Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family
Abstract
:1. Alkylation of DNA, RNA, and Proteins and Potential Mechanisms Underlying the Repair of Such Modifications
2. S-Adenosylmethionine (SAM)-Dependent Endogenous Methylation
3. Methylation by Exogenous Agents
4. Eukaryotic Dioxygenases of the AlkB Family as Universal Dealkylating Enzymes
4.1. ABH1
4.2. ABH2 and ABH3
4.3. ABH4
4.4. ABH5
4.5. ABH6
4.6. ABH7
4.7. ABH8
4.8. FTO
5. Summary and Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Bont, R. Endogenous DNA Damage in Humans: A Review of Quantitative Data. Mutagenesis 2004, 19, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y.; Moroz, O.V.; Wilson, K.S.; Murzin, A.G. House Cleaning, a Part of Good Housekeeping. Mol. Microbiol. 2006, 59, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, T. Instability and Decay of the Primary Structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Sedgwick, B.; Bates, P.A.; Paik, J.; Jacobs, S.C.; Lindahl, T. Repair of Alkylated DNA: Recent Advances. DNA Repair. 2007, 6, 429–442. [Google Scholar] [CrossRef]
- Sall, S.O.; Johann To Berens, P.; Molinier, J. Chapter 1—DNA Damage and DNA Methylation. In Epigenetics and DNA Damage; Jasiulionis, M.G., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 33, pp. 3–16. ISBN 36. [Google Scholar]
- Peng, Y.; Pei, H. DNA Alkylation Lesion Repair: Outcomes and Implications in Cancer Chemotherapy. J. Zhejiang Univ. Sci. B 2021, 22, 47–62. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Q. The Role of Demethylase AlkB Homologs in Cancer. Front. Oncol. 2023, 13, 1153463. [Google Scholar] [CrossRef]
- Comb, M.; Goodman, H.M. CpG Methylation Inhibits Proenkephalin Gene Expression and Binding of the Transcription Factor AP-2. Nucleic Acids Res. 1990, 18, 3975–3982. [Google Scholar] [CrossRef]
- Nan, X.; Ng, H.H.; Johnson, C.A.; Laherty, C.D.; Turner, B.M.; Eisenman, R.N.; Bird, A. Transcriptional Repression by the Methyl-CpG-Binding Protein MeCP2 Involves a Histone Deacetylase Complex. Nature 1998, 393, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Smith, Z.D.; Meissner, A. DNA Methylation: Roles in Mammalian Development. Nat. Rev. Genet. 2013, 14, 204–220. [Google Scholar] [CrossRef]
- Buitrago, D.; Labrador, M.; Arcon, J.P.; Lema, R.; Flores, O.; Esteve-Codina, A.; Blanc, J.; Villegas, N.; Bellido, D.; Gut, M.; et al. Impact of DNA Methylation on 3D Genome Structure. Nat. Commun. 2021, 12, 3243. [Google Scholar] [CrossRef]
- Pérez, A.; Castellazzi, C.L.; Battistini, F.; Collinet, K.; Flores, O.; Deniz, O.; Ruiz, M.L.; Torrents, D.; Eritja, R.; Soler-López, M.; et al. Impact of Methylation on the Physical Properties of DNA. Biophys. J. 2012, 102, 2140–2148. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Chiu, T.-P.; Kribelbauer, J.F.; Mann, R.S.; Bussemaker, H.J.; Rohs, R. Systematic Prediction of DNA Shape Changes Due to CpG Methylation Explains Epigenetic Effects on Protein–DNA Binding. Epigenetics Chromatin 2018, 11, 6. [Google Scholar] [CrossRef]
- Hamidi, T.; Singh, A.K.; Chen, T. Genetic Alterations of DNA Methylation Machinery in Human Diseases. Epigenomics 2015, 7, 247–265. [Google Scholar] [CrossRef]
- He, P.C.; He, C. M6 A RNA Methylation: From Mechanisms to Therapeutic Potential. EMBO J. 2021, 40, e105977. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Hajkova, P.; Ecker, J.R. Dynamic DNA Methylation: In the Right Place at the Right Time. Science 2018, 361, 1336–1340. [Google Scholar] [CrossRef]
- Matrisciano, F.; Dong, E.; Nicoletti, F.; Guidotti, A. Epigenetic Alterations in Prenatal Stress Mice as an Endophenotype Model for Schizophrenia: Role of Metabotropic Glutamate 2/3 Receptors. Front. Mol. Neurosci. 2018, 11, 423. [Google Scholar] [CrossRef] [PubMed]
- Stojković, V.; Fujimori, D.G. Mutations in RNA Methylating Enzymes in Disease. Curr. Opin. Chem. Biol. 2017, 41, 20–27. [Google Scholar] [CrossRef]
- Xie, P.; Zang, L.-Q.; Li, X.-K.; Shu, Q. An Epigenetic View of Developmental Diseases: New Targets, New Therapies. World J. Pediatr. 2016, 12, 291–297. [Google Scholar] [CrossRef]
- Mazin, A.L. Suicidal Function of DNA Methylation in Age-Related Genome Disintegration. Ageing Res. Rev. 2009, 8, 314–327. [Google Scholar] [CrossRef]
- Hoernes, T.P.; Clementi, N.; Faserl, K.; Glasner, H.; Breuker, K.; Lindner, H.; Hüttenhofer, A.; Erlacher, M.D. Nucleotide Modifications within Bacterial Messenger RNAs Regulate Their Translation and Are Able to Rewire the Genetic Code. Nucleic Acids Res. 2016, 44, 852–862. [Google Scholar] [CrossRef]
- Hudson, B.H.; Zaher, H.S. O6-Methylguanosine Leads to Position-Dependent Effects on Ribosome Speed and Fidelity. RNA 2015, 21, 1648–1659. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.N.; Kim, K.Q.; McHugh, E.P.; Marcinkiewicz, T.; Zaher, H.S. Alkylative Damage of mRNA Leads to Ribosome Stalling and Rescue by Trans Translation in Bacteria. eLife 2020, 9, e61984. [Google Scholar] [CrossRef]
- You, C.; Dai, X.; Wang, Y. Position-Dependent Effects of Regioisomeric Methylated Adenine and Guanine Ribonucleosides on Translation. Nucleic Acids Res. 2017, 45, 9059–9067. [Google Scholar] [CrossRef]
- Cole, S.E.; LaRiviere, F.J.; Merrikh, C.N.; Moore, M.J. A Convergence of rRNA and mRNA Quality Control Pathways Revealed by Mechanistic Analysis of Nonfunctional rRNA Decay. Mol. Cell 2009, 34, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, B.; Sochacka, E.; Düchler, M. tRNA Structural and Functional Changes Induced by Oxidative Stress. Cell. Mol. Life Sci. 2011, 68, 4023–4032. [Google Scholar] [CrossRef] [PubMed]
- Willi, J.; Küpfer, P.; Evéquoz, D.; Fernandez, G.; Katz, A.; Leumann, C.; Polacek, N. Oxidative Stress Damages rRNA inside the Ribosome and Differentially Affects the Catalytic Center. Nucleic Acids Res. 2018, 46, 1945–1957. [Google Scholar] [CrossRef]
- Tsao, N.; Schärer, O.D.; Mosammaparast, N. The Complexity and Regulation of Repair of Alkylation Damage to Nucleic Acids. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 125–136. [Google Scholar] [CrossRef]
- Yan, L.L.; Zaher, H.S. How Do Cells Cope with RNA Damage and Its Consequences? J. Biol. Chem. 2019, 294, 15158–15171. [Google Scholar] [CrossRef]
- Goldberg, A.L. Protein Degradation and Protection against Misfolded or Damaged Proteins. Nature 2003, 426, 895–899. [Google Scholar] [CrossRef]
- Grune, T.; Reinheckel, T.; Davies, K.J.A. Degradation of Oxidized Proteins in Mammalian Cells. FASEB J. 1997, 11, 526–534. [Google Scholar] [CrossRef]
- Vilchez, D.; Saez, I.; Dillin, A. The Role of Protein Clearance Mechanisms in Organismal Ageing and Age-Related Diseases. Nat. Commun. 2014, 5, 5659. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Moskovitz, J.; Levine, R.L. Oxidation of Methionine Residues of Proteins: Biological Consequences. Antioxid. Redox Signal. 2003, 5, 577–582. [Google Scholar] [CrossRef]
- Boschi-Muller, S.; Gand, A.; Branlant, G. The Methionine Sulfoxide Reductases: Catalysis and Substrate Specificities. Arch. Biochem. Biophys. 2008, 474, 266–273. [Google Scholar] [CrossRef]
- Aletta, J.M.; Cimato, T.R.; Ettinger, M.J. Protein Methylation: A Signal Event in Post-Translational Modification. Trends Biochem. Sci. 1998, 23, 89–91. [Google Scholar] [CrossRef]
- Comb, D.G.; Sarkar, N.; Pinzino, C.J. The Methylation of Lysine Residues in Protein. J. Biol. Chem. 1966, 241, 1857–1862. [Google Scholar] [CrossRef]
- Paik, W.K.; Kim, S. Protein Methylase I: Purification and Properties of the Enzyme. J. Biol. Chem. 1968, 243, 2108–2114. [Google Scholar] [CrossRef]
- Stanevich, V.; Jiang, L.; Satyshur, K.A.; Li, Y.; Jeffrey, P.D.; Li, Z.; Menden, P.; Semmelhack, M.F.; Xing, Y. The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1. Mol. Cell 2011, 41, 331–342. [Google Scholar] [CrossRef]
