Development of Yein-Early, a Unique Fruit-Color and Leaf-Shape Mutant of Citrus unshiu, and Its Specific Selection Marker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Analysis of Fruit and Leaf Traits
2.3. Whole-Genome Resequencing, Detection of Genetic Variants, and Gene Ontology Analysis
2.4. Allele-Specific PCR Marker
3. Results
3.1. Selection of Mutant Lines by Gamma Irradiation
3.2. Morphological Differences between Yein-Early and WT Fruits and Leaves
3.3. Mapping of Sequencing Reads to the Reference Genome
3.4. Genetic Variation between the Wild Type and Yein-Early
3.5. Functional Annotation of Non-Synonymous Mutations in Yein-Early
3.6. Identification of a Specific Selection Marker for Yein-Early
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.H.; Handayani, E.; Wakana, A.; Sato, M.; Miyamoto, M.; Miyazaki, R.; Zhou, X.; Sakai, K.; Mizunoe, Y.; Shigyo, M.; et al. Distribution and evolution of Citrus accessions with S 3 and/or S 11 alleles for self-incompatibility with an emphasis on sweet orange [Citrus sinensis (L.) Osbeck; S f S 3 or S f S 3sm]. Genet. Resour. Crop Evol. 2020, 67, 2101–2117. [Google Scholar] [CrossRef]
- Raveh, E.; Goldenberg, L.; Porat, R.; Carmi, N.; Gentile, A.; La Malfa, S. Conventional breeding of cultivated Citrus varieties. In The Citrus Genome; Springer: Cham, Switzerland, 2020; pp. 33–48. [Google Scholar]
- Ollitrault, P.; Ahmed, D.; Costantino, G.; Evrard, J.C.; Cardi, C.; Mournet, P.; Perdereau, A.; Froelicher, Y. Segregation distortion for male parents in high density genetic maps from reciprocal crosses between two self-incompatible cultivars confirms a gametophytic system for self-incompatibility in citrus. Agriculture 2021, 11, 379. [Google Scholar] [CrossRef]
- Soost, R.K.; Roose, M.L. Fruit Breeding, Tree and Tropical Fruits; Janick, J., Moore, J.N., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1996; Volume 1, pp. 257–323. [Google Scholar]
- Ge, H.; Li, Y.; Fu, H.; Long, G.; Luo, L.; Li, R.; Deng, Z. Production of sweet orange somaclones tolerant to citrus canker disease by in vitro mutagenesis with EMS. Plant Cell Tissue Org. Cult. 2015, 123, 29–38. [Google Scholar] [CrossRef]
- Saadati, S.; Borzouei, A.; Rahemi, M.R.; Khiabani, B.N. Alteration of physiological and biochemical properties in leaves and fruits of pomegranate in response to gamma irradiation. Sci. Rep. 2022, 12, 4312. [Google Scholar] [CrossRef] [PubMed]
- Jankowicz-Cieslak, J.; Mba, C.; Till, B.J. Biotechnologies for Plant Mutation Breeding: Protocols. In Mutagenesis for Crop Breeding and Functional Genomics; Jankowicz-Cieslak, J., Tai, T.H., Kumlehn, J., Till, B.J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–18. [Google Scholar]
- Ashraf, M.; Cheema, A.A.; Rashid, M.; Qamar, Z. Efect of gamma rays on M~ l generation in basmati rice. Pak. J. Bot. 2004, 35, 791–796. [Google Scholar]
- Mariana, B.D.; Arisah, H.; Yenni, Y.; Selvawajayant, M. Seedless fruit pummelo induced by Gamma Ray irradiation: Fruit morphological characters and stability evaluation. Biodiversitas 2018, 19, 706–711. [Google Scholar] [CrossRef]
