Research Progress on Photoperiod Gene Regulation of Heading Date in Rice
Abstract
:1. Introduction
2. Photoperiod Gene Regulatory Network for Rice Heading Date
2.1. Hd1 and Regulatory Genes
2.2. Ehd1 and Regulatory Genes
2.3. Ghd7 and Regulatory Genes
3. Gene Interaction Regulates Rice Heading Together
4. Pleiotropy of Rice Heading Date Genes
5. Prospects
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, S.; Zhu, S.; Cui, S.; Hou, H.; Wu, H.; Hao, B.; Cai, L.; Xu, Z.; Liu, L.; Jiang, L.; et al. Transcriptional and post-transcriptional regulation of heading date in rice. New Phytol. 2021, 230, 943–956. [Google Scholar] [CrossRef] [PubMed]
- Cho, L.H.; Yoon, J.; Tun, W.; Baek, G.; Peng, X.; Hong, W.J.; Mori, I.C.; Hojo, Y.; Matsuura, T.; Kim, S.R.; et al. Cytokinin increases vegetative growth period by suppressing florigen expression in rice and maize. Plant J. 2022, 110, 1619–1635. [Google Scholar] [CrossRef]
- Zong, W.; Ren, D.; Huang, M.; Sun, K.; Feng, J.; Zhao, J.; Xiao, D.; Xie, W.; Liu, S.; Zhang, H.; et al. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol. 2021, 229, 1635–1649. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Wei, H.; Wang, L. A clock regulatory module is required for salt tolerance and control of heading date in rice. Plant Cell Environ. 2021, 44, 3283–3301. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Wang, L.; Xiao, C.; Yuan, J.; Liu, Y.G.; Zhang, Q. Double Mutation of Days to Heading 2 and CONSTANS 3 Improves Agronomic Performance of Japonica Rice under Short Daylight Conditions in Southern China. Int. J. Mol. Sci. 2023, 24, 7346. [Google Scholar] [CrossRef]
- Komiya, R.; Ikegami, A.; Tamaki, S.; Yokoi, S.; Shimamoto, K. Hd3a and RFT1 are essential for flowering in rice. Development 2008, 135, 767–774. [Google Scholar] [CrossRef]
- Ishikawa, R.; Tamaki, S.; Yokoi, S.; Inagaki, N.; Shinomura, T.; Takano, M.; Shimamoto, K. Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice. Plant Cell 2005, 17, 3326–3336. [Google Scholar] [CrossRef]
- Peng, Q.; Zhu, C.; Liu, T.; Zhang, S.; Feng, S.; Wu, C. Phosphorylation of OsFD1 by OsCIPK3 promotes the formation of RFT1-containing florigen activation complex for long-day flowering in rice. Mol. Plant 2021, 14, 1135–1148. [Google Scholar] [CrossRef]
- Brambilla, V.; Martignago, D.; Goretti, D.; Cerise, M.; Somssich, M.; de Rosa, M.; Galbiati, F.; Shrestha, R.; Lazzaro, F.; Simon, R.; et al. Antagonistic Transcription Factor Complexes Modulate the Floral Transition in Rice. Plant Cell 2017, 29, 2801–2816. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Lei, X.; Sha, H.; Liu, J.; Zhang, C.; Wang, J.; Zheng, H.; Zou, D.; Fang, J. Adaptation to high latitudes through a novel allele of Hd3a strongly promoting heading date in rice. Theor. Appl. Genet. 2023, 136, 141. [Google Scholar] [CrossRef] [PubMed]