- Cheng, D.; Vemulapalli, V.; Bedford, M.T. Chapter Four—Methods Applied to the Study of Protein Arginine Methylation. In Methods in Enzymology; Wu, C., Allis, C.D., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 512, pp. 71–92. ISBN 0076-6879. [Google Scholar]
- Greer, E.L.; Shi, Y. Histone Methylation: A Dynamic Mark in Health, Disease and Inheritance. Nat. Rev. Genet. 2012, 13, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Rydberg, B.; Lindahl, T. Nonenzymatic Methylation of DNA by the Intracellular Methyl Group Donor S-Adenosyl-L-Methionine Is a Potentially Mutagenic Reaction. EMBO J. 1982, 1, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Lyko, F. The DNA Methyltransferase Family: A Versatile Toolkit for Epigenetic Regulation. Nat. Rev. Genet. 2018, 19, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Lawley, P.D.; Brookes, P. Further Studies on the Alkylation of Nucleic Acids and Their Constituent Nucleotides. Biochem. J. 1963, 89, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Bodell, W.J.; Singer, B. Influence of Hydrogen Bonding in DNA and Polynucleotides on Reaction of Nitrogens and Oxygens toward Ethylnitrosourea. Biochemistry 1979, 18, 2860–2863. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, N.; Wang, Y.; Xia, S.; Zhu, Y.; Xing, C.; Tian, X.; Du, Y. DNA N6-Methyladenine Modification in Eukaryotic Genome. Front. Genet. 2022, 13, 914404. [Google Scholar] [CrossRef]
- Greer, E.L.; Blanco, M.A.; Gu, L.; Sendinc, E.; Liu, J.; Aristizábal-Corrales, D.; Hsu, C.-H.; Aravind, L.; He, C.; Shi, Y. DNA Methylation on N6-Adenine in C. elegans. Cell 2015, 161, 868–878. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Niu, R.; Huang, T.; Shao, L.-W.; Peng, Y.; Ding, W.; Wang, Y.; Jia, G.; He, C.; Li, C.-Y.; et al. N6-Methyldeoxyadenine Is a Transgenerational Epigenetic Signal for Mitochondrial Stress Adaptation. Nat. Cell Biol. 2019, 21, 319–327. [Google Scholar] [CrossRef]
- Liang, Z.; Shen, L.; Cui, X.; Bao, S.; Geng, Y.; Yu, G.; Liang, F.; Xie, S.; Lu, T.; Gu, X.; et al. DNA N6-Adenine Methylation in Arabidopsis Thaliana. Dev. Cell 2018, 45, 406–416.e3. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Cao, W.; Ellison, C.E. Adenine Methylation in Drosophila Is Associated with the Tissue-Specific Expression of Developmental and Regulatory Genes. G3 2019, 9, 1893–1900. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, H.; Liu, D.; Cheng, Y.; Liu, X.; Zhang, W.; Yin, R.; Zhang, D.; Zhang, P.; Liu, J.; et al. N6-Methyladenine DNA Modification in Drosophila. Cell 2015, 161, 893–906. [Google Scholar] [CrossRef]
- Hao, Z.; Wu, T.; Cui, X.; Zhu, P.; Tan, C.; Dou, X.; Hsu, K.-W.; Lin, Y.-T.; Peng, P.-H.; Zhang, L.-S.; et al. N6-Deoxyadenosine Methylation in Mammalian Mitochondrial DNA. Mol. Cell 2020, 78, 382–395.e8. [Google Scholar] [CrossRef]
- Wu, T.P.; Wang, T.; Seetin, M.G.; Lai, Y.; Zhu, S.; Lin, K.; Liu, Y.; Byrum, S.D.; Mackintosh, S.G.; Zhong, M.; et al. DNA Methylation on N6-Adenine in Mammalian Embryonic Stem Cells. Nature 2016, 532, 329–333. [Google Scholar] [CrossRef]
- Xiao, C.-L.; Zhu, S.; He, M.; Chen, D.; Zhang, Q.; Chen, Y.; Yu, G.; Liu, J.; Xie, S.-Q.; Luo, F.; et al. N6-Methyladenine DNA Modification in the Human Genome. Mol. Cell 2018, 71, 306–318.e7. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, Y.; Luo, G.-Z.; Wang, X.; Yue, Y.; Wang, X.; Zong, X.; Chen, K.; Yin, H.; Fu, Y.; et al. Abundant DNA 6mA Methylation during Early Embryogenesis of Zebrafish and Pig. Nat. Commun. 2016, 7, 13052. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Li, F.; Guo, Y.; Zhang, J.; Xu, K.; Xiong, Z.; Tong, A.; Li, L.; Yang, S. Discovery of a Potent and Cell-Active Inhibitor of DNA 6mA Demethylase ALKBH1. J. Am. Chem. Soc. 2024, 146, 6992–7006. [Google Scholar] [CrossRef]
- Douvlataniotis, K.; Bensberg, M.; Lentini, A.; Gylemo, B.; Nestor, C. No Evidence for DNA N 6-Methyladenine in Mammals. Sci. Adv. 2020, 6, eaay3335. [Google Scholar] [CrossRef]
- Koivisto, P.; Robins, P.; Lindahl, T.; Sedgwiek, B. Demethylation of 3-Methylthymine in DNA by Bacterial and Human DNA Dioxygenases. J. Biol. Chem. 2004, 279, 40470–40474. [Google Scholar] [CrossRef] [PubMed]
- Demple, B.; Sedgwick, B.; Robins, P.; Totty, N.; Waterfield, M.D.; Lindahl, T. Active Site and Complete Sequence of the Suicidal Methyltransferase That Counters Alkylation Mutagenesis. Proc. Natl. Acad. Sci. USA 1985, 82, 2688–2692. [Google Scholar] [CrossRef] [PubMed]
- Daniels, D.S.; Tainer, J.A. Conserved Structural Motifs Governing the Stoichiometric Repair of Alkylated DNA by O(6)-Alkylguanine-DNA Alkyltransferase. Mutat. Res. 2000, 460, 151–163. [Google Scholar] [CrossRef]
- Zhang, J.; Stevens, M.F.G.; Bradshaw, T.D. Temozolomide: Mechanisms of Action, Repair and Resistance. Curr. Mol. Pharmacol. 2012, 5, 102–114. [Google Scholar] [CrossRef]
- Pataillot-Meakin, T.; Pillay, N.; Beck, S. 3-Methylcytosine in Cancer: An Underappreciated Methyl Lesion? Epigenomics 2016, 8, 451–454. [Google Scholar] [CrossRef]
- Furrer, A.; van Loon, B. Handling the 3-Methylcytosine Lesion by Six Human DNA Polymerases Members of the B-, X- and Y-Families. Nucleic Acids Res. 2014, 42, 553–566. [Google Scholar] [CrossRef]
- O’Brien, P.J.; Ellenberger, T. Dissecting the Broad Substrate Specificity of Human 3-Methyladenine-DNA Glycosylase. J. Biol. Chem. 2004, 279, 9750–9757. [Google Scholar] [CrossRef] [PubMed]
- Sedgwick, B. Repairing DNA-Methylation Damage. Nat. Rev. Mol. Cell Biol. 2004, 5, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Dinglay, S.; Trewick, S.C.; Lindahl, T.; Sedgwick, B. Defective Processing of Methylated Single-Stranded DNA by E. coli AlkB Mutants. Genes Dev. 2000, 14, 2097–2105. [Google Scholar] [CrossRef] [PubMed]
- Trewick, S.C.; Henshaw, T.F.; Hausinger, R.P.; Lindahl, T.; Sedgwick, B. Oxidative Demethylation by Escherichia coli AlkB Directly Reverts DNA Base Damage. Nature 2002, 419, 174–178. [Google Scholar] [CrossRef]
- Falnes, P.Ø.; Johansen, R.F.; Seeberg, E. AlkB-Mediated Oxidative Demethylation Reverses DNA Damage in Escherichia coli. Nature 2002, 419, 178–182. [Google Scholar] [CrossRef]
- Kataoka, H.; Yamamoto, Y.; Sekiguchi, M. A New Gene (alkB) of Escherichia coli That Controls Sensitivity to Methyl Methane Sulfonate. J. Bacteriol. 1983, 153, 1301–1307. [Google Scholar] [CrossRef]
- Aravind, L.; Koonin, E.V. The DNA-Repair Protein AlkB, EGL-9, and Leprecan Define New Families of 2-Oxoglutarate- and Iron-Dependent Dioxygenases. Genome Biol. 2001, 2, research0007.1. [Google Scholar] [CrossRef]
- Hausinger, R.P. FeII/Alpha-Ketoglutarate-Dependent Hydroxylases and Related Enzymes. Crit. Rev. Biochem. Mol. Biol. 2004, 39, 21–68. [Google Scholar] [CrossRef]
- Hernández-Caballero, M.E.; Sierra-Ramírez, J.A. Single Nucleotide Polymorphisms of the FTO Gene and Cancer Risk: An Overview. Mol. Biol. Rep. 2015, 42, 699–704. [Google Scholar] [CrossRef]
- Qu, J.; Yan, H.; Hou, Y.; Cao, W.; Liu, Y.; Zhang, E.; He, J.; Cai, Z. RNA Demethylase ALKBH5 in Cancer: From Mechanisms to Therapeutic Potential. J. Hematol. Oncol. 2022, 15, 8. [Google Scholar] [CrossRef]
- Wei, H.; Li, Z.; Liu, F.; Wang, Y.; Ding, S.; Chen, Y.; Liu, J. The Role of FTO in Tumors and Its Research Progress. Curr. Med. Chem. 2022, 29, 924–933. [Google Scholar] [CrossRef]
- Xu, B.; Liu, D.; Wang, Z.; Tian, R.; Zuo, Y. Multi-Substrate Selectivity Based on Key Loops and Non-Homologous Domains: New Insight into ALKBH Family. Cell. Mol. Life Sci. 2021, 78, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, C. Demethyltransferase AlkBH1 Substrate Diversity and Relationship to Human Diseases. Mol. Biol. Rep. 2021, 48, 4747–4756. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Dominissini, D.; Rechavi, G.; He, C. Gene Expression Regulation Mediated through Reversible m6A RNA Methylation. Nat. Rev. Genet. 2014, 15, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Fedeles, B.I.; Singh, V.; Delaney, J.C.; Li, D.; Essigmann, J.M. The AlkB Family of Fe(II)/α-Ketoglutarate-Dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J. Biol. Chem. 2015, 290, 20734–20742. [Google Scholar] [CrossRef]
