini, M.; Piessevaux, H.; et al. Association of KRAS p.G13D Mutation with Outcome in Patients with Chemotherapy-Refractory Metastatic Colorectal Cancer Treated With Cetuximab. JAMA 2010, 304, 1812–1820. [Google Scholar] [CrossRef]
- Ros, J.; Vaghi, C.; Baraibar, I.; Saoudi González, N.; Rodríguez-Castells, M.; García, A.; Alcaraz, A.; Salva, F.; Tabernero, J.; Elez, E. Targeting KRAS G12C Mutation in Colorectal Cancer, A Review: New Arrows in the Quiver. Int. J. Mol. Sci. 2024, 25, 3304. [Google Scholar] [CrossRef] [PubMed]
- Roth, A.D.; Tejpar, S.; Delorenzi, M.; Yan, P.; Fiocca, R.; Klingbiel, D.; Dietrich, D.; Biesmans, B.; Bodoky, G.; Barone, C.; et al. Prognostic Role of KRAS and BRAF in Stage II and III Resected Colon Cancer: Results of the Translational Study on the PETACC-3, EORTC 40993, SAKK 60-00 Trial. J. Clin. Oncol. 2010, 28, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Tol, J.; Nagtegaal, I.D.; Punt, C.J.A. BRAF Mutation in Metastatic Colorectal Cancer. N. Engl. J. Med. 2009, 361, 98–99. [Google Scholar] [CrossRef]
- Domingo, E.; Niessen, R.C.; Oliveira, C.; Alhopuro, P.; Moutinho, C.; Espín, E.; Armengol, M.; Sijmons, R.H.; Kleibeuker, J.H.; Seruca, R.; et al. BRAF-V600E Is Not Involved in the Colorectal Tumorigenesis of HNPCC in Patients with Functional MLH1 and MSH2 Genes. Oncogene 2005, 24, 3995–3998. [Google Scholar] [CrossRef]
- Taieb, J.; Le Malicot, K.; Shi, Q.; Penault-Llorca, F.; Bouché, O.; Tabernero, J.; Mini, E.; Goldberg, R.M.; Folprecht, G.; Luc Van Laethem, J.; et al. Prognostic Value of BRAF and KRAS Mutations in MSI and MSS Stage III Colon Cancer. J. Natl. Cancer Inst. 2017, 109, djw272. [Google Scholar] [CrossRef]
- Clancy, C.; Burke, J.P.; Kalady, M.F.; Coffey, J.C. BRAF Mutation Is Associated with Distinct Clinicopathological Characteristics in Colorectal Cancer: A Systematic Review and Meta-Analysis. Color. Dis. 2013, 15, e711–e718. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Köhne, C.-H.; Láng, I.; Folprecht, G.; Nowacki, M.P.; Cascinu, S.; Shchepotin, I.; Maurel, J.; Cunningham, D.; Tejpar, S.; et al. Cetuximab plus Irinotecan, Fluorouracil, and Leucovorin as First-Line Treatment for Metastatic Colorectal Cancer: Updated Analysis of Overall Survival According to Tumor KRAS and BRAF Mutation Status. J. Clin. Oncol. 2011, 29, 2011–2019. [Google Scholar] [CrossRef]
- Nakamura, K.; Yaguchi, T.; Murata, M.; Ota, Y.; Mikoshiba, A.; Kiniwa, Y.; Okuyama, R.; Kawakami, Y. Tumor Eradication by Triplet Therapy with BRAF Inhibitor, TLR 7 Agonist, and PD-1 Antibody for BRAF-Mutated Melanoma. Cancer Sci. 2024, 115, 2879–2892. [Google Scholar] [CrossRef] [PubMed]
- Mondru, A.K.; Wilkinson, B.; Aljasir, M.A.; Alrumayh, A.; Greaves, G.; Emmett, M.; Albohairi, S.; Pritchard-Jones, R.; Cross, M.J. The ERK5 Pathway in BRAFV600E Melanoma Cells Plays a Role in Development of Acquired Resistance to Dabrafenib but Not Vemurafenib. FEBS Lett. 2024, 598, 2011–2027. [Google Scholar] [CrossRef]
- Loria, R.; Bon, G.; Perotti, V.; Gallo, E.; Bersani, I.; Baldassari, P.; Porru, M.; Leonetti, C.; Di Carlo, S.; Visca, P.; et al. Sema6A and Mical1 Control Cell Growth and Survival of BRAFV600E Human Melanoma Cells. Oncotarget 2015, 6, 2779–2793. [Google Scholar] [CrossRef]
- Papa, A.; Pandolfi, P.P. The PTEN–PI3K Axis in Cancer. Biomolecules 2019, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Morikawa, T.; Lochhead, P.; Imamura, Y.; Kuchiba, A.; Yamauchi, M.; Nosho, K.; Qian, Z.R.; Nishihara, R.; Meyerhardt, J.A.; et al. Prognostic Role of PIK3CA Mutation in Colorectal Cancer: Cohort Study and Literature Review. Clin. Cancer Res. 2012, 18, 2257–2268. [Google Scholar] [CrossRef] [PubMed]
- My Cancer Genome. Colorectal Carcinoma. Available online: https://www.mycancergenome.org/content/disease/colorectal-carcinoma/#ref-2 (accessed on 13 July 2024).