- Mahmoud, G.A.; El-Tobgy, K.M.K.; Abo-El-Seoud, M. Application of combined biocides and gamma radiation for keeping good quality stored grapefruits. Archiv. Phytopath. Plant Protec. 2010, 43, 712–721. [Google Scholar] [CrossRef]
- Starrantino, A.; Russo, F.; Donini, B.; Spina, P. Lemon mutants obtained by gamma irradiation of the nucellus cultured in vitro. Proc. Int. Soc. Citric. 1988, 2, 231–235. [Google Scholar]
- Gulsen, O.; Uzun, A.; Pala, H.; Canilhos, E.; Kafa, G. Development of seedless and Mal seco tolerant mutant lemons through budwood irradiation. Sci. Hort. 2007, 112, 184–190. [Google Scholar] [CrossRef]
- Moussa, H.R.; Ismaiel, M.M.S.; Shabana, E.F.; Gabr, M.A.; El-Shaer, E.A. The Role of Gamma Irradiation on Growth and Some Metabolic Activities of Spirulina platensis. J. Nucl. Tech. Appl. Sci. 2015, 3, 99–107. [Google Scholar]
- Eun, C.H.; Kim, I.J. The Citrus Mutant Jedae-unshiu Induced by Gamma Irradiation Exhibits a Unique Fruit Shape and Increased Flavonoid Content. Plants 2022, 11, 1337. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.M.; Eun, C.H.; Kim, I.J. Identification of Late Ripening Citrus Mutant, Ara-unshiu (Citrus unshiu), and Its Selectable Marker. Plants 2023, 12, 3355. [Google Scholar] [CrossRef] [PubMed]
- Tüylü, B.A.; Sivas, H.; İncesu, Z.; Ergene, E. “Genetik”, TC; Anadolu Üniversitesi Yayını No: 1953; Anadolu Üniversitesi Yayını: Eskişehir, Türkiye, 2009; p. 237. [Google Scholar]
- Cowan, F.P.; Meinhold, C.B. Radiation dosimetry for Co60 and Cs137 gamma ray field irradiation facilities. Radiat. Bot. 1962, 2, 241–249. [Google Scholar] [CrossRef]
- Sikder, S.; Vikas, K.R.; Basfore, S.; Hazra, P. Isolation of induced mutants using gamma ray and ethyl methane sulphonate in Tomato (Solanum lycopersicum L.). Electron. J. Plant Breed. 2015, 6, 881–887. [Google Scholar]
- Puchooa, D. In vitro mutation breeding of Anthurium by gamma radiation. Int. J. Agric. Biol. 2005, 7, 11–20. [Google Scholar]
- Sangsiri, C.; Sorajjapinun, W.; Srinivesc, P. Gamma Radiation Induced Mutations in Mungbean. Sci. Asia 2005, 31, 251–255. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, H.; Guo, H.; Zhao, L.; Xie, Y.; Gu, J.; Zhao, S.; Ding, Y.; Liu, L. Genetic analysis and mapping of dwarf gene without yield penalty in a g-ray-induced wheat mutant. Front. Plant Sci. 2023, 14, 1133024. [Google Scholar] [CrossRef]
- Abe, K.; Moriya, S.; Okada, K.; Nishio, S.; Shimizu, T.; Haji, T. Characterization of a pollen-part self-compatible apple (Malus × domestica Borkh.) mutant induced by γ-ray mutagenesis. Sci. Horti. 2023, 312, 111867. [Google Scholar] [CrossRef]
- Healey, A.; Furtado, A.; Cooper, T.; Henry, R.J. Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Meth. 2014, 10, 21. [Google Scholar] [CrossRef]
- Bui, M.; Liu, Z. Simple allele-discriminating PCR for cost-effective and rapid genotyping and mapping. Plant Meth. 2009, 5, 1. [Google Scholar] [CrossRef]