- Ougland, R.; Rognes, T.; Klungland, A.; Larsen, E. Non-Homologous Functions of the AlkB Homologs. J. Mol. Cell Biol. 2015, 7, 494–504. [Google Scholar] [CrossRef]
- Duncan, T.; Trewick, S.C.; Koivisto, P.; Bates, P.A.; Lindahl, T.; Sedgwick, B. Reversal of DNA Alkylation Damage by Two Human Dioxygenases. Proc. Natl. Acad. Sci. USA 2002, 99, 16660–16665. [Google Scholar] [CrossRef]
- Gerken, T.; Girard, C.A.; Tung, Y.-C.L.; Webby, C.J.; Saudek, V.; Hewitson, K.S.; Yeo, G.S.H.; McDonough, M.A.; Cunliffe, S.; McNeill, L.A.; et al. The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase. Science 2007, 318, 1469–1472. [Google Scholar] [CrossRef]
- Kurowski, M.A.; Bhagwat, A.S.; Papaj, G.; Bujnicki, J.M. Phylogenomic Identification of Five New Human Homologs of the DNA Repair Enzyme AlkB. BMC Genom. 2003, 4, 48. [Google Scholar] [CrossRef]
- Wei, Y.F.; Carter, K.C.; Wang, R.P.; Shell, B.K. Molecular Cloning and Functional Analysis of a Human cDNA Encoding an Escherichia coli AlkB Homolog, a Protein Involved in DNA Alkylation Damage Repair. Nucleic Acids Res. 1996, 24, 931–937. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Gu, Q.; Ma, Y.; Yang, Y.; Zhu, J.; Zhang, Q. The Biological Function of m6A Demethylase ALKBH5 and Its Role in Human Disease. Cancer Cell Int. 2020, 20, 347. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Jordan, J.J.; Samson, L.D. Human ALKBH7 Is Required for Alkylation and Oxidation-Induced Programmed Necrosis. Genes Dev. 2013, 27, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Songe-Møller, L.; van den Born, E.; Leihne, V.; Vågbø, C.B.; Kristoffersen, T.; Krokan, H.E.; Kirpekar, F.; Falnes, P.Ø.; Klungland, A. Mammalian ALKBH8 Possesses tRNA Methyltransferase Activity Required for the Biogenesis of Multiple Wobble Uridine Modifications Implicated in Translational Decoding. Mol. Cell Biol. 2010, 30, 1814–1827. [Google Scholar] [CrossRef] [PubMed]
- Khatiwada, B.; Nguyen, T.T.; Purslow, J.A.; Venditti, V. Solution Structure Ensemble of Human Obesity-Associated Protein FTO Reveals Druggable Surface Pockets at the Interface between the N- and C-Terminal Domain. J. Biol. Chem. 2022, 298, 101907. [Google Scholar] [CrossRef]
- Han, Z.; Niu, T.; Chang, J.; Lei, X.; Zhao, M.; Wang, Q.; Cheng, W.; Wang, J.; Feng, Y.; Chai, J. Crystal Structure of the FTO Protein Reveals Basis for Its Substrate Specificity. Nature 2010, 464, 1205–1209. [Google Scholar] [CrossRef]
- Alemu, E.A.; He, C.; Klungland, A. ALKBHs-Facilitated RNA Modifications and de-Modifications. DNA Repair. 2016, 44, 87–91. [Google Scholar] [CrossRef]
- Müller, T.A.; Meek, K.; Hausinger, R.P. Human AlkB Homologue 1 (ABH1) Exhibits DNA Lyase Activity at Abasic Sites. DNA Repair. 2010, 9, 58–65. [Google Scholar] [CrossRef]
- Korvald, H.; Falnes, P.Ø.; Laerdahl, J.K.; Bjørås, M.; Alseth, I. The Schizosaccharomyces Pombe AlkB Homolog Abh1 Exhibits AP Lyase Activity but No Demethylase Activity. DNA Repair. 2012, 11, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.-J.; Ding, J.-H.; Ye, T.-T.; Yuan, B.-F.; Feng, Y.-Q. AlkB Homologue 1 Demethylates N3-Methylcytidine in mRNA of Mammals. ACS Chem. Biol. 2019, 14, 1418–1425. [Google Scholar] [CrossRef]
- Wagner, A.; Hofmeister, O.; Rolland, S.G.; Maiser, A.; Aasumets, K.; Schmitt, S.; Schorpp, K.; Feuchtinger, A.; Hadian, K.; Schneider, S.; et al. Mitochondrial Alkbh1 Localizes to mtRNA Granules and Its Knockdown Induces the Mitochondrial UPR in Humans and C. elegans. J. Cell Sci. 2019, 132, jcs223891. [Google Scholar] [CrossRef]
- Haag, S.; Sloan, K.E.; Ranjan, N.; Warda, A.S.; Kretschmer, J.; Blessing, C.; Hübner, B.; Seikowski, J.; Dennerlein, S.; Rehling, P.; et al. NSUN 3 and ABH 1 Modify the Wobble Position of Mt-t RNA Met to Expand Codon Recognition in Mitochondrial Translation. EMBO J. 2016, 35, 2104–2119. [Google Scholar] [CrossRef] [PubMed]
- Kawarada, L.; Suzuki, T.; Ohira, T.; Hirata, S.; Miyauchi, K.; Suzuki, T. ALKBH1 Is an RNA Dioxygenase Responsible for Cytoplasmic and Mitochondrial tRNA Modifications. Nucleic Acids Res. 2017, 45, 7401–7415. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Clark, W.; Luo, G.; Wang, X.; Fu, Y.; Wei, J.; Wang, X.; Hao, Z.; Dai, Q.; Zheng, G.; et al. ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell 2016, 167, 816–828.e16. [Google Scholar] [CrossRef] [PubMed]
- Perry, G.S.; Das, M.; Woon, E.C.Y. Inhibition of AlkB Nucleic Acid Demethylases: Promising New Epigenetic Targets. J. Med. Chem. 2021, 64, 16974–17003. [Google Scholar] [CrossRef]
- Pan, Z.; Sikandar, S.; Witherspoon, M.; Dizon, D.; Nguyen, T.; Benirschke, K.; Wiley, C.; Vrana, P.; Lipkin, S.M. Impaired Placental Trophoblast Lineage Differentiation in Alkbh1−/− Mice. Dev. Dyn. 2008, 237, 316–327. [Google Scholar] [CrossRef]
- Nordstrand, L.M.; Svärd, J.; Larsen, E.; Nilsen, A.; Ougland, R.; Furu, K.; Lien, G.F.; Rognes, T.; Namekawa, S.H.; Lee, J.T.; et al. Mice Lacking Alkbh1 Display Sex-Ratio Distortion and Unilateral Eye Defects. PLoS ONE 2010, 5, e13827. [Google Scholar] [CrossRef]
- Boos, F.; Wollin, M.; Herrmann, J.M. Methionine on the Rise: How Mitochondria Changed Their Codon Usage. EMBO J. 2016, 35, 2066–2067. [Google Scholar] [CrossRef]
- Li, Q.; Qian, C.; Feng, H.; Lin, T.; Zhu, Q.; Huang, Y.; Zhou, F.-Q. N6-Methyladenine DNA Demethylase ALKBH1 Regulates Mammalian Axon Regeneration. Neurosci. Bull. 2021, 37, 809–814. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Q.; Xie, L. The AlkB Family of Fe (II)/Alpha-Ketoglutarate-Dependent Dioxygenases Modulates Embryogenesis through Epigenetic Regulation. Curr. Stem Cell Res. Ther. 2018, 13, 136–143. [Google Scholar] [CrossRef]
- Pilžys, T.; Marcinkowski, M.; Kukwa, W.; Garbicz, D.; Dylewska, M.; Ferenc, K.; Mieczkowski, A.; Kukwa, A.; Migacz, E.; Wołosz, D.; et al. ALKBH Overexpression in Head and Neck Cancer: Potential Target for Novel Anticancer Therapy. Sci. Rep. 2019, 9, 13249. [Google Scholar] [CrossRef]
- Wang, X.; Wong, C.C.; Chen, H.; Fu, K.; Shi, L.; Su, H.; Guo, S.; Gou, H.; Hu, X.; Zhang, L.; et al. The N6-Methyladenine DNA Demethylase ALKBH1 Promotes Gastric Carcinogenesis by Disrupting NRF1 Binding Capacity. Cell Rep. 2023, 42, 112279. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Tsui, K.; Pan, L.; Li, C. Spatial and Single-Cell Analyses Uncover Links between ALKBH1 and Tumor-Associated Macrophages in Gastric Cancer. Cancer Cell Int. 2024, 24, 57. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, D.; Wang, F.; Xu, Y.; Yu, H.; Zhang, H. Expression of Demethylase Genes, FTO and ALKBH1, Is Associated with Prognosis of Gastric Cancer. Dig. Dis. Sci. 2019, 64, 1503–1513. [Google Scholar] [CrossRef]
- Xie, Q.; Wu, T.P.; Gimple, R.C.; Li, Z.; Prager, B.C.; Wu, Q.; Yu, Y.; Wang, P.; Wang, Y.; Gorkin, D.U.; et al. N6-Methyladenine DNA Modification in Glioblastoma. Cell 2018, 175, 1228–1243.e20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, C.; Zhao, Y.; Deng, C.; Wu, H.; Zhuo, Z.; He, J. ALKBH1 Rs2267755 C>T Polymorphism Decreases Neuroblastoma Risk in Chinese Children. J. Cancer 2024, 15, 526–532. [Google Scholar] [CrossRef]
- Aas, P.A.; Otterlei, M.; Falnes, P.; Vågbø, C.B.; Skorpen, F.; Akbari, M.; Sundheim, O.; Bjørås, M.; Slupphaug, G.; Seeberg, E.; et al. Human and Bacterial Oxidative Demethylases Repair Alkylation Damage in Both RNA and DNA. Nature 2003, 421, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Falnes, P.; Bjørås, M.; Aas, P.A.; Sundheim, O.; Seeberg, E. Substrate Specificities of Bacterial and Human AlkB Proteins. Nucleic Acids Res. 2004, 32, 3456–3461. [Google Scholar] [CrossRef]