- Pasriga, R.; Yoon, J.; Cho, L.H.; An, G. Overexpression of RICE FLOWERING LOCUS T 1 (RFT1) Induces Extremely Early Flowering in Rice. Mol. Cells 2019, 42, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Fujiwara, M.; Kurotani, K.; Yokoi, S.; Shimamoto, K. Identification of dynamin as an interactor of rice GIGANTEA by tandem affinity purification (TAP). Plant Cell Physiol. 2008, 49, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.J.; Tsai, Y.C.; Wu, H.P.; Huang, L.T.; Chen, Y.C.; Chen, Y.F.; Wu, C.C.; Tseng, Y.T.; Hsing, Y.C. Both Hd1 and Ehd1 are important for artificial selection of flowering time in cultivated rice. Plant Sci. 2016, 242, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhang, Y.; Wen, X.; Yang, Q.; Liu, L.; Hao, S.; Li, J.; Wu, Z.; Shah, L.; Sohail, A.; et al. The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7. J. Adv. Res. 2023, 48, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Cho, L.H.; Yoon, J.; An, G. The control of flowering time by environmental factors. Plant J. Cell Mol. Biol. 2017, 90, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Yamanouchi, U.; Wang, Z.X.; Minobe, Y.; Izawa, T.; Yano, M. Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol. 2008, 148, 1425–1435. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, L.; Cheng, R.; Hu, J.; Wu, C.Y. RID1 sets rice heading date by balancing its binding with SLR1 and SDG722. J. Integr. Plant Biol. 2022, 64, 149–165. [Google Scholar] [CrossRef]
- Gao, H.; Zheng, X.M.; Fei, G.; Chen, J.; Jin, M.; Ren, Y.; Wu, W.; Zhou, K.; Sheng, P.; Zhou, F. Ehd4 Encodes a Novel and Oryza-Genus-Specific Regulator of Photoperiodic Flowering in Rice. PLoS Genet. 2013, 9, e1003281. [Google Scholar] [CrossRef]
- Xue, W.; Xing, Y.; Weng, X.; Zhao, Y.; Tang, W.; Wang, L.; Zhou, H.; Yu, S.; Xu, C.; Li, X.; et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 2008, 40, 761–767. [Google Scholar] [CrossRef]
- Zong, W.; Song, Y.; Xiao, D.; Guo, X.; Li, F.; Sun, K.; Tang, W.; Xie, W.; Luo, Y.; Liang, S.; et al. Dominance complementation of parental heading date alleles of Hd1, Ghd7, DTH8, and PRR37 confers transgressive late maturation in hybrid rice. Plant J. 2024, 18, 2108–2123. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hu, Y.; An, C.; Wen, Q.; Fan, X.; Zhang, Z.; Sherif, A.; Liu, H.; Xing, Y. The amino acid residue E96 of Ghd8 is crucial for the formation of the flowering repression complex Ghd7-Ghd8-OsHAP5C in rice. J. Integr. Plant Biol. 2023, 65, 1012–1025. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Jin, M.; Zheng, X.M.; Chen, J.; Yuan, D.; Xin, Y.; Wang, M.; Huang, D.; Zhang, Z.; Zhou, K.; et al. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc. Natl. Acad. Sci. USA 2014, 111, 16337–16342. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Zhang, Y.; He, M.; Li, R.; Meng, W.; Wang, Z.; Li, X.; Bu, Q. Correction to: Fine-tuning Flowering Time via Genome Editing of Upstream Open Reading Frames of Heading Date 2 in Rice. Rice 2021, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Yun, C.H.; Lee, J.H.; Jang, Y.H.; Park, H.Y.; Kim, J.K. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 2008, 228, 355–365. [Google Scholar] [CrossRef]
- Lee, Y.S.; Yi, J.; An, G. OsPhyA modulates rice flowering time mainly through OsGI under short days and Ghd7 under long days in the absence of phytochrome B. Plant Mol. Biol. 2016, 91, 413–427. [Google Scholar] [CrossRef]