- Kim, I.-J.; Kim, O.-R.; Kim, H.-W.; Lee, S.-H.; Kim, K.-M.; Lee, H.-Y. Status of Citrus Mutation Breeding with Gamma Ray Irradiation. J. Asian Agric. Biotechnol. 2008, 24, 37–42. [Google Scholar]
- Kim, I.-J.; Song, S.-Y.; Lee, H.Y. Putative Citrus Mutant Induced by Gamma Ray Irradiation. J. Asian Agric. Biotechnol. 2009, 25, 1–4. [Google Scholar]
- Eun, C.H.; Kim, I.J. Genome-wide DNA polymorphisms of Citrus unshiu Marc. cv. Miyagawa-wase cultivated in different regions based on whole-genome re-sequencing. Plant Biotechnol. Rep. 2021, 15, 551–559. [Google Scholar] [CrossRef]
- Shimizu, T.; Tanizawa, Y.; Mochizuki, T.; Nagasaki, H.; Yoshioka, T.; Toyoda, A.; Fujiyama, A.; Kaminuma, E.; Nakamura, Y. Draft sequencing of the heterozygous diploid genome of satsuma (Citrus unshiu Marc.) using a hybrid assembly approach. Front. Genet. 2017, 8, 180. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, S.M.; Sun, M.Y.; Liu, S.Y.; Liu, Y.M.; Wang, W.X.; Zhang, X.R.; Wang, H.Z.; Hua, W. An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Meth. 2012, 8, 34. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Fan, F.J.; Zhu, J.Y.; Chen, T.; Wang, C.L.; Zheng, T.Q.; Zhang, J.; Zhong, W.G.; Xu, J.L. Development of AS-PCR marker based on a key mutation confirmed by resequencing of Wx-mp in milky princess and its application in japonica soft rice (Oryza sativa L.) breeding. Plant Breed. 2013, 132, 595–603. [Google Scholar] [CrossRef]
- Omura, M.; Shimada, T. Citrus breeding, genetics and genomics in Japan. Breed Sci. 2016, 66, 3–17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Savadi, S.; Mangalassery, S.; Sandesh, M.S. Advances in genomics and genome editing for breeding next generation of fruit and nut crops. Genomics 2021, 113, 3718–3734. [Google Scholar] [CrossRef]
- Wang, T.; Xiong, B.; Zheng, Z.; Qin, Z.; Deng, L.; Zheng, W.; Zhang, M.; Sun, G.; He, S.; Wang, J.; et al. Natural Variation Confers ‘Aiyuan 38’ Citrus Mutant a New Color and Unique Flavor. Int. J. Mol. Sci. 2023, 24, 8816. [Google Scholar] [CrossRef]
- Chaudhry, A.H.; Hussain, S.B.; Du, W.; Liu, Y.; Peng, S.A.; Deng, X.; Pan, Z. A novel bud mutant of navel orange (Citrus sinensis) shows tolerance to chlorosis in acidic and magnesium-deficient soils. Plant Physiol. Biochem. 2023, 196, 739–745. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Pérez-Tornero, O. Improved salt-tolerance in Citrus macrophylla mutant rootstocks. Sci. Hortic. 2020, 259, 108815. [Google Scholar] [CrossRef]
- Cimen, B.; Yesiloglu, T.; Incesu, M.; Yilmaz, B. Studies on mutation breeding in citrus: Improving seedless types of ‘Kozan’ common orange by gamma irradiation. Sci. Hortic. 2021, 278, 109857. [Google Scholar] [CrossRef]
- Lin, R.; Ding, L.; Casola, C.; Ripoll, D.R.; Feschotte, C.; Wang, H. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 2007, 318, 1302–1305. [Google Scholar] [CrossRef]