- Liu, L.; Yang, L.; Liu, X.; Liu, M.; Liu, J.; Feng, X.; Nie, Z.; Luo, J. SEMA4D/PlexinB1 Promotes AML Progression via Activation of PI3K/Akt Signaling. J. Transl. Med. 2022, 20, 304. [Google Scholar] [CrossRef]
- Peltomäki, P.; Lothe, R.A.; Aaltonen, L.A.; Pylkkänen, L.; Nyström-Lahti, M.; Seruca, R.; David, L.; Holm, R.; Ryberg, D.; Haugen, A. Microsatellite Instability Is Associated with Tumors That Characterize the Hereditary Non-Polyposis Colorectal Carcinoma Syndrome. Cancer Res. 1993, 53, 5853–5855. [Google Scholar]
- Herman, J.G.; Umar, A.; Polyak, K.; Graff, J.R.; Ahuja, N.; Issa, J.P.; Markowitz, S.; Willson, J.K.; Hamilton, S.R.; Kinzler, K.W.; et al. Incidence and Functional Consequences of hMLH1 Promoter Hypermethylation in Colorectal Carcinoma. Proc. Natl. Acad. Sci. USA 1998, 95, 6870–6875. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, S.; Yao, Y.; Liu, S.; Liu, Z.; Liu, N.; Jin, Y.; Zhang, Y.; Yin, F.; Han, G.; et al. Long-Term Survivals of Immune Checkpoint Inhibitors as Neoadjuvant and Adjuvant Therapy in dMMR/MSI-H Colorectal and Gastric Cancers. Cancer Immunol. Immunother. 2024, 73, 182. [Google Scholar] [CrossRef]
- Liu, H.; Juo, Z.S.; Shim, A.H.-R.; Focia, P.J.; Chen, X.; Garcia, K.C.; He, X. Structural Basis of Semaphorin-Plexin Recognition and Viral Mimicry from Sema7A and A39R Complexes with PlexinC1. Cell 2010, 142, 749–761. [Google Scholar] [CrossRef]
- Garcia-Areas, R.; Libreros, S.; Iragavarapu-Charyulu, V. Semaphorin7A: Branching beyond Axonal Guidance and into Immunity. Immunol. Res. 2013, 57, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, L.; Zhang, L.; Huang, D. The Involvement of Semaphorin 7A in Tumorigenic and Immunoinflammatory Regulation. J. Cell. Physiol. 2021, 236, 6235–6248. [Google Scholar] [CrossRef]
- Suzuki, K.; Okuno, T.; Yamamoto, M.; Pasterkamp, R.J.; Takegahara, N.; Takamatsu, H.; Kitao, T.; Takagi, J.; Rennert, P.D.; Kolodkin, A.L.; et al. Semaphorin 7A Initiates T-Cell-Mediated Inflammatory Responses through Alpha1beta1 Integrin. Nature 2007, 446, 680–684. [Google Scholar] [CrossRef]
- Holmes, S.; Downs, A.M.; Fosberry, A.; Hayes, P.D.; Michalovich, D.; Murdoch, P.; Moores, K.; Fox, J.; Deen, K.; Pettman, G.; et al. Sema7A Is a Potent Monocyte Stimulator. Scand. J. Immunol. 2002, 56, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Delorme, G.; Saltel, F.; Bonnelye, E.; Jurdic, P.; Machuca-Gayet, I. Expression and Function of Semaphorin 7A in Bone Cells. Biol. Cell 2005, 97, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, H. Semaphorin 7A as a Potential Immune Regulator and Promising Therapeutic Target in Rheumatoid Arthritis. Arthritis Res. Ther. 2017, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Franco, A.; Eixarch, H.; Costa, C.; Gil, V.; Castillo, M.; Calvo-Barreiro, L.; Montalban, X.; Del Río, J.A.; Espejo, C. Semaphorin 7A as a Potential Therapeutic Target for Multiple Sclerosis. Mol. Neurobiol. 2017, 54, 4820–4831. [Google Scholar] [CrossRef]
- Reilkoff, R.A.; Peng, H.; Murray, L.A.; Peng, X.; Russell, T.; Montgomery, R.; Feghali-Bostwick, C.; Shaw, A.; Homer, R.J.; Gulati, M.; et al. Semaphorin 7a+ Regulatory T Cells Are Associated with Progressive Idiopathic Pulmonary Fibrosis and Are Implicated in Transforming Growth Factor-Β1–Induced Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2013, 187, 180–188. [Google Scholar] [CrossRef]
- De Minicis, S.; Rychlicki, C.; Agostinelli, L.; Saccomanno, S.; Trozzi, L.; Candelaresi, C.; Bataller, R.; Millán, C.; Brenner, D.A.; Vivarelli, M.; et al. Semaphorin 7A Contributes to TGF-β–Mediated Liver Fibrogenesis. Am. J. Pathol. 2013, 183, 820–830. [Google Scholar] [CrossRef]