- Lin, X.; Huang, Y.; Rao, Y.; Ouyang, L.; Zhou, D.; Zhu, C.; Fu, J.; Chen, C.; Yin, J.; Bian, J.; et al. A base substitution in OsphyC disturbs its Interaction with OsphyB and affects flowering time and chlorophyll synthesis in rice. BMC Plant Biol. 2022, 22, 612. [Google Scholar] [CrossRef]
- Huang, J.; Qiu, Z.Y.; He, J.; Xu, H.S.; Wang, K.; Du, H.Y.; Gao, D.; Zhao, W.N.; Sun, Q.G.; Wang, Y.S.; et al. Phytochrome B mediates dim-light-reduced insect resistance by promoting the ethylene pathway in rice. Plant Physiol. 2023, 191, 1272–1287. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, Y.; Tang, W.; Chen, X.; Lin, C.; Liu, Y.; Ye, Y.; Wu, W.; Duan, Y. LUX ARRHYTHMO Interacts With ELF3a and ELF4a to Coordinate Vegetative Growth and Photoperiodic Flowering in Rice. Front. Plant Sci. 2022, 13, 853042. [Google Scholar] [CrossRef] [PubMed]
- Kwon, C.T.; Koo, B.H.; Kim, D.; Yoo, S.C.; Paek, N.C. Casein kinases I and 2α phosphorylate oryza sativa pseudo-response regulator 37 (OsPRR37) in photoperiodic flowering in rice. Mol. Cells 2015, 38, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.; Lim, C.; Seong, G.; Choi, Y.; Kang, K.; Paek, N.C. The AP2/ERF transcription factor LATE FLOWERING SEMI-DWARF suppresses long-day-dependent repression of flowering. Plant Cell Environ. 2022, 45, 2446–2459. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, G.; Hu, Y.; Liu, H.; Bai, X.; Qin, R.; Xing, Y. OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes. J. Exp. Bot. 2018, 69, 4283–4293. [Google Scholar] [CrossRef]
- Zhu, C.; Peng, Q.; Fu, D.; Zhuang, D.; Yu, Y.; Duan, M.; Xie, W.; Cai, Y.; Ouyang, Y.; Lian, X.; et al. The E3 Ubiquitin Ligase HAF1 Modulates Circadian Accumulation of EARLY FLOWERING3 to Control Heading Date in Rice under Long-Day Conditions. Plant Cell 2018, 30, 2352–2367. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Song, P.; Wang, C.; Chen, S.; Hao, B.; Xu, Z.; Cai, L.; Chen, X.; Zhu, S.; Gan, X.; et al. The RNA binding protein EHD6 recruits the m(6)A reader YTH07 and sequesters OsCOL4 mRNA into phase-separated ribonucleoprotein condensates to promote rice flowering. Mol. Plant 2024, 17, 935–954. [Google Scholar] [CrossRef]
- Lee, Y.S.; Jeong, D.H.; Lee, D.Y.; Yi, J.; Ryu, C.H.; Kim, S.L.; Jeong, H.J.; Choi, S.C.; Jin, P.; Yang, J.; et al. OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J. 2010, 63, 18–30. [Google Scholar] [CrossRef]
- Takahashi, Y.; Shimamoto, K. Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS, is a possible target of human selection during domestication to diversify flowering times of cultivated rice. Genes Genet. Syst. 2011, 86, 175–182. [Google Scholar] [CrossRef]
- Lim, J.; Moon, Y.H.; An, G.; Jang, S.K. Two rice MADS domain proteins interact with OsMADS1. Plant Mol. Biol. 2000, 44, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.X.; Yamamoto, T.; Sasaki, T.; Yano, M. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor. Appl. Genet. 2000, 101, 1021–1028. [Google Scholar] [CrossRef]
- Yano, M.; Katayose, Y.; Ashikari, M.; Yamanouchi, U.; Monna, L.; Fuse, T.; Baba, T.; Yamamoto, K.; Umehara, Y.; Sasaki, N.T. Hd1, a Major Photoperiod Sensitivity Quantitative Trait Locus in Rice, Is Closely Related to the Arabidopsis Flowering Time Gene CONSTANS. Plant Cell 2000, 12, 2473–2484. [Google Scholar] [PubMed]