- Ringvoll, J.; Nordstrand, L.M.; Vagbo, C.B.; Talstad, V.; Reite, K.; Aas, P.A.; Lauritzen, K.H.; Liabakk, N.B.; Bjork, A.; Doughty, R.W.; et al. Repair Deficient Mice Reveal mABH2 as the Primary Oxidative Demethylase for Repairing 1meA and 3meC Lesions in DNA. Embo J. 2006, 25, 2189–2198. [Google Scholar] [CrossRef]
- Ringvoll, J.; Moen, M.N.; Nordstrand, L.M.; Meira, L.B.; Pang, B.; Bekkelund, A.; Dedon, P.C.; Bjelland, S.; Samson, L.D.; Falnes, P.Ø.; et al. AlkB Homologue 2–Mediated Repair of Ethenoadenine Lesions in Mammalian DNA. Cancer Res. 2008, 68, 4142–4149. [Google Scholar] [CrossRef]
- Zdzalik, D.; Domańska, A.; Prorok, P.; Kosicki, K.; van den Born, E.; Falnes, P.T.; Rizzo, C.J.; Guengerich, F.P.; Tudek, B. Differential Repair of Etheno-DNA Adducts by Bacterial and Human AlkB Proteins. DNA Repair. 2015, 30, 1–10. [Google Scholar] [CrossRef]
- Bian, K.; Lenz, S.A.P.; Tang, Q.; Chen, F.; Qi, R.; Jost, M.; Drennan, C.L.; Essigmann, J.M.; Wetmore, S.D.; Li, D. DNA Repair Enzymes ALKBH2, ALKBH3, and AlkB Oxidize 5-Methylcytosine to 5-Hydroxymethylcytosine, 5-Formylcytosine and 5-Carboxylcytosine In Vitro. Nucleic Acids Res. 2019, 47, 5522–5529. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Yang, C.-G.; He, C. A Non-Heme Iron-Mediated Chemical Demethylation in DNA and RNA. Acc. Chem. Res. 2009, 42, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Waheed, S.O.; Ramanan, R.; Chaturvedi, S.S.; Lehnert, N.; Schofield, C.J.; Christov, C.Z.; Karabencheva-Christova, T.G. Role of Structural Dynamics in Selectivity and Mechanism of Non-Heme Fe(II) and 2-Oxoglutarate-Dependent Oxygenases Involved in DNA Repair. ACS Cent. Sci. 2020, 6, 795–814. [Google Scholar] [CrossRef]
- You, X.-J.; Zhang, S.; Chen, J.-J.; Tang, F.; He, J.; Wang, J.; Qi, C.-B.; Feng, Y.-Q.; Yuan, B.-F. Formation and Removal of 1,N6-Dimethyladenosine in Mammalian Transfer RNA. Nucleic Acids Res. 2022, 50, 9858–9872. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Gao, S.; Wang, L.; Yu, F.; Li, J.; Wang, C.; Li, J.; Wong, J. ABH2 Couples Regulation of Ribosomal DNA Transcription with DNA Alkylation Repair. Cell Rep. 2013, 4, 817–829. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Z.; Xie, G.; Zhang, H.; Wang, Z.; Zhou, J.; Chen, F.; Li, J.; Chen, L.; Niu, H.; et al. RNA m1A Methylation Regulates Glycolysis of Cancer Cells through Modulating ATP5D. Proc. Natl. Acad. Sci. USA 2022, 119, e2119038119. [Google Scholar] [CrossRef]
- Chen, Z.; Qi, M.; Shen, B.; Luo, G.; Wu, Y.; Li, J.; Lu, Z.; Zheng, Z.; Dai, Q.; Wang, H. Transfer RNA Demethylase ALKBH3 Promotes Cancer Progression via Induction of tRNA-Derived Small RNAs. Nucleic Acids Res. 2019, 47, 2533–2545. [Google Scholar] [CrossRef]
- Cetica, V.; Genitori, L.; Giunti, L.; Sanzo, M.; Bernini, G.; Massimino, M.; Sardi, I. Pediatric Brain Tumors: Mutations of Two Dioxygenases (hABH2 and hABH3) That Directly Repair Alkylation Damage. J. Neurooncol. 2009, 94, 195–201. [Google Scholar] [CrossRef]
- Fu, D.; Samson, L.D.; Hübscher, U.; van Loon, B. The Interaction between ALKBH2 DNA Repair Enzyme and PCNA Is Direct, Mediated by the Hydrophobic Pocket of PCNA and Perturbed in Naturally-Occurring ALKBH2 Variants. DNA Repair. 2015, 35, 13–18. [Google Scholar] [CrossRef]
- Fujii, T.; Shimada, K.; Anai, S.; Fujimoto, K.; Konishi, N. ALKBH2, a Novel AlkB Homologue, Contributes to Human Bladder Cancer Progression by Regulating MUC1 Expression. Cancer Sci. 2013, 104, 321–327. [Google Scholar] [CrossRef]
- Ke, B.; Ye, K.; Cheng, S. ALKBH2 Inhibition Alleviates Malignancy in Colorectal Cancer by Regulating BMI1-Mediated Activation of NF-κB Pathway. World J. Surg. Oncol. 2020, 18, 328. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xu, W.; Liu, S.; Chen, B.; Wang, X.; Wang, Y.; Liu, S.; Wu, J. Down-Regulation of ALKBH2 Increases Cisplatin Sensitivity in H1299 Lung Cancer Cells. Acta Pharmacol. Sin. 2011, 32, 393–398. [Google Scholar] [CrossRef]
- Johannessen, T.-C.A.; Prestegarden, L.; Grudic, A.; Hegi, M.E.; Tysnes, B.B.; Bjerkvig, R. The DNA Repair Protein ALKBH2 Mediates Temozolomide Resistance in Human Glioblastoma Cells. Neuro-Oncol. 2013, 15, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Konishi, N.; Shimada, K.; Nakamura, M.; Ishida, E.; Ota, I.; Tanaka, N.; Fujimoto, K. Function of JunB in Transient Amplifying Cell Senescence and Progression of Human Prostate Cancer. Clin. Cancer Res. 2008, 14, 4408–4416. [Google Scholar] [CrossRef]
- Tasaki, M.; Shimada, K.; Kimura, H.; Tsujikawa, K.; Konishi, N. ALKBH3, a Human AlkB Homologue, Contributes to Cell Survival in Human Non-Small-Cell Lung Cancer. Br. J. Cancer 2011, 104, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Nakao, S.; Mabuchi, M.; Shimizu, T.; Itoh, Y.; Takeuchi, Y.; Ueda, M.; Mizuno, H.; Shigi, N.; Ohshio, I.; Jinguji, K.; et al. Design and Synthesis of Prostate Cancer Antigen-1 (PCA-1/ALKBH3) Inhibitors as Anti-Prostate Cancer Drugs. Bioorg. Med. Chem. Lett. 2014, 24, 1071–1074. [Google Scholar] [CrossRef]
- Ueda, M.; Shimizu, T.; Mabuchi, M.; Horiike, K.; Kitae, K.; Hase, H.; Ueda, Y.; Tsujikawa, K.; Tanaka, A. Novel Metabolically Stable PCA-1/ALKBH3 Inhibitor Has Potent Antiproliferative Effects on DU145 Cells In Vivo. Anticancer Res. 2018, 38, 211–218. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, G.; Wang, Y.; Liu, C.; He, X. Association of AlkB Homolog 3 Expression with Tumor Recurrence and Unfavorable Prognosis in Hepatocellular Carcinoma. J. Gastroenterol. Hepatol. 2018, 33, 1617–1625. [Google Scholar] [CrossRef]
- Shimada, K.; Fujii, T.; Tsujikawa, K.; Anai, S.; Fujimoto, K.; Konishi, N. ALKBH3 Contributes to Survival and Angiogenesis of Human Urothelial Carcinoma Cells through NADPH Oxidase and Tweak/Fn14/VEGF Signals. Clin. Cancer Res. 2012, 18, 5247–5255. [Google Scholar] [CrossRef]
- Bjørnstad, L.G.; Zoppellaro, G.; Tomter, A.B.; Falnes, P.; Andersson, K.K. Spectroscopic and Magnetic Studies of Wild-Type and Mutant Forms of the Fe(II)- and 2-Oxoglutarate-Dependent Decarboxylase ALKBH4. Biochem. J. 2011, 434, 391–398. [Google Scholar] [CrossRef]
- Li, M.M.; Nilsen, A.; Shi, Y.; Fusser, M.; Ding, Y.H.; Fu, Y.; Liu, B.; Niu, Y.; Wu, Y.S.; Huang, C.M.; et al. ALKBH4-Dependent Demethylation of Actin Regulates Actomyosin Dynamics. Nat. Commun. 2013, 4, 1832. [Google Scholar] [CrossRef]
- Kweon, S.-M.; Chen, Y.; Moon, E.; Kvederaviciutė, K.; Klimasauskas, S.; Feldman, D.E. An Adversarial DNA N6-Methyladenine-Sensor Network Preserves Polycomb Silencing. Mol. Cell 2019, 74, 1138–1147.e6. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, A.; Fusser, M.; Greggains, G.; Fedorcsak, P.; Klungland, A. ALKBH4 Depletion in Mice Leads to Spermatogenic Defects. PLoS ONE 2014, 9, e105113. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, X.; Gong, B.; Wu, D.; Meng, A.; Jia, S. Alkbh4 and Atrn Act Maternally to Regulate Zebrafish Epiboly. Int. J. Biol. Sci. 2017, 13, 1051–1066. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Fang, L.; Zhuang, L.; Shi, B.; Lin, C.-P.; Ye, Y. Sperm-Borne microRNA-34c Regulates Maternal mRNA Degradation and Preimplantation Embryonic Development in Mice. Reprod. Biol. Endocrinol. 2023, 21, 40. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Qi, T.F.; Miao, W.; Liu, X.; Wang, Y. Quantitative Proteomics Revealed New Functions of ALKBH4. Proteomics 2022, 22, e2100231. [Google Scholar] [CrossRef]
- Aoki, M.; Ueda, K.; Kamimura, G.; Iwamoto, Y.; Ikehata, M.; Tabata, K.; Sakagami, Y.; Morizono, S.; Tokunaga, T.; Umehara, T.; et al. Clinical Significance of ALKBH4 Expression in Non-Small Cell Lung Cancer. Transl. Cancer Res. 2022, 11, 2040–2049. [Google Scholar] [CrossRef]