- Borges, V.F.; Lyons, T.R.; Germain, D.; Schedin, P. Postpartum Involution and Cancer: An Opportunity for Targeted Breast Cancer Prevention and Treatments? Cancer Res. 2020, 80, 1790–1798. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, C.; Li, F.; Wu, L. LncRNA LOXL1-AS1/miR-28-5p/SEMA7A Axis Facilitates Pancreatic Cancer Progression. Cell Biochem. Funct. 2020, 38, 58–65. [Google Scholar] [CrossRef]
- Khaniki, S.H.; Shokoohi, F.; Esmaily, H.; Kerachian, M.A. Analyzing Aberrant DNA Methylation in Colorectal Cancer Uncovered Intangible Heterogeneity of Gene Effects in the Survival Time of Patients. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Tian, R.; Hu, J.; Ma, X.; Liang, L.; Guo, S. Immune-Related Gene Signature Predicts Overall Survival of Gastric Cancer Patients with Varying Microsatellite Instability Status. Aging 2020, 13, 2418–2435. [Google Scholar] [CrossRef]
- Maleki, K.T.; Cornillet, M.; Björkström, N.K. Soluble SEMA4D/CD100: A Novel Immunoregulator in Infectious and Inflammatory Diseases. Clin. Immunol. 2016, 163, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Elhabazi, A.; Marie-Cardine, A.; Chabbert-de Ponnat, I.; Bensussan, A.; Boumsell, L. Structure and Function of the Immune Semaphorin CD100/SEMA4D. Crit. Rev. Immunol. 2003, 23, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Rezaeepoor, M.; Rashidi, G.; Pourjafar, M.; Mohammadi, C.; Solgi, G.; Najafi, R. SEMA4D Knockdown Attenuates β-Catenin-Dependent Tumor Progression in Colorectal Cancer. Biomed. Res. Int. 2021, 2021, 8507373. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Kubota, K.; Shimamura, T.; Shinohara, Y.; Kobayashi, N.; Watanabe, S.; Yoneda, M.; Inamori, M.; Nakamura, F.; Ishiguro, H.; et al. Semaphorin 4D, a Lymphocyte Semaphorin, Enhances Tumor Cell Motility through Binding Its Receptor, plexinB1, in Pancreatic Cancer. Cancer Sci. 2011, 102, 2029–2037. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, D.; Wang, F.; Liu, J.; Sun, Y.; Anuchapreeda, S.; Tima, S.; Xiao, Z.; Duangmano, S. Sema4D Silencing Increases the Sensitivity of Nivolumab to B16-F10 Resistant Melanoma via Inhibiting the PI3K/AKT Signaling Pathway. PeerJ 2023, 11, e15172. [Google Scholar] [CrossRef]
- Ikeya, T.; Maeda, K.; Nagahara, H.; Shibutani, M.; Iseki, Y.; Hirakawa, K. The Combined Expression of Semaphorin4D and PlexinB1 Predicts Disease Recurrence in Colorectal Cancer. BMC Cancer 2016, 16, 525. [Google Scholar] [CrossRef]
- Ding, X.; Qiu, L.; Zhang, L.; Xi, J.; Li, D.; Huang, X.; Zhao, Y.; Wang, X.; Sun, Q. The Role of Semaphorin 4D as a Potential Biomarker for Antiangiogenic Therapy in Colorectal Cancer. OncoTargets Ther. 2016, 9, 1189–1204. [Google Scholar] [CrossRef]
- Kuklina, E.M.; Nekrasova, I.V.; Valieva, Y.V. Involvement of Semaphorin (Sema4D) in T-Dependent Activation of B Cells. Bull. Exp. Biol. Med. 2017, 163, 447–450. [Google Scholar] [CrossRef]
- Huang, J.; Wu, S.; Cao, S.; Zhu, X.; Zhang, S. Neutrophil-Derived Semaphorin 4D Induces Inflammatory Cytokine Production of Endothelial Cells via Different Plexin Receptors in Kawasaki Disease. Biomed. Res. Int. 2020, 2020, 6663291. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.-S.; Tang, Z.-H.; Ye, D.; Su, S.; Zhang, S.-M.; Qiu, J. Anti-Inflammatory Effects of the Immobilization of SEMA4D on Titanium Surfaces in an Endothelial Cell/Macrophage Indirect Coculture Model. Biomed. Mater. 2021, 17, 015005. [Google Scholar] [CrossRef]
- Conrad, C.; Benzel, J.; Dorzweiler, K.; Cook, L.; Schlomann, U.; Zarbock, A.; Slater, E.P.; Nimsky, C.; Bartsch, J.W. ADAM8 in Invasive Cancers: Links to Tumor Progression, Metastasis, and Chemoresistance. Clin. Sci. 2019, 133, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, S.; Seipold, L.; Saftig, P. The Metalloproteinase ADAM10: A Useful Therapeutic Target? Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2017, 1864, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.; Awasthi, S.; Gao, P. ADAM Metallopeptidase Domain 33 (ADAM33): A Promising Target for Asthma. Mediat. Inflamm. 2014, 2014, 572025. [Google Scholar] [CrossRef] [PubMed]