- Turck, F.; Fornara, F.; Coupland, G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 2008, 59, 573–594. [Google Scholar] [CrossRef]
- Zheng, T.; Sun, J.; Zhou, S.; Chen, S.; Lu, J.; Cui, S.; Tian, Y.; Zhang, H.; Cai, M.; Zhu, S.; et al. Post-transcriptional regulation of Ghd7 protein stability by phytochrome and OsGI in photoperiodic control of flowering in rice. New Phytol. 2019, 224, 306–320. [Google Scholar] [CrossRef] [PubMed]
- Putterill, J.; Robson, F.; Lee, K.; Simon, R.; Coupland, G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 1995, 80, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Izawa, T.; Mihara, M.; Suzuki, Y.; Gupta, M.; Itoh, H.; Nagano, A.J.; Motoyama, R.; Sawada, Y.; Yano, M.; Hirai, M.Y.; et al. Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Plant Cell 2011, 23, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fu, D.; Zhu, C.; He, Y.; Zhang, H.; Liu, T.; Li, X.; Wu, C. The RING-Finger Ubiquitin Ligase HAF1 Mediates Heading date 1 Degradation during Photoperiodic Flowering in Rice. Plant Cell 2015, 27, 2455–2468. [Google Scholar] [CrossRef] [PubMed]
- Vega-Sanchez, M.E.; Zeng, L.; Chen, S.; Leung, H.; Wang, G.L. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. Plant Cell 2008, 20, 1456–1469. [Google Scholar]
- Cai, Y.; Vega-Sánchez, M.E.; Park, C.H.; Bellizzi, M.; Guo, Z.; Wang, G.L. RBS1, an RNA binding protein, interacts with SPIN1 and is involved in flowering time control in rice. PLoS ONE 2014, 9, e87258. [Google Scholar] [CrossRef]
- Ogiso, E.; Takahashi, Y.; Sasaki, T.; Yano, M.; Izawa, T. The role of casein kinase II in flowering time regulation has diversified during evolution. Plant Physiol. 2010, 152, 808–820. [Google Scholar] [CrossRef]
- Andrés, F.; Galbraith, D.W.; Talón, M.; Domingo, C. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol. 2009, 151, 681–690. [Google Scholar] [CrossRef]
- Rao, Y.; Xu, N.; Li, S.; Hu, J.; Jiao, R.; Hu, P.; Lin, H.; Lu, C.; Lin, X.; Dai, Z.; et al. PE-1, Encoding Heme Oxygenase 1, Impacts Heading Date and Chloroplast Development in Rice (Oryza sativa L.). J. Agric. Food Chem. 2019, 67, 7249–7257. [Google Scholar] [CrossRef]
- Doi, K.; Izawa, T.; Fuse, T.; Yamanouchi, U.; Kubo, T.; Shimatani, Z.; Yano, M.; Yoshimura, A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes. Dev. 2004, 18, 926–936. [Google Scholar] [CrossRef]
- Cho, L.H.; Yoon, J.; Pasriga, R.; An, G. Homodimerization of Ehd1 Is Required to Induce Flowering in Rice. Plant Physiol. 2016, 170, 2159–2171. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, H.; Ren, D.; Tang, H.; Qiu, R. Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa). New Phytol. 2015, 208, 936–948. [Google Scholar] [CrossRef]