- Ma, L.; Li, G. FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) family proteins in Arabidopsis growth and development. Front. Plant Sci. 2018, 9, 692. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Song, Y.; Liu, K.; Su, C.; Yu, R.; Li, Y.; Yang, Y.; Zhou, B.; Wang, J.; Hu, G. Genome-Wide Identification and Functional Characterization of FAR1-RELATED SEQUENCE (FRS) Family Members in Potato (Solanum tuberosum). Plants 2023, 12, 2575. [Google Scholar] [CrossRef]
- Zorzatto, C.; Machado, J.P.B.; Lopes, K.V.G.; Nascimento, K.J.T.; Pereira, W.A.; Brustolini, O.J.B.; Reis, P.A.B.; Calil, I.P.; Deguchi, M.; Sachetto-Martins, G.; et al. NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature 2015, 520, 679–682. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, N.; Zhang, Z.; Liu, W.; Xie, W. Identification of flowering regulatory networks and hub genes expressed in the leaves of Elymus sibiricus L. using comparative transcriptome analysis. Front. Plant Sci. 2022, 16, 13. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, K.; Ali, A.; Guo, Y. AtWAKL10, a Cell Wall Associated Receptor-Like Kinase, Negatively Regulates Leaf Senescence in Arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 4885. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Z.; Tian, Y.; Zhang, S.; Li, D.; Dong, W.; Zhang, C.; Zhang, Z. Characterization of wall-associated kinase/wall-associated kinase-like (WAK/WAKL) family in rose (Rosa chinensis) reveals the role of RcWAK4 in Botrytis resistance. BMC Plant Biol. 2021, 21, 526. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Tallón, C.I.; Pérez-Tornero, O. Inducing mutations in Citrus spp.: Sensitivity of different sources of plant material to gamma radiation. Appl. Radiat. Isot. 2020, 157, 109030. [Google Scholar] [CrossRef]
- Ghasemi-Soloklui, A.A.; Kordrostami, M.; Karimi, R. Determination of optimum dose based of biological responses of lethal dose (LD25, 50, 75) and growth reduction (GR25, 50, 75) in ‘Yaghouti’ grape due to gamma radiation. Sci. Rep. 2023, 13, 2713. [Google Scholar] [CrossRef] [PubMed]
- Kamatyanatt, M.; Singh, S.K.; Sekhon, B.S. Mutation Breeding in Citrus—A Review. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 1–8. [Google Scholar]
- Gill, K.; Kumar, P.; Kumar, A.; Kapoor, B.; Sharma, R.; Josh, A.K. Comprehensive mechanistic insights into the citrus genetics, breeding challenges, biotechnological implications, and omics-based interventions. Tree Genet. Genomes 2022, 18, 9. [Google Scholar] [CrossRef]
- Salonia, F.; Ciacciulli, A.; Poles, L.; Pappalardo, H.D.; Malfa, S.L.; Licciardello, C. New Plant Breeding Techniques in Citrus for the Improvement of Important Agronomic Traits. A Review. Front. Plant Sci. 2020, 11, 1234. [Google Scholar] [CrossRef] [PubMed]
Year | Vertical (mm) | Horizontal (mm) | Weight (g) | Peel Thickness (mm) | Hardness (G) | |
---|---|---|---|---|---|---|
WT | 2021 | 46.27 ± 3.89 | 58.45 ± 4.03 | 87.60 ± 13.73 | 2.12 ± 0.22 | 937.57 ± 58.37 |
2022 | 47.83 ± 3.68 | 62.32 ± 6.64 | 98.94 ± 29.29 | 2.65 ± 0.43 | 862.38 ± 119.28 | |
Average | 47.54 ± 3.64 | 61.60 ± 6.32 | 96.81 ± 27.06 | 2.55 ± 0.45 | 876.48 ± 112.94 | |