- Navasatli, S.A.; Vahdati, S.N.; Arjmand, T.F.; Mohammadi far, M.; Behboudi, H. New Insight into the Role of the ADAM Protease Family in Breast Carcinoma Progression. Heliyon 2024, 10, e24805. [Google Scholar] [CrossRef]
- Arribas, J.; Esselens, C. ADAM17 as a Therapeutic Target in Multiple Diseases. Curr. Pharm. Des. 2009, 15, 2319–2335. [Google Scholar] [CrossRef]
- Wang, Z.; Li, W.; Chen, S.; Tang, X.X. Role of ADAM and ADAMTS Proteases in Pathological Tissue Remodeling. Cell Death Discov. 2023, 9, 447. [Google Scholar] [CrossRef]
- Łukaszewicz-Zając, M.; Dulewicz, M.; Mroczko, B. A Disintegrin and Metalloproteinase (ADAM) Family: Their Significance in Malignant Tumors of the Central Nervous System (CNS). Int. J. Mol. Sci. 2021, 22, 10378. [Google Scholar] [CrossRef]
- Wang, B.; Chen, S.; Zhao, J.-Q.; Xiang, B.-L.; Gu, X.; Zou, F.; Zhang, Z.-H. ADAMTS-1 Inhibits Angiogenesis via the PI3K/Akt-eNOS-VEGF Pathway in Lung Cancer Cells. Transl. Cancer Res. 2019, 8, 2725–2735. [Google Scholar] [CrossRef]
- Das, S.G.; Romagnoli, M.; Mineva, N.D.; Barillé-Nion, S.; Jézéquel, P.; Campone, M.; Sonenshein, G.E. miR-720 Is a Downstream Target of an ADAM8-Induced ERK Signaling Cascade That Promotes the Migratory and Invasive Phenotype of Triple-Negative Breast Cancer Cells. Breast Cancer Res. 2016, 18, 40. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Qi, Y.; Wu, S.; Hu, F.; Wang, J.; Shu, K.; Zhang, H.; Bartsch, J.W.; Nimsky, C.; et al. The GBM Tumor Microenvironment as a Modulator of Therapy Response: ADAM8 Causes Tumor Infiltration of Tams through HB-EGF/EGFR-Mediated CCL2 Expression and Overcomes TMZ Chemosensitization in Glioblastoma. Cancers 2022, 14, 4910. [Google Scholar] [CrossRef]
- Dong, F.; Eibach, M.; Bartsch, J.W.; Dolga, A.M.; Schlomann, U.; Conrad, C.; Schieber, S.; Schilling, O.; Biniossek, M.L.; Culmsee, C.; et al. The Metalloprotease-Disintegrin ADAM8 Contributes to Temozolomide Chemoresistance and Enhanced Invasiveness of Human Glioblastoma Cells. Neuro-Oncology 2015, 17, 1474–1485. [Google Scholar] [CrossRef] [PubMed]
- Cain, S.A.; Mularczyk, E.J.; Singh, M.; Massam-Wu, T.; Kielty, C.M. ADAMTS-10 and -6 Differentially Regulate Cell-Cell Junctions and Focal Adhesions. Sci. Rep. 2016, 6, 35956. [Google Scholar] [CrossRef] [PubMed]
- Mead, T.J.; Apte, S.S. ADAMTS Proteins in Human Disorders. Matrix Biol. 2018, 71–72, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, S.; de Groot, R. ADAMTS Proteases in Cardiovascular Physiology and Disease. Open Biol. 2020, 10, 200333. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, J.; Wei, F. The Function and Roles of ADAMTS-7 in Inflammatory Diseases. Mediat. Inflamm. 2015, 2015, 801546. [Google Scholar] [CrossRef]
- Mohamedi, Y.; Fontanil, T.; Cobo, T.; Cal, S.; Obaya, A.J. New Insights into ADAMTS Metalloproteases in the Central Nervous System. Biomolecules 2020, 10, 403. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, J.; Yang, Z. The Roles of ADAMTS in Angiogenesis and Cancer. Tumor Biol. 2015, 36, 4039–4051. [Google Scholar] [CrossRef]
- Binder, M.J.; McCoombe, S.; Williams, E.D.; McCulloch, D.R.; Ward, A.C. The Extracellular Matrix in Cancer Progression: Role of Hyalectan Proteoglycans and ADAMTS Enzymes. Cancer Lett. 2017, 385, 55–64. [Google Scholar] [CrossRef]
- Filou, S.; Korpetinou, A.; Kyriakopoulou, D.; Bounias, D.; Stavropoulos, M.; Ravazoula, P.; Papachristou, D.J.; Theocharis, A.D.; Vynios, D.H. ADAMTS Expression in Colorectal Cancer. PLoS ONE 2015, 10, e0121209. [Google Scholar] [CrossRef]