- Peng, B.; Yan, Y.; Xu, Z. The Bioinformatics and Experimental Analysis of AlkB Family for Prognosis and Immune Cell Infiltration in Hepatocellular Carcinoma. PeerJ 2021, 9, e12123. [Google Scholar] [CrossRef]
- Jingushi, K.; Aoki, M.; Ueda, K.; Kogaki, T.; Tanimoto, M.; Monoe, Y.; Ando, M.; Matsumoto, T.; Minami, K.; Ueda, Y.; et al. ALKBH4 Promotes Tumourigenesis with a Poor Prognosis in Non-Small-Cell Lung Cancer. Sci. Rep. 2021, 11, 8677. [Google Scholar] [CrossRef]
- Shen, C.; Yan, T.; Tong, T.; Shi, D.; Ren, L.; Zhang, Y.; Zhang, X.; Cao, Y.; Yan, Y.; Ma, Y.; et al. ALKBH4 Functions as a Suppressor of Colorectal Cancer Metastasis via Competitively Binding to WDR5. Front. Cell Dev. Biol. 2020, 8, 293. [Google Scholar] [CrossRef]
- Thalhammer, A.; Bencokova, Z.; Poole, R.; Loenarz, C.; Adam, J.; O’Flaherty, L.; Schödel, J.; Mole, D.; Giaslakiotis, K.; Schofield, C.J.; et al. Human AlkB Homologue 5 Is a Nuclear 2-Oxoglutarate Dependent Oxygenase and a Direct Target of Hypoxia-Inducible Factor 1α (HIF-1α). PLoS ONE 2011, 6, e16210. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Liu, Y.; Wang, G.; Deng, Z.; Zhang, Q.; Wu, W.; Tong, Y.; Cheng, C.; Chen, Z. Crystal Structures of the Human RNA Demethylase Alkbh5 Reveal Basis for Substrate Recognition. J. Biol. Chem. 2014, 289, 11571–11583. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Huang, W.; Huang, J.-T.; Xiong, J.; Yang, Y.; Wu, K.; Jia, G.-F.; Chen, J.; Feng, Y.-Q.; Yuan, B.-F.; et al. Decreased N(6)-Methyladenosine in Peripheral Blood RNA from Diabetic Patients Is Associated with FTO Expression Rather than ALKBH5. J. Clin. Endocrinol. Metab. 2015, 100, E148–E154. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Liu, K.; Tempel, W.; Demetriades, M.; Aik, W.; Schofield, C.J.; Min, J. Structures of Human ALKBH5 Demethylase Reveal a Unique Binding Mode for Specific Single-Stranded N6-Methyladenosine RNA Demethylation. J. Biol. Chem. 2014, 289, 17299–17311. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Dahl, J.A.; Niu, Y.; Fedorcsak, P.; Huang, C.M.; Li, C.J.; Vågbø, C.B.; Shi, Y.; Wang, W.L.; Song, S.H.; et al. ALKBH5 Is a Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility. Mol. Cell 2013, 49, 18–29. [Google Scholar] [CrossRef]
- Akula, D.; O’Connor, T.R.; Anindya, R. Oxidative Demethylase ALKBH5 Repairs DNA Alkylation Damage and Protects against Alkylation-Induced Toxicity. Biochem. Biophys. Res. Commun. 2021, 534, 114–120. [Google Scholar] [CrossRef]
- Ensfelder, T.T.; Kurz, M.Q.; Iwan, K.; Geiger, S.; Matheisl, S.; Müller, M.; Beckmann, R.; Carell, T. ALKBH5-Induced Demethylation of Mono- and Dimethylated Adenosine. Chem. Commun. 2018, 54, 8591–8593. [Google Scholar] [CrossRef]
- Tang, C.; Klukovich, R.; Peng, H.; Wang, Z.; Yu, T.; Zhang, Y.; Zheng, H.; Klungland, A.; Yan, W. ALKBH5-Dependent m6A Demethylation Controls Splicing and Stability of Long 3’-UTR mRNAs in Male Germ Cells. Proc. Natl. Acad. Sci. USA 2018, 115, E325–E333. [Google Scholar] [CrossRef]
- Du, T.; Li, G.; Yang, J.; Ma, K. RNA Demethylase Alkbh5 Is Widely Expressed in Neurons and Decreased during Brain Development. Brain Res. Bull. 2020, 163, 150–159. [Google Scholar] [CrossRef]
- Meyer, K.D.; Jaffrey, S.R. The Dynamic Epitranscriptome: N6-Methyladenosine and Gene Expression Control. Nat. Rev. Mol. Cell Biol. 2014, 15, 313–326. [Google Scholar] [CrossRef]
- Yu, F.; Wei, J.; Cui, X.; Yu, C.; Ni, W.; Bungert, J.; Wu, L.; He, C.; Qian, Z. Post-Translational Modification of RNA m6A Demethylase ALKBH5 Regulates ROS-Induced DNA Damage Response. Nucleic Acids Res. 2021, 49, 5779–5797. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, X.; Hu, J.; Qu, R.; Yu, Z.; Xu, H.; Chen, H.; Yan, L.; Ding, C.; Zou, Q.; et al. m6A Demethylase ALKBH5 Controls CD4+ T Cell Pathogenicity and Promotes Autoimmunity. Sci. Adv. 2021, 7, eabg0470. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zhuo, Z.-J.; Duan, F.; Li, Y.; Yang, Z.; Zhang, J.; Cheng, J.; Li, S.; Li, L.; Geng, J.; et al. ALKBH5 Gene Polymorphisms and Hepatoblastoma Susceptibility in Chinese Children. J. Oncol. 2021, 2021, 6658480. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Lin, H.; Hua, W.; Lin, L.; Liu, J.; Deng, L.; Zhang, J.; Cheng, J.; Yang, Z.; Li, Y.; et al. Variant Rs8400 Enhances ALKBH5 Expression through Disrupting miR-186 Binding and Promotes Neuroblastoma Progression. Chin. J. Cancer Res. 2023, 35, 140–162. [Google Scholar] [CrossRef]
- Song, R.-H.; Zhao, J.; Gao, C.-Q.; Qin, Q.; Zhang, J.-A. Inclusion of ALKBH5 as a Candidate Gene for the Susceptibility of Autoimmune Thyroid Disease. Adv. Med. Sci. 2021, 66, 351–358. [Google Scholar] [CrossRef]
- Panneerdoss, S.; Eedunuri, V.K.; Yadav, P.; Timilsina, S.; Rajamanickam, S.; Viswanadhapalli, S.; Abdelfattah, N.; Onyeagucha, B.C.; Cui, X.; Lai, Z.; et al. Cross-Talk among Writers, Readers, and Erasers of m6A Regulates Cancer Growth and Progression. Sci. Adv. 2018, 4, eaar8263. [Google Scholar] [CrossRef]
- Chao, Y.; Shang, J.; Ji, W. ALKBH5-m6A-FOXM1 Signaling Axis Promotes Proliferation and Invasion of Lung Adenocarcinoma Cells under Intermittent Hypoxia. Biochem. Biophys. Res. Commun. 2020, 521, 499–506. [Google Scholar] [CrossRef]
- Kowalski-Chauvel, A.; Lacore, M.G.; Arnauduc, F.; Delmas, C.; Toulas, C.; Cohen-Jonathan-Moyal, E.; Seva, C. The m6A RNA Demethylase ALKBH5 Promotes Radioresistance and Invasion Capability of Glioma Stem Cells. Cancers 2020, 13, 40. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, B.S.; Zhou, A.; Lin, K.; Zheng, S.; Lu, Z.; Chen, Y.; Sulman, E.P.; Xie, K.; Bögler, O.; et al. m6A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell 2017, 31, 591–606.e6. [Google Scholar] [CrossRef]
- Nagaki, Y.; Motoyama, S.; Yamaguchi, T.; Hoshizaki, M.; Sato, Y.; Sato, T.; Koizumi, Y.; Wakita, A.; Kawakita, Y.; Imai, K.; et al. M6 A Demethylase ALKBH5 Promotes Proliferation of Esophageal Squamous Cell Carcinoma Associated with Poor Prognosis. Genes Cells 2020, 25, 547–561. [Google Scholar] [CrossRef]
- Zhang, C.; Samanta, D.; Lu, H.; Bullen, J.W.; Zhang, H.; Chen, I.; He, X.; Semenza, G.L. Hypoxia Induces the Breast Cancer Stem Cell Phenotype by HIF-Dependent and ALKBH5-Mediated m6A-Demethylation of NANOG mRNA. Proc. Natl. Acad. Sci. USA 2016, 113, E2047–E2056. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Ren, C.; Jiang, A.; Sun, Y.; Lu, J.; Ling, X.; Lu, C.; Yu, Z. Arginine Methylation of ALKBH5 by PRMT6 Promotes Breast Tumorigenesis via LDHA-Mediated Glycolysis. Front. Med. 2024, 18, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hu, J.; Sun, X.; Yang, K.; Yang, L.; Kong, L.; Zhang, B.; Li, F.; Li, C.; Shi, B.; et al. Loss of m6A Demethylase ALKBH5 Promotes Post-Ischemic Angiogenesis via Post-Transcriptional Stabilization of WNT5A. Clin. Transl. Med. 2021, 11, e402. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-C.; Jin, F.; Wang, B.-Y.; Yin, X.-J.; Hong, W.; Tian, F.-J. The m6A Demethylase ALKBH5 Controls Trophoblast Invasion at the Maternal-Fetal Interface by Regulating the Stability of CYR61 mRNA. Theranostics 2019, 9, 3853–3865. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.; Chen, J.; Peng, C.; Zhang, Y.; Tong, R.; Cheng, Q.; Yang, B.; Feng, X.; Lu, Y.; et al. ALKBH5 Suppresses Malignancy of Hepatocellular Carcinoma via m6A-Guided Epigenetic Inhibition of LYPD1. Mol. Cancer 2020, 19, 123. [Google Scholar] [CrossRef]
- Yu, H.; Yang, X.; Tang, J.; Si, S.; Zhou, Z.; Lu, J.; Han, J.; Yuan, B.; Wu, Q.; Lu, Q.; et al. ALKBH5 Inhibited Cell Proliferation and Sensitized Bladder Cancer Cells to Cisplatin by m6A-CK2α-Mediated Glycolysis. Mol. Ther. Nucleic Acids 2021, 23, 27–41. [Google Scholar] [CrossRef]