- Kim, S.L.; Lee, S.; Kim, H.J.; Nam, H.G.; An, G. OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol. 2007, 145, 1484–1494. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Dong, J.; Yang, W.; Chen, L.; Wu, W.; Li, W.; Zhou, L.; Wang, J.; Chen, J.; Yang, T.; et al. OsFLZ2 interacts with OsMADS51 to fine-tune rice flowering time. Development 2022, 149, dev200862. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, Q.; Miao, J.; Zhu, J.; Zhou, C.; Fan, D.; Lu, Y.; Tian, Q.; Wang, Y.; Zhan, Q.; et al. The WD40 domain-containing protein Ehd5 positively regulates flowering in rice (Oryza sativa). Plant Cell 2023, 35, 4002–4019. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Kim, Y.; Kang, K.; Yoon, H.; Kang, J.; Cho, S.H.; Paek, N.C. Rice CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1-LIKE interacts with OsCRY2 and promotes flowering by upregulating Early heading date 1. Plant Cell Environ. 2024. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Y.; Zhu, Y.; Chen, S.; Du, Y.; Deng, L.; Liu, L.; Li, X.; Chen, W.; Xu, Z.; et al. Transcription factor OsWRKY11 induces rice heading at low concentrations but inhibits rice heading at high concentrations. J. Integr. Plant Biol. 2024, 66, 1385–1407. [Google Scholar] [CrossRef]
- Itoh, H.; Nonoue, Y.; Yano, M.; Izawa, T. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat. Genet. 2010, 42, 635. [Google Scholar]
- Wen, X.; Zhong, Z.; Xu, P.; Yang, Q.; Wang, Y.; Liu, L.; Wu, Z.; Wu, Y.; Zhang, Y.; Liu, Q.; et al. OsCOL5 suppresses heading through modulation of Ghd7 and Ehd2, enhancing rice yield. Theor. Appl. Genet. 2024, 137, 162. [Google Scholar] [CrossRef]
- Tan, J.; Wu, F.; Wan, J. Flowering time regulation by the CONSTANS-Like gene OsCOL10. Plant Signal Behav. 2017, 12, e1267893. [Google Scholar] [CrossRef]
- Sun, K.; Huang, M.; Zong, W.; Xiao, D.; Lei, C.; Luo, Y.; Song, Y.; Li, S.; Hao, Y.; Luo, W.; et al. Hd1, Ghd7, and DTH8 synergistically determine the rice heading date and yield-related agronomic traits. J. Genet. Genom. 2022, 49, 437–447. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, X.; Yan, W.; Zhang, Z.; Lu, L.; Han, Z.; Zhao, H.; Liu, H.; Song, P.; Hu, Y.; et al. Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytol. 2015, 208, 1056–1066. [Google Scholar] [CrossRef]
- Sheng, P.; Wu, F.; Tan, J.; Zhang, H.; Ma, W.; Chen, L.; Wang, J.; Wang, J.; Zhu, S.; Guo, X.; et al. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice. Plant Mol. Biol. 2016, 92, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, E.; Xue, G.; Zhang, C.; Yang, Y.; Ding, Y. OsHUB2 inhibits function of OsTrx1 in heading date in rice. Plant J. 2022, 110, 1670–1680. [Google Scholar] [CrossRef]
- Zheng, R.; Meng, X.; Hu, Q.; Yang, B.; Cui, G.; Li, Y.; Zhang, S.; Zhang, Y.; Ma, X.; Song, X.; et al. OsFTL12, a member of FT-like family, modulates the heading date and plant architecture by florigen repression complex in rice. Plant Biotechnol. J. 2023, 21, 1343–1360. [Google Scholar] [CrossRef]
- Li, S.; Luo, Y.; Wei, G.; Zong, W.; Zeng, W.; Xiao, D.; Zhang, H.; Song, Y.; Hao, Y.; Sun, K.; et al. Improving yield-related traits by editing the promoter of the heading date gene Ehd1 in rice. Theor. Appl. Genet. 2023, 136, 239. [Google Scholar] [CrossRef]
- Song, J.; Tang, L.; Fan, H.; Xu, X.; Peng, X.; Cui, Y.; Wang, J. Enhancing Yield and Improving Grain Quality in Japonica Rice: Targeted EHD1 Editing via CRISPR-Cas9 in Low-Latitude Adaptation. Curr. Issues Mol. Biol. 2024, 46, 3741–3751. [Google Scholar] [CrossRef] [PubMed]