- Li, C.; Luo, X.; Huang, B.; Wang, X.; Deng, Y.; Zhong, Z. ADAMTS12 Acts as a Cancer Promoter in Colorectal Cancer via Activating the Wnt/β-Catenin Signaling Pathway in Vitro. Ann. Transl. Med. 2020, 8, 301. [Google Scholar] [CrossRef]
- Zhou, J.; Li, T.; Chen, H.; Jiang, Y.; Zhao, Y.; Huang, J.; Chen, Z.; Tang, X.; Huang, Z.; Yang, Z. ADAMTS10 Inhibits Aggressiveness via JAK/STAT/c-MYC Pathway and Reprograms Macrophage to Create an Anti-Malignant Microenvironment in Gastric Cancer. Gastric Cancer 2022, 25, 1002–1016. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wang, Y.; Liu, Y.; Zhang, C.; Li, G.; Zhang, T.; Dong, B. Comprehensive Analysis of ADAMTS Gene Family in Renal Clear Cell Carcinoma and ADAMTS10 Research Combining Magnetic Resonance Imaging. Mol. Biotechnol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Jiang, C.; Hu, N.; Hong, S. ADAMTS1 Induces Epithelial-Mesenchymal Transition Pathway in Non-Small Cell Lung Cancer by Regulating TGF-β. Aging 2023, 15, 2097–2114. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhao, L.; Zhao, J.; Xu, Q.; Song, Y.; Wang, H. Reduced ADAMTS-13 Level Negatively Correlates with Inflammation Factors in Plasma of Acute Myeloid Leukemia Patients. Leuk. Res. 2017, 53, 57–64. [Google Scholar] [CrossRef]
- Alper, M.; Kockar, F. IL-6 Upregulates a Disintegrin and Metalloproteinase with Thrombospondin Motifs 2 (ADAMTS-2) in Human Osteosarcoma Cells Mediated by JNK Pathway. Mol. Cell. Biochem. 2014, 393, 165–175. [Google Scholar] [CrossRef]
- Cook, L.; Gharzia, F.G.; Bartsch, J.W.; Yildiz, D. A Jack of All Trades—ADAM8 as a Signaling Hub in Inflammation and Cancer. FEBS J. 2023. [Google Scholar] [CrossRef]
- Awan, T.; Babendreyer, A.; Wozniak, J.; Alvi, A.M.; Sterzer, V.; Cook, L.; Bartsch, J.W.; Liedtke, C.; Yildiz, D.; Ludwig, A. Expression of the Metalloproteinase ADAM8 Is Upregulated in Liver Inflammation Models and Enhances Cytokine Release In Vitro. Mediat. Inflamm. 2021, 2021, 6665028. [Google Scholar] [CrossRef]
- Esselens, C.; Malapeira, J.; Colomé, N.; Casal, C.; Rodríguez-Manzaneque, J.C.; Canals, F.; Arribas, J. The Cleavage of Semaphorin 3C Induced by ADAMTS1 Promotes Cell Migration. J. Biol. Chem. 2010, 285, 2463–2473. [Google Scholar] [CrossRef]
- Motani, K.; Kosako, H. Activation of Stimulator of Interferon Genes (STING) Induces ADAM17-Mediated Shedding of the Immune Semaphorin SEMA4D. J. Biol. Chem. 2018, 293, 7717–7726. [Google Scholar] [CrossRef]
- Haridoss, S.; Yovchev, M.I.; Schweizer, H.; Megherhi, S.; Beecher, M.; Locker, J.; Oertel, M. Activin A Is a Prominent Autocrine Regulator of Hepatocyte Growth Arrest. Hepatol. Commun. 2017, 1, 852–870. [Google Scholar] [CrossRef]
- Du, Y.; Wu, X.; Chen, M.; Wang, W.; Xv, W.; Ye, L.; Wu, D.; Xue, J.; Sun, W.; Luo, J.; et al. Elevated semaphorin5A in Systemic Lupus Erythematosus Is in Association with Disease Activity and Lupus Nephritis. Clin. Exp. Immunol. 2017, 188, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Areas, R.; Libreros, S.; Amat, S.; Keating, P.; Carrio, R.; Robinson, P.; Blieden, C.; Iragavarapu-Charyulu, V. Semaphorin7A Promotes Tumor Growth and Exerts a Pro-Angiogenic Effect in Macrophages of Mammary Tumor-Bearing Mice. Front. Physiol. 2014, 5, 17. [Google Scholar] [CrossRef]
- Garcia-Areas, R.; Libreros, S.; Simoes, M.; Castro-Silva, C.; Gazaniga, N.; Amat, S.; Jaczewska, J.; Keating, P.; Schilling, K.; Brito, M.; et al. Suppression of Tumor-Derived Semaphorin 7A and Genetic Ablation of Host-Derived Semaphorin 7A Impairs Tumor Progression in a Murine Model of Advanced Breast Carcinoma. Int. J. Oncol. 2017, 51, 1395–1404. [Google Scholar] [CrossRef]
- Black, S.; Nelson, A.C.; Gurule, N.; Futscher, B.W.; Lyons, T.R. Semaphorin 7a Exerts Pleiotropic Effects to Promote Breast Tumor Progression. Oncogene 2016, 35, 5170–5178. [Google Scholar] [CrossRef]