- Yuan, Y.; Yan, G.; He, M.; Lei, H.; Li, L.; Wang, Y.; He, X.; Li, G.; Wang, Q.; Gao, Y.; et al. ALKBH5 Suppresses Tumor Progression via an m6A-Dependent Epigenetic Silencing of Pre-miR-181b-1/YAP Signaling Axis in Osteosarcoma. Cell Death Dis. 2021, 12, 60. [Google Scholar] [CrossRef]
- Luo, Q.; Gao, Y.; Zhang, L.; Rao, J.; Guo, Y.; Huang, Z.; Li, J. Decreased ALKBH5, FTO, and YTHDF2 in Peripheral Blood Are as Risk Factors for Rheumatoid Arthritis. BioMed Res. Int. 2020, 2020, 5735279. [Google Scholar] [CrossRef]
- Selberg, S.; Seli, N.; Kankuri, E.; Karelson, M. Rational Design of Novel Anticancer Small-Molecule RNA m6A Demethylase ALKBH5 Inhibitors. ACS Omega 2021, 6, 13310–13320. [Google Scholar] [CrossRef]
- You, Y.; Fu, Y.; Huang, M.; Shen, D.; Zhao, B.; Liu, H.; Zheng, Y.; Huang, L. Recent Advances of m6A Demethylases Inhibitors and Their Biological Functions in Human Diseases. Int. J. Mol. Sci. 2022, 23, 5815. [Google Scholar] [CrossRef]
- Tsujikawa, K.; Koike, K.; Kitae, K.; Shinkawa, A.; Arima, H.; Suzuki, T.; Tsuchiya, M.; Makino, Y.; Furukawa, T.; Konishi, N.; et al. Expression and Sub-Cellular Localization of Human ABH Family Molecules. J. Cell Mol. Med. 2007, 11, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Huong, T.T.; Ngoc, L.N.T.; Kang, H. Functional Characterization of a Putative RNA Demethylase Alkbh6 in Arabidopsis Growth and Abiotic Stress Responses. Int. J. Mol. Sci. 2020, 21, 6707. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Lu, H.; Tian, Z.; Yang, M.; Ma, J.; Shang, G.; Liu, Y.; Xie, M.; Wang, G.; Wu, W.; et al. Structural Insights into the Interactions and Epigenetic Functions of Human Nucleic Acid Repair Protein ALKBH6. J. Biol. Chem. 2022, 298, 101671. [Google Scholar] [CrossRef]
- Zhao, S.; Devega, R.; Francois, A.; Kidane, D. Human ALKBH6 Is Required for Maintenance of Genomic Stability and Promoting Cell Survival during Exposure of Alkylating Agents in Pancreatic Cancer. Front. Genet. 2021, 12, 635808. [Google Scholar] [CrossRef]
- Solberg, A.; Robertson, A.B.; Aronsen, J.M.; Rognmo, Ø.; Sjaastad, I.; Wisløff, U.; Klungland, A. Deletion of Mouse Alkbh7 Leads to Obesity. J. Mol. Cell Biol. 2013, 5, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; He, Q.; Feng, C.; Liu, Y.; Deng, Z.; Qi, X.; Wu, W.; Mei, P.; Chen, Z. The Atomic Resolution Structure of Human AlkB Homolog 7 (ALKBH7), a Key Protein for Programmed Necrosis and Fat Metabolism. J. Biol. Chem. 2014, 289, 27924–27936. [Google Scholar] [CrossRef]
- Zhang, L.-S.; Xiong, Q.-P.; Peña Perez, S.; Liu, C.; Wei, J.; Le, C.; Zhang, L.; Harada, B.T.; Dai, Q.; Feng, X.; et al. ALKBH7-Mediated Demethylation Regulates Mitochondrial Polycistronic RNA Processing. Nat. Cell Biol. 2021, 23, 684–691. [Google Scholar] [CrossRef]
- Walker, A.R.; Silvestrov, P.; Müller, T.A.; Podolsky, R.H.; Dyson, G.; Hausinger, R.P.; Cisneros, G.A. ALKBH7 Variant Related to Prostate Cancer Exhibits Altered Substrate Binding. PLoS Comput. Biol. 2017, 13, e1005345. [Google Scholar] [CrossRef] [PubMed]
- Begley, U.; Dyavaiah, M.; Patil, A.; Rooney, J.P.; DiRenzo, D.; Young, C.M.; Conklin, D.S.; Zitomer, R.S.; Begley, T.J. Trm9-Catalyzed tRNA Modifications Link Translation to the DNA Damage Response. Mol. Cell 2007, 28, 860–870. [Google Scholar] [CrossRef]
- Shimada, K.; Nakamura, M.; Anai, S.; De Velasco, M.; Tanaka, M.; Tsujikawa, K.; Ouji, Y.; Konishi, N. A Novel Human AlkB Homologue, ALKBH8, Contributes to Human Bladder Cancer Progression. Cancer Res. 2009, 69, 3157–3164. [Google Scholar] [CrossRef]
- Fu, D.; Brophy, J.A.N.; Chan, C.T.Y.; Atmore, K.A.; Begley, U.; Paules, R.S.; Dedon, P.C.; Begley, T.J.; Samson, L.D. Human AlkB Homolog ABH8 Is a tRNA Methyltransferase Required for Wobble Uridine Modification and DNA Damage Survival. Mol. Cell Biol. 2010, 30, 2449–2459. [Google Scholar] [CrossRef] [PubMed]
- Pastore, C.; Topalidou, I.; Forouhar, F.; Yan, A.C.; Levy, M.; Hunt, J.F. Crystal Structure and RNA Binding Properties of the RNA Recognition Motif (RRM) and AlkB Domains in Human AlkB Homolog 8 (ABH8), an Enzyme Catalyzing tRNA Hypermodification. J. Biol. Chem. 2012, 287, 2130–2143. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Dai, Q.; Zhang, W.; Ren, J.; Pan, T.; He, C. The AlkB Domain of Mammalian ABH8 Catalyzes Hydroxylation of 5-Methoxycarbonylmethyluridine at the Wobble Position of tRNA. Angew. Chem. Int. Ed. Engl. 2010, 49, 8885–8888. [Google Scholar] [CrossRef] [PubMed]
- Van Den Born, E.; Vågbø, C.B.; Songe-Møller, L.; Leihne, V.; Lien, G.F.; Leszczynska, G.; Malkiewicz, A.; Krokan, H.E.; Kirpekar, F.; Klungland, A.; et al. ALKBH8-Mediated Formation of a Novel Diastereomeric Pair of Wobble Nucleosides in Mammalian tRNA. Nat. Commun. 2011, 2, 172. [Google Scholar] [CrossRef] [PubMed]
- Madhwani, K.R.; Sayied, S.; Ogata, C.H.; Hogan, C.A.; Lentini, J.M.; Mallik, M.; Dumouchel, J.L.; Storkebaum, E.; Fu, D.; O’Connor-Giles, K.M. tRNA Modification Enzyme-Dependent Redox Homeostasis Regulates Synapse Formation and Memory. bioRxiv 2023. [Google Scholar] [CrossRef]
- Monies, D.; Vågbø, C.B.; Al-Owain, M.; Alhomaidi, S.; Alkuraya, F.S. Recessive Truncating Mutations in ALKBH8 Cause Intellectual Disability and Severe Impairment of Wobble Uridine Modification. Am. J. Hum. Genet. 2019, 104, 1202–1209. [Google Scholar] [CrossRef]
- Saad, A.K.; Marafi, D.; Mitani, T.; Du, H.; Rafat, K.; Fatih, J.M.; Jhangiani, S.N.; Coban-Akdemir, Z.; Baylor-Hopkins Center for Mendelian Genomics; Gibbs, R.A.; et al. Neurodevelopmental Disorder in an Egyptian Family with a Biallelic ALKBH8 Variant. Am. J. Med. Genet. Part A 2021, 185, 1288–1293. [Google Scholar] [CrossRef]
- Maddirevula, S.; Alameer, S.; Ewida, N.; de Sousa, M.M.L.; Bjørås, M.; Vågbø, C.B.; Alkuraya, F.S. Insight into ALKBH8-Related Intellectual Developmental Disability Based on the First Pathogenic Missense Variant. Hum. Genet. 2022, 141, 209–215. [Google Scholar] [CrossRef]
- Yılmaz, M.; Kamaşak, T.; Teralı, K.; Çebi, A.H.; Türkyılmaz, A. The First Turkish Family with a Novel Biallelic Missense Variant of the ALKBH8 Gene: A Study on the Clinical and Variant Spectrum of ALKBH8-Related Intellectual Developmental Disorders. Am. J. Med. Genet. Part A 2024, 194, e63535. [Google Scholar] [CrossRef]
- Waqas, A.; Nayab, A.; Shaheen, S.; Abbas, S.; Latif, M.; Rafeeq, M.M.; Al-Dhuayan, I.S.; Alqosaibi, A.I.; Alnamshan, M.M.; Sain, Z.M.; et al. Case Report: Biallelic Variant in the tRNA Methyltransferase Domain of the AlkB Homolog 8 Causes Syndromic Intellectual Disability. Front. Genet. 2022, 13, 878274. [Google Scholar] [CrossRef]
- Ohshio, I.; Kawakami, R.; Tsukada, Y.; Nakajima, K.; Kitae, K.; Shimanoe, T.; Saigo, Y.; Hase, H.; Ueda, Y.; Jingushi, K.; et al. ALKBH8 Promotes Bladder Cancer Growth and Progression through Regulating the Expression of Survivin. Biochem. Biophys. Res. Commun. 2016, 477, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Ooshio, I.; Fusamae, Y.; Kitae, K.; Kawaguchi, M.; Jingushi, K.; Hase, H.; Harada, K.; Hirata, K.; Tsujikawa, K. AlkB Homolog 3-Mediated tRNA Demethylation Promotes Protein Synthesis in Cancer Cells. Sci. Rep. 2017, 7, 42271. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Yang, C.-G.; Yang, S.; Jian, X.; Yi, C.; Zhou, Z.; He, C. Oxidative Demethylation of 3-Methylthymine and 3-Methyluracil in Single-Stranded DNA and RNA by Mouse and Human FTO. FEBS Lett. 2008, 582, 3313–3319. [Google Scholar] [CrossRef]
- Jia, G.; Fu, Y.; Zhao, X.; Dai, Q.; Zheng, G.; Yang, Y.; Yi, C.; Lindahl, T.; Pan, T.; Yang, Y.-G.; et al. N6-Methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO. Nat. Chem. Biol. 2011, 7, 885–887. [Google Scholar] [CrossRef]
- Desrosiers, R.; Friderici, K.; Rottman, F. Identification of Methylated Nucleosides in Messenger RNA from Novikoff Hepatoma Cells. Proc. Natl. Acad. Sci. USA 1974, 71, 3971–3975. [Google Scholar] [CrossRef]