- Endo-Higashi, N.; Izawa, T. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol. 2011, 52, 1083–1094. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Zhang, H.; Xing, Y. Validation and characterization of Ghd7.1, a major quantitative trait locus with pleiotropic effects on spikelets per panicle, plant height, and heading date in rice (Oryza sativa L.). J. Integr. Plant Biol. 2013, 55, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Xu, J.; Guo, H.; Jiang, L.; Chen, S.; Yu, C.; Zhou, Z.; Hu, P.; Zhai, H.; Wan, J. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 2010, 153, 1747–1758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, S.; Liu, T.; Wang, C.; Cheng, Z.; Zhang, X.; Chen, L.; Sheng, P.; Cai, M.; Li, C.; et al. DELAYED HEADING DATE1 interacts with OsHAP5C/D, delays flowering time and enhances yield in rice. Plant Biotechnol. J. 2019, 17, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Zong, W.; Xiao, D.; Wu, Z.; Guo, X.; Li, F.; Song, Y.; Li, S.; Wei, G.; Hao, Y.; et al. Effects of the core heading date genes Hd1, Ghd7, DTH8, and PRR37 on yield-related traits in rice. Theor. Appl. Genet. 2023, 136, 227. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Su, Q.; Nian, J.; Zhang, J.; Guo, M.; Dong, G.; Hu, J.; Wang, R.; Wei, C.; Li, G.; et al. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Mol. Plant 2021, 14, 1012–1023. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Song, S.; Weng, X.; You, A.; Xing, Y. The heading-date gene Ghd7 inhibits seed germination by modulating the balance between abscisic acid and gibberellins—ScienceDirect. Crop J. 2021, 9, 297–304. [Google Scholar]
- Tang, L.; Xu, H.; Wang, Y.; Wang, H.; Li, Z.; Liu, X.; Shu, Y.; Li, G.; Liu, W.; Ying, J.; et al. OsABF1 Represses Gibberellin Biosynthesis to Regulate Plant Height and Seed Germination in Rice (Oryza sativa L.). Int. J. Mol. Sci. 2021, 22, 12220. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Li, G.; Wang, H.; Zhao, J.; Li, Z.; Liu, X.; Shu, Y.; Liu, W.; Wang, S.; Huang, J.; et al. Exogenous abscisic acid represses rice flowering via SAPK8-ABF1-Ehd1/Ehd2 pathway. J. Adv. Res. 2023, 59, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, J.; Zhao, T.; Gomez, A.; Li, C.; Yu, C.; Li, H.; Lin, J.; Yang, Y.; Liu, B.; et al. A Drought-Inducible Transcription Factor Delays Reproductive Timing in Rice. Plant Physiol. 2016, 171, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Zhou, H.Z.; Wu, Y.; Zhang, H.; Lin, J.; Jiang, X.; He, Q.; Zhu, J.; Li, Y.; Yu, H.; et al. OsSPL3, an SBP-Domain Protein, Regulates Crown Root Development in Rice. Plant Cell 2019, 31, 1257–1275. [Google Scholar] [CrossRef]
Gene | Gene ID | Primary Function | References |
---|---|---|---|
Hd3a/FTL2 | LOC_Os06g06320 | Promotes flowering; acts as a florigen gene under SD (short-day) conditions. | [9,10] |
RFT1/FTL3 | LOC_Os06g06300 | Promotes flowering; acts as a florigen gene under LD (long-day) constitutive flowering repressor conditions. | [11] |
OsGI | LOC_Os01g08700 | Circadian rhythm gene; activator of Hd1; promotes flowering under SD and inhibits under LD. | [4,12] |
Hd1 | LOC_Os06g16370 | Encodes a zinc finger protein with 395 amino acids; promotes flowering under SD and inhibits under LD; a key integrator in the OsGI-Hd1-Hd3a pathway. | [13,14] |