- Liu, T.-J.; Guo, J.-L.; Wang, H.-K.; Xu, X. Semaphorin-7A Contributes to Growth, Migration and Invasion of Oral Tongue Squamous Cell Carcinoma through TGF-β-Mediated EMT Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Kinehara, Y.; Nagatomo, I.; Koyama, S.; Ito, D.; Nojima, S.; Kurebayashi, R.; Nakanishi, Y.; Suga, Y.; Nishijima-Futami, Y.; Osa, A.; et al. Semaphorin 7A Promotes EGFR-TKI Resistance in EGFR Mutant Lung Adenocarcinoma Cells. JCI Insight 2018, 3, e123093. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Meng, X.; Zhang, Y.; Sun, J.; Tang, X.; Zhang, Z.; Liu, L.; He, Y. FUT8-Mediated Aberrant N-Glycosylation of SEMA7A Promotes Head and Neck Squamous Cell Carcinoma Progression. Int. J. Oral Sci. 2024, 16, 26. [Google Scholar] [CrossRef]
- Rossi, A.J.; Khan, T.M.; Hong, H.; Lesinski, G.B.; Wu, C.; Hernandez, J.M. Pepinemab (Anti-SEMA4D) in Combination with Ipilimumab or Nivolumab for Patients with Resectable Pancreatic and Colorectal Cancer. Ann. Surg. Oncol. 2021, 28, 4098–4099. [Google Scholar] [CrossRef]
- Lu, J.-J.; Su, Y.-W.; Wang, C.-J.; Li, D.-F.; Zhou, L. Semaphorin 4D Promotes the Proliferation and Metastasis of Bladder Cancer by Activating the PI3K/AKT Pathway. Tumori 2019, 105, 231–242. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, C.; Sun, Q.; Wu, J.; Qiu, L.; Gao, C.; Liu, W.; Yang, J.; Jun, N.; Dong, J. The Role of Semaphorin 4D in Tumor Development and Angiogenesis in Human Breast Cancer. OncoTargets Ther. 2016, 9, 5737–5750. [Google Scholar] [CrossRef]
- Mineva, N.D.; Pianetti, S.; Das, S.G.; Srinivasan, S.; Billiald, N.M.; Sonenshein, G.E. A Novel Class of Human ADAM8 Inhibitory Antibodies for Treatment of Triple-Negative Breast Cancer. Pharmaceutics 2024, 16, 536. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, S.; Zhao, K.; Conrad, C.; Driescher, C.; Rothbart, V.; Schlomann, U.; Guerreiro, H.; Bopp, M.H.; König, A.; et al. ADAM8 Affects Glioblastoma Progression by Regulating Osteopontin-Mediated Angiogenesis. Biol. Chem. 2021, 402, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Mao, M.; Wang, K.; Mu, Z.; Hu, B. Knockdown of ADAM8 Inhibits the Proliferation, Migration, Invasion, and Tumorigenesis of Renal Clear Cell Carcinoma Cells to Enhance the Immunotherapy Efficacy. Transl. Res. 2024, 266, 32–48. [Google Scholar] [CrossRef] [PubMed]
Female | Male | All | |
---|---|---|---|
Age | 67.5 ± 9.77 | 65 ± 9.03 | 66 ± 9.37 |
Tumor localization | |||
Left-side tumor | 28 (68.29%) | 35 (76.09%) | 63 (72.41%) |
Right-side tumor | 13 (31.71%) | 11 (23.91%) | 24 (27.59%) |
T parameter | |||
T1 | 0 (0%) | 4 (8.7%) | 4 (4.6%) |
T2 | 10 (24.39%) | 5 (10.87%) | 15 (17.24%) |
T3 | 27 (65.85%) | 31 (67.39%) | 58 (66.66%) |
T4 | 4 (9.76%) | 6 (13.04%) | 10 (11.49%) |
N parameter | |||
N0 | 19 (46.34%) | 22 (47.83%) | 41 (47.12%) |
N1 | 15 (36.59%) | 17 (36.96%) | 32 (36.78%) |
N2 | 7 (17.07%) | 7 (15.22%) | 14 (16.1%) |
M parameter | |||
M0 | 37 (90.24%) | 37 (80.43%) | 74 (85.06%) |
M1 | 4 (9.76%) | 9 (19.57% | 13 (14.94%) |
TNM Stage | |||
I | 8 (19.51%) | 7 (15.22%) | 15 (17.24%) |
II | 10 (24.39%) | 13 (28.26%) | 23 (26.43%) |
III | 19 (46.34%) | 18 (39.13%) | 37 (42.53%) |
IV | 4 (9.76%) | 8 (17.39%) | 12 (13.79%) |
Grading | |||
High | 4 (9.76%) | 8 (17.39%) | 12 (13.79%) |
Low | 37 (90.24%) | 38 (82.61%) | 75 (86.21%) |
MSI Status (n = 73) | |||
MSI-Low | 28 (77.78%) | 32 (86.49%) | 60 (82.19%) |
MSI-High | 8 (22.22%) | 5 (13.51%) | 13 (17.81%) |
Presurgical treatment | |||
Yes | 5 (12.2%) | 6 (13.04%) | 11 (12.64%) |
No | 36 (87.8%) | 40 (86.96%) | 76 (87.36%) |
Gene | Exon | Amino Acid Change | Nucleotide Change | Cosmic ID |
---|---|---|---|---|
KRAS | 2 | G12A | c.35G>C | 522 |