- Kowalak, J.A.; Pomerantz, S.C.; Crain, P.F.; McCloskey, J.A. A Novel Method for the Determination of Post-Transcriptional Modification in RNA by Mass Spectrometry. Nucleic Acids Res. 1993, 21, 4577–4585. [Google Scholar] [CrossRef] [PubMed]
- Yeo, G.S.H. The Role of the FTO (Fat Mass and Obesity Related) Locus in Regulating Body Size and Composition. Mol. Cell Endocrinol. 2014, 397, 34–41. [Google Scholar] [CrossRef]
- Li, Y.; Wu, K.; Quan, W.; Yu, L.; Chen, S.; Cheng, C.; Wu, Q.; Zhao, S.; Zhang, Y.; Zhou, L. The Dynamics of FTO Binding and Demethylation from the m6A Motifs. RNA Biol. 2019, 16, 1179–1189. [Google Scholar] [CrossRef]
- Meyre, D.; Proulx, K.; Kawagoe-Takaki, H.; Vatin, V.; Gutiérrez-Aguilar, R.; Lyon, D.; Ma, M.; Choquet, H.; Horber, F.; Van Hul, W.; et al. Prevalence of Loss-of-Function FTO Mutations in Lean and Obese Individuals. Diabetes 2010, 59, 311–318. [Google Scholar] [CrossRef]
- Yeo, G.S.H.; Heisler, L.K. Unraveling the Brain Regulation of Appetite: Lessons from Genetics. Nat. Neurosci. 2012, 15, 1343–1349. [Google Scholar] [CrossRef]
- Walters, B.J.; Mercaldo, V.; Gillon, C.J.; Yip, M.; Neve, R.L.; Boyce, F.M.; Frankland, P.W.; Josselyn, S.A. The Role of The RNA Demethylase FTO (Fat Mass and Obesity-Associated) and mRNA Methylation in Hippocampal Memory Formation. Neuropsychopharmacology 2017, 42, 1502–1510. [Google Scholar] [CrossRef]
- Cao, Y.; Zhuang, Y.; Chen, J.; Xu, W.; Shou, Y.; Huang, X.; Shu, Q.; Li, X. Dynamic Effects of Fto in Regulating the Proliferation and Differentiation of Adult Neural Stem Cells of Mice. Hum. Mol. Genet. 2020, 29, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, Y.; Hu, Y.; An, J.; Li, L.; Wang, Y.; Zhang, X. Decreased Expression of m6A Demethylase FTO in Ovarian Aging. Arch. Gynecol. Obs. 2021, 303, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xiu, J.; Zhu, C.; Meng, K.; Li, C.; Han, R.; Du, T.; Li, L.; Xu, L.; Liu, R.; et al. Fat Mass and Obesity-Associated Protein Regulates RNA Methylation Associated with Depression-like Behavior in Mice. Nat. Commun. 2021, 12, 6937. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Chen, Y.; Liu, Y.; Zhuang, L.; Chen, W.; Zeng, B.; Liao, X.; Guo, G.; Wang, Y.; Wang, X. m6A Methylation Promotes White-to-Beige Fat Transition by Facilitating Hif1a Translation. EMBO Rep. 2021, 22, e52348. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Ma, J.; Guo, F.; Cao, Q.; Zhang, Y.; Zhou, B.; Chai, J.; Zhao, W.; Zhao, R. The Demethylase Activity of FTO (Fat Mass and Obesity Associated Protein) Is Required for Preadipocyte Differentiation. PLoS ONE 2015, 10, e0133788. [Google Scholar] [CrossRef]
- Sun, D.; Zhao, T.; Zhang, Q.; Wu, M.; Zhang, Z. Fat Mass and Obesity-Associated Protein Regulates Lipogenesis via M6 A Modification in Fatty Acid Synthase mRNA. Cell Biol. Int. 2021, 45, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, N.; Yang, M.; Wei, D.; Tai, H.; Han, X.; Gong, H.; Zhou, J.; Qin, J.; Wei, X.; et al. FTO Is Required for Myogenesis by Positively Regulating mTOR-PGC-1α Pathway-Mediated Mitochondria Biogenesis. Cell Death Dis. 2017, 8, e2702. [Google Scholar] [CrossRef]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef]
- Olmedo, L.; Luna, F.J.; Zubrzycki, J.; Dopazo, H.; Pellon-Maison, M. Associations between Rs9939609 FTO Polymorphism with Nutrient and Food Intake and Adherence to Dietary Patterns in an Urban Argentinian Population. J. Acad. Nutr. Diet. 2024, 124, 874–882.e4. [Google Scholar] [CrossRef]
- Church, C.; Moir, L.; McMurray, F.; Girard, C.; Banks, G.T.; Teboul, L.; Wells, S.; Brüning, J.C.; Nolan, P.M.; Ashcroft, F.M.; et al. Overexpression of Fto Leads to Increased Food Intake and Results in Obesity. Nat. Genet. 2010, 42, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Goutzelas, Y.; Kotsa, K.; Vasilopoulos, Y.; Tsekmekidou, X.; Stamatis, C.; Yovos, J.G.; Sarafidou, T.; Mamuris, Z. Association Analysis of FTO Gene Polymorphisms with Obesity in Greek Adults. Gene 2017, 613, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Church, C.; Lee, S.; Bagg, E.A.L.; McTaggart, J.S.; Deacon, R.; Gerken, T.; Lee, A.; Moir, L.; Mecinović, J.; Quwailid, M.M.; et al. A Mouse Model for the Metabolic Effects of the Human Fat Mass and Obesity Associated FTO Gene. PLoS Genet. 2009, 5, e1000599. [Google Scholar] [CrossRef]
- Fischer, J.; Koch, L.; Emmerling, C.; Vierkotten, J.; Peters, T.; Brüning, J.C.; Rüther, U. Inactivation of the Fto Gene Protects from Obesity. Nature 2009, 458, 894–898. [Google Scholar] [CrossRef]
- McMurray, F.; Church, C.D.; Larder, R.; Nicholson, G.; Wells, S.; Teboul, L.; Tung, Y.C.L.; Rimmington, D.; Bosch, F.; Jimenez, V.; et al. Adult Onset Global Loss of the Fto Gene Alters Body Composition and Metabolism in the Mouse. PLoS Genet. 2013, 9, e1003166. [Google Scholar] [CrossRef]
- Boissel, S.; Reish, O.; Proulx, K.; Kawagoe-Takaki, H.; Sedgwick, B.; Yeo, G.S.H.; Meyre, D.; Golzio, C.; Molinari, F.; Kadhom, N.; et al. Loss-of-Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations. Am. J. Hum. Genet. 2009, 85, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Daoud, H.; Zhang, D.; McMurray, F.; Yu, A.; Luco, S.M.; Vanstone, J.; Jarinova, O.; Carson, N.; Wickens, J.; Shishodia, S.; et al. Identification of a Pathogenic FTO Mutation by Next-Generation Sequencing in a Newborn with Growth Retardation and Developmental Delay. J. Med. Genet. 2016, 53, 200–207. [Google Scholar] [CrossRef]
- Rohena, L.; Lawson, M.; Guzman, E.; Ganapathi, M.; Cho, M.T.; Haverfield, E.; Anyane-Yeboa, K. FTO Variant Associated with Malformation Syndrome. Am. J. Med. Genet. Part A 2016, 170A, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Landfors, M.; Nakken, S.; Fusser, M.; Dahl, J.-A.; Klungland, A.; Fedorcsak, P. Sequencing of FTO and ALKBH5 in Men Undergoing Infertility Work-up Identifies an Infertility-Associated Variant and Two Missense Mutations. Fertil. Steril. 2016, 105, 1170–1179.e5. [Google Scholar] [CrossRef]
- Mayman, N.; Wei, J.; Cai, S.; Soman, R.; Raynes, H.; La Vega-Talbott, M.; He, C.; Naidich, T.; Raju, G.P.; Kathiresu Nageshwaran, S. Case Report: A Novel Biallelic FTO Variant Causing Multisystem Anomalies with Severe Epilepsy, Widening the Spectrum of FTO Syndrome. SAGE Open Med. Case Rep. 2023, 11, 2050313X231188883. [Google Scholar] [CrossRef]
- Zou, D.; Dong, L.; Li, C.; Yin, Z.; Rao, S.; Zhou, Q. The m6A Eraser FTO Facilitates Proliferation and Migration of Human Cervical Cancer Cells. Cancer Cell Int. 2019, 19, 321. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Lin, Z.; Wan, A.; Chen, H.; Liang, H.; Sun, L.; Wang, Y.; Li, X.; Xiong, X.-F.; Wei, B.; et al. RNA N6-Methyladenosine Demethylase FTO Promotes Breast Tumor Progression through Inhibiting BNIP3. Mol. Cancer 2019, 18, 46. [Google Scholar] [CrossRef]
- Yang, S.; Wei, J.; Cui, Y.-H.; Park, G.; Shah, P.; Deng, Y.; Aplin, A.E.; Lu, Z.; Hwang, S.; He, C.; et al. m6A mRNA Demethylase FTO Regulates Melanoma Tumorigenicity and Response to Anti-PD-1 Blockade. Nat. Commun. 2019, 10, 2782. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liang, G.; Xu, H.; Dong, W.; Dong, Z.; Qiu, Z.; Zhang, Z.; Li, F.; Huang, Y.; Li, Y.; et al. Tumors Exploit FTO-Mediated Regulation of Glycolytic Metabolism to Evade Immune Surveillance. Cell Metab. 2021, 33, 1221–1233.e11. [Google Scholar] [CrossRef]
- Tian, R.; Zhang, S.; Sun, D.; Bei, C.; Li, D.; Zheng, C.; Song, X.; Chen, M.; Tan, S.; Zhu, X.; et al. M6A Demethylase FTO Plays a Tumor Suppressor Role in Thyroid Cancer. DNA Cell Biol. 2020, 39, 2184–2193. [Google Scholar] [CrossRef]
- Claussnitzer, M.; Dankel, S.N.; Kim, K.-H.; Quon, G.; Meuleman, W.; Haugen, C.; Glunk, V.; Sousa, I.S.; Beaudry, J.L.; Puviindran, V.; et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N. Engl. J. Med. 2015, 373, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Dina, C.; Meyre, D.; Gallina, S.; Durand, E.; Körner, A.; Jacobson, P.; Carlsson, L.M.S.; Kiess, W.; Vatin, V.; Lecoeur, C.; et al. Variation in FTO Contributes to Childhood Obesity and Severe Adult Obesity. Nat. Genet. 2007, 39, 724–726. [Google Scholar] [CrossRef]