Ehd1 | LOC_Os10g32600 | Early heading quantitative trait locus (QTL) derived from African cultivated rice (Oryza glaberrima Steud.); promotes heading under SD conditions independently of Hd1. | [2,15] |
Ehd2/RID1/OsId1/Ghd10 | LOC_Os10g28330 | Encodes a zinc finger transcription factor; promotes heading and initiates flowering induction. | [16,17] |
Ehd3 | LOC_Os08g01420 | Promotes flowering; encodes a PHD-type zinc finger protein; induces heading by suppressing Ghd7 or upregulating Ehd1 under LD. | [16] |
Ehd4 | LOC_Os03g02160 | Promotes flowering; encodes a CCH-type zinc finger protein; upregulates florigen genes via Ehd1, without direct binding to the Ehd1 promoter region. | [18] |
Ghd7/Hd4/E1 | LOC_Os07g15770 | A major QTL controlling panicle number per plant, plant height, and heading date. | [19,20] |
DTH8/Ghd8/LHD1/OsHAP3H/EF8/OsNF-YB11/CAR/LH2 | LOC_Os08g07740 | Encodes a polypeptide with 297 amino acids; delays flowering under LD by regulating Ehd1, RFT1, and Hd3a; promotes flowering under SD. | [13,21] |
DTH7/Ghd7.1/OsPRR37/Hd2 | LOC_Os07g49460 | Major locus controlling photoperiod sensitivity and grain yield; encodes a pseudo-response regulator protein regulated by photoperiod. | [22,23] |
OsCO3 | LOC_Os09g06464 | Flowering inhibitor; regulates flowering time mainly under SD, independent of the SD florigen pathway. | [5,24] |
OsPhyA | LOC_Os03g51030 | Affects heading date by regulating OsGI under SD and Ghd7 under LD. | [25] |
OsPhyB | LOC_Os03g19590 | Regulates Hd1-mediated expression of florigen Hd3a and critical day length. | [26,27] |
OsELF3/Hd17/Ef7 | LOC_Os01g38530 | Circadian gene; promotes flowering under LD. | [14,28] |
Hd6/CK2α | LOC_Os03g55389 | Delays flowering under LD by inhibiting the expression of FT-like genes. | [29] |
OsLFL1 | LOC_Os01g51610 | Encodes a transcription factor with a B3 domain; regulates heading date by directly binding to the OsMFT1 promoter through the RY motif. | [30,31] |
HAF1 | LOC_Os04g55510 | E3 ubiquitin ligase with a C3H4 ring domain; regulates heading date through interaction with Hd1. | [32] |
OsCOL4 | LOC_Os02g39710 | Constitutive flowering repressor in rice; acts upstream of Ehd1 and downstream of OsphyB. | [33,34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Tang, L.; Cui, Y.; Fan, H.; Zhen, X.; Wang, J. Research Progress on Photoperiod Gene Regulation of Heading Date in Rice. Curr. Issues Mol. Biol. 2024, 46, 10299-10311. https://doi.org/10.3390/cimb46090613
Song J, Tang L, Cui Y, Fan H, Zhen X, Wang J. Research Progress on Photoperiod Gene Regulation of Heading Date in Rice. Current Issues in Molecular Biology. 2024; 46(9):10299-10311. https://doi.org/10.3390/cimb46090613
Chicago/Turabian StyleSong, Jian, Liqun Tang, Yongtao Cui, Honghuan Fan, Xueqiang Zhen, and Jianjun Wang. 2024. "Research Progress on Photoperiod Gene Regulation of Heading Date in Rice" Current Issues in Molecular Biology 46, no. 9: 10299-10311. https://doi.org/10.3390/cimb46090613
APA StyleSong, J., Tang, L., Cui, Y., Fan, H., Zhen, X., & Wang, J. (2024). Research Progress on Photoperiod Gene Regulation of Heading Date in Rice. Current Issues in Molecular Biology, 46(9), 10299-10311. https://doi.org/10.3390/cimb46090613