G12D | c.35G>A | 521 | ||
G12R | c.34G>C | 518 | ||
G12C | c.34G>T | 516 | ||
G12S | c.34G>A | 517 | ||
G12V | c.35G>T | 520 | ||
G13D | c.38G>A | 532 | ||
3 | A59T | c.175G>A | 546 | |
A59E | c.176C>A | 547 | ||
A59G | c.176C>G | 28518 | ||
Q61H | c.183A>C | 554 | ||
Q61H | c.183A>T | 555 | ||
Q61L | c.182A>T | 553 | ||
Q61R | c.182A>G | 552 | ||
4 | K117N | c.351A>C | 19940 | |
K117N | c.351A>T | 28519 | ||
K117R | c.350A>G | 4696722 | ||
K117E | c.349A>G | - | ||
A146T | c.436G>A | 19404 | ||
A146P | c.436G>C | 19905 | ||
A146V | c.437C>T | 19900 | ||
NRAS | 2 | G12D | c.35G>A | 564 |
G12S | c.34G>A | 563 | ||
G12C | c.34G>T | 562 | ||
G13R | c.37G>C | 569 | ||
G13V | c.38G>T | 574 | ||
3 | A59T | c.175G>A | 578 | |
A59D | c.176C>A | 253327 | ||
Q61K | c.181C>A | 580 | ||
Q61L | c.182A>T | 583 | ||
Q61R | c.182A>G | 584 | ||
Q61H | c.183A>C | 586 | ||
Q61H | c.183A>T | 585 | ||
4 | K117R | c.350A>G | - | |
A146T | c.436G>A | 27174 | ||
BRAF | 15 | V600E | c.1799T>A | 476 |
V600E2 | c.1799-1800TG>AA | - | ||
V600D | c.1799-1800TG>AT | 477 | ||
V600K | c.1798-1799GT>AA | 473 | ||
PIK3CA | 9 | E542K | c.1624G>A | 760 |
E545K | c.1633G>A | 763 | ||
E545Q | c.1633G>C | 27133 | ||
20 | H1047R | c.3140A>G | 775 | |
H1047L | c.3140A>T | 776 | ||
AKT1 | 4 | E17K | c.49G>A | 33765 |
Process Name | Cytokines Involved | Origin |
---|---|---|
Positive regulation of immune system process | MIF, SCF, MCP1, SDF-1a, VEGFA, MCP3, MCSF, MIP-1a, IL-1a, IL-18, IL-6, RANTES, IL-5, TNF-b, LIF, IL-2, IL-1b, IL-7, IFN-g, IL-13, TNF-a, IL-10, IL-8, IL-4, IP-10, IL-15, IL-2Ra, IL-16, CTACK, IL-12p40, MIP-1b, IL-17 | GO |
Chemokine signaling pathway | IL-8, MCP1, SDF-1a, GRO-a, IP-10, RANTES, MIP-1a, CTACK, Eotaxin, MCP3, MIP-1b | KEGG |
JAK-STAT signaling pathway | IL-12p70, IL-12p40, PDGF-bb, GM-CSF, IFN-g, IL-3, IL-5, IL-6, IL-7, IL-8, LIF, IL-9, IL-10, G-CSF, IL-13, IL-15, IL-2Ra, IFN-a2 | KEGG |
MAPK signaling pathway | bNGF, IL-1b, PDGF-bb, IL-1a, BasicFGF, SCF, MCSF, TNF-a, HGF, VEGFA | KEGG |
Interleukin-10 signaling | MCP1, MCSF, IL-8, IL-18, IL-6, GM-CSF, LIF, IL-10, IL-1Ra, IL-1a, IP-10, GRO-a, MIP-1a, IL-1b, MIP-1b, G-CSF, RANTES, TNF-a | KEGG |
Toll-like signaling pathway | IL-8, TNF-a, IL-6, IP-10, RANTES, IL-1b, MIP-1b, MIG, IFN-a2 | KEGG |
Regulation of cell population proliferation | CTACK, PDGF-bb, LIF, SCF, MIF, BasicFGF, IFN-g, IL-4, GM-CSF, G-CSF, IL-7, IL-3, MCSF, SDF-1a, SCGF-b, IL-2Ra, TNF-a, IL-6, IL-1b, IL-1a, IP-10, RANTES, IL-5, Eotaxin, IL-2Ra, IL-10, IL-2, IL-18, IL-15, IL-13, IL-9, TNF-b) | KEGG |
Leukocyte activation | IL-4, IL-15, IFN-g, SCF, IL-2Ra, IL-8, MCSF, IL-13, IL-18, MIP-1a, RANTES, IL-10, GM-CSF, IL-9, IL-7, IFN-a2, IL-2, IL-6, TNF-a | GO |
Inflammatory response | IL-9, CTACK, Eotaxin, MCP1, IFN-a2, IL-1Ra, IL-2Ra, IFN-g, IL-15, IL-1a, IL-6, IL-17, IL-4, MCP3, MIP-1a, IL-18, CTACK, MIF, TNF-a, RANTES, MCSF, MIG, IL-1b, IL-5, IL-10, IL-8, IL-13, IP-10, MIP-1b | GO |
Positive regulation of cytokine production | IL-9, IL-12p70, GM-CSF, IL-10, HGF, IL-2, IL-15, IL-1b, IL-18, IFN-g, IL-7, IL-4, TNF-a, IL-17, MIF, TNF-b, IL-16, IL-13, MIP-1a, IL-1a, IL-6 | GO |
T Parameter | N Parameter | M Parameter | Tumor Stage | ||||
---|---|---|---|---|---|---|---|
p-Value | tau | p-Value | tau | p-Value | p-Value | tau | |
SEMA7A | 0.2919 | −0.09008 | 0.6822 | 0.03498 | 0.3969 | 0.6161 | 0.04151 |
SEMA4D | 0.5348 | 0.05295 | 0.7577 | −0.02631 | 0.5554 | 0.786 | 0.02244 |
ADAM8 | 0.8257 | −0.01814 | 0.9189 | −0.008337 | 0.5402 | 0.45 | −0.05988 |
ADAMTS10 | 0.2305 | −0.09912 | 0.7435 | −0.02688 | 0.6401 | 0.9748 | −0.002515 |
Grading p-Value | Localization p-Value | MSI Status p-Value | |
---|---|---|---|
SEMA7A | 0.846 | 0.797 | 0.795 |
SEMA4D | 0.393 | 0.298 | 0.316 |
ADAM8 | 0.662 | 0.8923 | 0.5174 |