- Smemo, S.; Tena, J.J.; Kim, K.-H.; Gamazon, E.R.; Sakabe, N.J.; Gómez-Marín, C.; Aneas, I.; Credidio, F.L.; Sobreira, D.R.; Wasserman, N.F.; et al. Obesity-Associated Variants within FTO Form Long-Range Functional Connections with IRX3. Nature 2014, 507, 371–375. [Google Scholar] [CrossRef]
- Freathy, R.M.; Timpson, N.J.; Lawlor, D.A.; Pouta, A.; Ben-Shlomo, Y.; Ruokonen, A.; Ebrahim, S.; Shields, B.; Zeggini, E.; Weedon, M.N.; et al. Common Variation in the FTO Gene Alters Diabetes-Related Metabolic Traits to the Extent Expected given Its Effect on BMI. Diabetes 2008, 57, 1419–1426. [Google Scholar] [CrossRef]
- Scuteri, A.; Sanna, S.; Chen, W.-M.; Uda, M.; Albai, G.; Strait, J.; Najjar, S.; Nagaraja, R.; Orrú, M.; Usala, G.; et al. Genome-Wide Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related Traits. PLoS Genet. 2007, 3, e115. [Google Scholar] [CrossRef]
- Keller, L.; Xu, W.; Wang, H.-X.; Winblad, B.; Fratiglioni, L.; Graff, C. The Obesity Related Gene, FTO, Interacts with APOE, and Is Associated with Alzheimer’s Disease Risk: A Prospective Cohort Study. J. Alzheimers. Dis. 2011, 23, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Reitz, C.; Tosto, G.; Mayeux, R.; Luchsinger, J.A.; NIA-LOAD/NCRAD Family Study Group; Alzheimer’s Disease Neuroimaging Initiative. Genetic Variants in the Fat and Obesity Associated (FTO) Gene and Risk of Alzheimer’s Disease. PLoS ONE 2012, 7, e50354. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.; Zhou, J.; Sinha, R.A.; Singh, B.K.; Ghosh, S.; Lim, K.-H.; Chow, P.K.-H.; Woon, E.C.Y.; Yen, P.M. Hepatic FTO Expression Is Increased in NASH and Its Silencing Attenuates Palmitic Acid-Induced Lipotoxicity. Biochem. Biophys. Res. Commun. 2016, 479, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Su, R.; Sheng, Y.; Dong, L.; Dong, Z.; Xu, H.; Ni, T.; Zhang, Z.S.; Zhang, T.; Li, C.; et al. Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell 2019, 35, 677–691.e10. [Google Scholar] [CrossRef]
- Zou, S.; Toh, J.D.W.; Wong, K.H.Q.; Gao, Y.-G.; Hong, W.; Woon, E.C.Y. N(6)-Methyladenosine: A Conformational Marker That Regulates the Substrate Specificity of Human Demethylases FTO and ALKBH5. Sci. Rep. 2016, 6, 25677. [Google Scholar] [CrossRef]
Enzyme | Substrates | Functionality | References |
---|---|---|---|
ABH1 | m3C in RNA/ssDNA (weak activity), m6A in ssDNA, m1A in tRNA, m5C in RNA | Demethylation of m6A in DNA: another important epigenetic mark; role in spermatogenesis and embryonic development (in mice); modification of mitochondrial tRNAs. | [47,52,55,92,93,94,95,96,97,98,100] |
ABH2 | m1A, m3C, m5C, εA in dsDNA | Important for transcription and integrity of rDNA. | [111,113,117] |
ABH3 | m1A, m3C, m5C, εA in ssDNA; m1A, m1,6A, m3C in tRNA | Removal of m1A from RNA; promotion of proliferation, migration, and invasiveness of tumor cells. | [79,112,113,116,118,119] |
ABH4 | monomethylated lysine-84 in actin; m6A in dsDNA | Spermatogenesis, embryogenesis (mice); embryogenesis (fish); proliferation of cancer cells. | [133,134,135,136,141] |
ABH5 | m6A in ssDNA and RNA; m3C in ssDNA (weak activity); m6,6A in RNA | Expression of ABH5 in cells is induced by hypoxia via HIF-1α; male fertility (mice) and spermiogenesis; predominantly expressed in neurons; cell cycle, epithelial–mesenchymal transition, and angiogenesis. | [143,144,145,146,147,148,149,150,151,158] |
ABH6 | unknown | Unknown | |
ABH7 | m2,2G, m1A in mitochondrial RNA; proteins? | Fatty acid metabolism. | [177,178,179] |
ABH8 | Methylation of 5-methylcarboxyuridine in tRNA | Control of oxidative stress in the brain (fly); brain development. | [183,187,188,189] |
FTO | m3T, m3U, m6A in ssDNA and RNA | Memory formation; possible role in depression; conversion of white adipose tissue to brown adipose tissue; myoblast differentiation; epitranscriptomic regulator. | [80,195,196,203,206,207,210,226] |
Enzyme | Changes in Expression Level or SNPs | Effect | References |
---|---|---|---|
ABH1 | rs2267755 (3′-UTR C>T) | Reduces the risk of neuroblastoma. | [107] |
Overexpression | Poor outcomes in gastric adenocarcinoma. | [104] | |
Registered in hepatocellular carcinoma. | [140] | ||
ABH2 | I141V (highly conserved residue) | Found in glioma. | [120] |
A9V, Q10K (PCNA-binding region) | Cancer-associated. | [121] | |
Overexpression | Registered in hepatocellular carcinoma. | [140] | |
ABH3 | Overexpression | Registered in hepatocellular carcinoma. | [130,140] |
ABH4 | Overexpression | Registered in adenocarcinoma. | [139] |
Registered in hepatocellular carcinoma. | [140] | ||
Registered in non-small cell lung cancer. | [141] | ||
Downregulation | Registered in colorectal cancer. | [142] | |
ABH5 | rs137860, rs8400 * (3′-UTR variants) | Risk of hepatoblastoma (weak effect). | [155] |
Overexpression | Registered in lung adenocarcinoma. | [159] | |
Registered in glioblastoma stem-like cells | [160,161] | ||
Registered in esophageal squamous cell carcinoma. | [162] | ||
Associated with recurrent miscarriage. | [166] | ||
Downregulation | Associated with rheumatoid arthritis. | [170] | |
Registered in osteosarcoma. | [169] | ||
ABH6 | No data available | - | - |
ABH7 | R191Q | Correlation with prostate cancer. | [180] |
Overexpression | Registered in hepatocellular carcinoma. | [140] | |
ABH8 | Arg554∗; Trp599Glyfs∗19 (truncated) | Associated with intellectual disability. | [188] |
Frameshift variant in the last exon | Associated with global developmental delay. | [189] | |
R625H; R625P (highly conserved residue) | Associated with developmental delay. | [190,191,192] | |
W504S (MTase domain) | |||
Overexpression | Registered in bladder cancer. | [182] | |
FTO | rs9939609 (intronic variant) | Higher risk of obesity. | [211,214] |
R316Q (catalytic domain) | Found in cases of postnatal growth retardation, microcephaly, severe psychomotor retardation, functional brain disorders, and a characteristic facial dysmorphism. | [218] | |
S319F (catalytic domain) | Found in cases of growth retardation and severe developmental delay. | [219] | |
R322Q (catalytic domain) | Found in cases of lethal birth defects. | [220] | |
rs62033438 (intronic variant) | Associated with male infertility. | [221] | |
S256N; C326S (catalytic domain) | Potentially deleterious. | [221] | |
R96P | Found in cases of multiple abnormalities in multiple organ systems, thus affecting respiratory, cardiovascular, and neurological functions. | [222] | |
Overexpression | Registered in cervical cancer. | [223] | |
Registered in breast cancer. | [224] | ||
Diet-dependent development of obesity. | [212,213] | ||
Downregulation | Registered in thyroid cancer. | [227] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davletgildeeva, A.T.; Kuznetsov, N.A. Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family. Curr. Issues Mol. Biol. 2024, 46, 10462-10491. https://doi.org/10.3390/cimb46090622
Davletgildeeva AT, Kuznetsov NA. Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family. Current Issues in Molecular Biology. 2024; 46(9):10462-10491. https://doi.org/10.3390/cimb46090622
Chicago/Turabian StyleDavletgildeeva, Anastasiia T., and Nikita A. Kuznetsov. 2024. "Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family" Current Issues in Molecular Biology 46, no. 9: 10462-10491. https://doi.org/10.3390/cimb46090622
APA StyleDavletgildeeva, A. T., & Kuznetsov, N. A. (2024). Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family. Current Issues in Molecular Biology, 46(9), 10462-10491. https://doi.org/10.3390/cimb46090622