Yein-early | 2021 | 51.27 ± 3.20 | 59.35 ± 3.22 | 91.76 ± 14.19 | 2.84 ± 0.36 | 1263.24 ± 200.50 |
2022 | 54.60 ± 2.48 | 62.61 ± 3.46 | 113.51 ± 15.56 | 3.81 ± 0.73 | 1318.31 ± 154.41 | |
Average | 53.43 ± 3.13 | 61.47 ± 3.66 | 105.90 ± 18.16 | 3.47 ± 0.78 | 1299.03 ± 168.76 * |
Year | Sugar (Brix) | Acidity (wt%) | Hunter Color Value | |||
---|---|---|---|---|---|---|
L | a | b | ||||
WT | 2021 | 9.38 ± 0.27 | 0.72 ± 0.08 | 59.36 ± 1.50 | 25.22 ± 0.72 | 35.47 ± 0.59 |
2022 | 9.41 ± 0.32 | 0.46 ± 0.03 | 59.47 ± 1.62 | 25.92 ± 2.01 | 35.28 ± 1.05 | |
Average | 9.40 ± 0.30 | 0.51 ± 0.11 | 59.45 ± 1.55 | 25.79 ± 1.84 | 35.32 ± 0.96 | |
Yein-early | 2021 | 10.28 ± 0.59 | 0.91 ± 0.09 | 56.25 ± 1.00 | 34.31 ± 1.83 | 32.70 ± 0.77 |
2022 | 10.45 ± 1.15 | 0.81 ± 0.11 | 55.63 ± 2.37 | 32.80 ± 2.31 | 32.36 ± 1.72 | |
Average | 10.39 ± 0.97 * | 0.85 ± 0.11 | 55.85 ± 1.99 | 33.33 ± 2.23 * | 32.48 ± 1.44 |
WT | Yein-Early | |
---|---|---|
Transverse Length | 95.44 ± 7.58 | 108.77 ± 7.14 * |
Longitudinal Length | 42.50 ± 4.52 | 35.02 ± 4.69 * |
Longitudinal/Transverse | 2.26 ± 0.16 | 3.15 ± 0.44 * |
Curling | weak | strong |
Surface Undulation | weak | weak |
Edge Waviness | weak | weak |
Edge Indentations | blunt saw, blade shape | blunt saw, blade shape |
Shape of the Apex | sharp | sharp |
Groove at the Tip | no | no |
Sample | Clean Reads 1 | Mapped Reads 2 | Mapped Region 3 (%) |
---|---|---|---|
WT | 56,418,140 | 55,183,019 (97.81%) | 312,343,061 (86.85%) |
Yein-early | 55,897,538 | 54,686,868 (97.83%) | 304,277,009 (84.60%) |
Sample | No. of Total | No. of Polymorphic | ||
---|---|---|---|---|
Polymorphic 1 | Homo 2 | Hetero 3 | ||
WT vs. Yein-early | SNP | 650,257 | 72,155 | 578,102 |
InDel | 105,817 | 4683 | 101,134 |
Sample | Polymorphic | Genes 1 | GO Genes 2 | |
---|---|---|---|---|
WT vs. Yein-early | SNP | 650,257 | 26,339 | 23,508 |
InDel | 105,817 | 14,889 | 13,685 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, J.-G.; Eun, C.-H.; Kim, I.-J. Development of Yein-Early, a Unique Fruit-Color and Leaf-Shape Mutant of Citrus unshiu, and Its Specific Selection Marker. Curr. Issues Mol. Biol. 2024, 46, 10606-10617. https://doi.org/10.3390/cimb46090628
Ko J-G, Eun C-H, Kim I-J. Development of Yein-Early, a Unique Fruit-Color and Leaf-Shape Mutant of Citrus unshiu, and Its Specific Selection Marker. Current Issues in Molecular Biology. 2024; 46(9):10606-10617. https://doi.org/10.3390/cimb46090628
Chicago/Turabian StyleKo, Jung-Gwon, Chang-Ho Eun, and In-Jung Kim. 2024. "Development of Yein-Early, a Unique Fruit-Color and Leaf-Shape Mutant of Citrus unshiu, and Its Specific Selection Marker" Current Issues in Molecular Biology 46, no. 9: 10606-10617. https://doi.org/10.3390/cimb46090628
APA StyleKo, J. -G., Eun, C. -H., & Kim, I. -J. (2024). Development of Yein-Early, a Unique Fruit-Color and Leaf-Shape Mutant of Citrus unshiu, and Its Specific Selection Marker. Current Issues in Molecular Biology, 46(9), 10606-10617. https://doi.org/10.3390/cimb46090628