ADAMTS10 | 0.2368 | 0.3281 | 0.2727 |
Gene | Mutation Status | Percent (%) | ||
---|---|---|---|---|
Wild-Type | Mutant | Percent among Mutation of the One Gene | Percent among All Group | |
KRAS | 36 | 18 | 33.33% | |
KRAS-117-STATUS | 51 | 3 | 16.67% | 5.55% |
KRAS-12/13-STATUS | 43 | 11 | 61.11% | 20.37% |
KRAS-59-STATUS | 51 | 3 | 16.67% | 5.55% |
KRAS-146-STATUS | 52 | 2 | 11.11% | 3.70% |
KRAS-61-STATUS | 52 | 2 | 11.11% | 3.70% |
NRAS | 44 | 10 | 18.52% | |
NRAS-12-13-STATUS | 49 | 5 | 50% | 9.26% |
NRAS-61-STATUS | 49 | 5 | 50% | 9.26% |
PIK3CA | 50 | 4 | 7.41% | |
PIK3CA 542/545 | 51 | 3 | 75% | 5.55% |
PIK3CA 1047 | 53 | 1 | 25% | 1.85% |
BRAF | 50 | 4 | 7.41% | |
AKT | 53 | 1 | 1.85% |
Factor | Eigenvalue | Variance (%) | Cumulative Variance (%) |
---|---|---|---|
Toll-like signaling pathway | |||
Factor 1 | 4.89295722 | 54.3661913 | 54.36619 |
Factor 2 | 1.18176034 | 13.1306704 | 67.49686 |
Factor 3 | 0.96057685 | 10.6730761 | 78.16994 |
Inflammatory response | |||
Factor 1 | 13.37143 | 47.75509 | 47.75509 |
Factor 2 | 4.061744 | 14.50623 | 62.26132 |
Factor 3 | 2.513067 | 8.975241 | 71.23656 |
Leukocyte activation | |||
Factor 1 | 10.147664342 | 53.408759696 | 53.40876 |
Factor 2 | 2.497374683 | 13.144077281 | 66.55284 |
Factor 3 | 1.942422870 | 10.223278263 | 76.77612 |
Factor | Eigenvalue | Variance (%) | Cumulative Variance (%) |
---|---|---|---|
JAK-STAT signaling pathway | |||
Factor 1 | 9.693638072 | 53.85354485 | 53.85354 |
Factor 2 | 2.599087884 | 14.43937713 | 68.29292 |
Factor 3 | 1.711508394 | 9.50837996 | 77.80130 |
Interleukin-10 signaling | |||
Factor 1 | 8.549978302 | 47.49987945 | 47.49988 |
Factor 2 | 2.776434574 | 15.42463652 | 62.92452 |
Factor 3 | 1.640473900 | 9.11374389 | 72.03826 |
MAPK signaling pathway | |||
Factor 1 | 4.45896812 | 44.5896812 | 44.58968 |
Factor 2 | 2.35012995 | 23.5012995 | 68.09098 |
Factor 3 | 1.08965639 | 10.8965639 | 78.98754 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochman, B.; Limanówka, P.; Mielcarska, S.; Kula, A.; Dawidowicz, M.; Wagner, W.; Hudy, D.; Szrot, M.; Piecuch, J.Z.; Piecuch, J.; et al. Associations of SEMA7A, SEMA4D, ADAMTS10, and ADAM8 with KRAS, NRAS, BRAF, PIK3CA, and AKT Gene Mutations, Microsatellite Instability Status, and Cytokine Expression in Colorectal Cancer Tissue. Curr. Issues Mol. Biol. 2024, 46, 10218-10248. https://doi.org/10.3390/cimb46090609
Ochman B, Limanówka P, Mielcarska S, Kula A, Dawidowicz M, Wagner W, Hudy D, Szrot M, Piecuch JZ, Piecuch J, et al. Associations of SEMA7A, SEMA4D, ADAMTS10, and ADAM8 with KRAS, NRAS, BRAF, PIK3CA, and AKT Gene Mutations, Microsatellite Instability Status, and Cytokine Expression in Colorectal Cancer Tissue. Current Issues in Molecular Biology. 2024; 46(9):10218-10248. https://doi.org/10.3390/cimb46090609
Chicago/Turabian StyleOchman, Błażej, Piotr Limanówka, Sylwia Mielcarska, Agnieszka Kula, Miriam Dawidowicz, Wiktor Wagner, Dorota Hudy, Monika Szrot, Jerzy Zbigniew Piecuch, Jerzy Piecuch, and et al. 2024. "Associations of SEMA7A, SEMA4D, ADAMTS10, and ADAM8 with KRAS, NRAS, BRAF, PIK3CA, and AKT Gene Mutations, Microsatellite Instability Status, and Cytokine Expression in Colorectal Cancer Tissue" Current Issues in Molecular Biology 46, no. 9: 10218-10248. https://doi.org/10.3390/cimb46090609
APA StyleOchman, B., Limanówka, P., Mielcarska, S., Kula, A., Dawidowicz, M., Wagner, W., Hudy, D., Szrot, M., Piecuch, J. Z., Piecuch, J., Czuba, Z., & Świętochowska, E. (2024). Associations of SEMA7A, SEMA4D, ADAMTS10, and ADAM8 with KRAS, NRAS, BRAF, PIK3CA, and AKT Gene Mutations, Microsatellite Instability Status, and Cytokine Expression in Colorectal Cancer Tissue. Current Issues in Molecular Biology, 46(9), 10218-10248. https://doi.org/10.3390/cimb46090609