Marine Bioactive Molecules as Inhibitors of the Janus Kinases: A Comparative Molecular Docking and Molecular Dynamics Simulation Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virtual Screening of Marine Antioxidant and Anti-Inflammatory Molecules
2.2. Preparation of 3D Protein Structure
2.3. Preparation of Ligand Structure
2.4. Binding Pocket and Molecular Docking
2.5. Discovery Studio and Scoring the Binding Affinity, Distance and Sites
2.6. Molecular Dynamics Simulation
3. Results
3.1. Active and ATP-Binding Sites at JAK Proteins
3.2. JAK Inhibitors, Tofacitinib and Baricitinib, and Their Virtual Interaction with JAK Proteins
3.2.1. Tofacitinib and Baricitinib and Their Virtual Interaction with JAK1
3.2.2. Tofacitinib and Baricitinib and Their Virtual Interaction with JAK2
3.2.3. Tofacitinib and Baricitinib and Their Virtual Interaction with JAK3
3.3. Marine Biomolecules as Possible Inhibitors for JAK Proteins
3.3.1. Marine Biomolecules as Potential Candidates Can Inhibit JAK1 Protein
3.3.2. Zoanthoxanthin and Fuscoside E May Inhibit JAK2 Activity
3.3.3. Phorbaketal and Fuscoside E Are Potential Candidates That May Inhibit JAK3 Activity
3.4. Analysis of MD Simulations Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, D.M.; Weinblatt, M.E. Rheumatoid arthritis. Lancet 2001, 358, 903–911. [Google Scholar] [CrossRef]
- Singh, J.A.; Saag, K.G.; Bridges, S.L., Jr.; Akl, E.A.; Bannuru, R.R.; Sullivan, M.C.; Vaysbrot, E.; McNaughton, C.; Osani, M.; Shmerling, R.H.; et al. 2015 American College of Rheumatology Guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016, 68, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.A.; Alzahrani, A.M. SOXC Transcription Factors as Diagnostic Biomarkers and Therapeutic Targets for Arthritis. Int. J. Mol. Sci. 2023, 24, 4215. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.N.; Wu, F.F.; Zhang, A.H.; Sun, H.; Wang, X.J. Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential. Pharmacol. Res. 2021, 169, 105667. [Google Scholar] [CrossRef]
- Huang, J.; Fu, X.; Chen, X.; Li, Z.; Huang, Y.; Liang, C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front. Immunol. 2021, 12, 686155. [Google Scholar] [CrossRef]
- McLornan, D.P.; Pope, J.E.; Gotlib, J.; Harrison, C.N. Current and future status of JAK inhibitors. Lancet 2021, 398, 803–816. [Google Scholar] [CrossRef]
- Ferrao, R.; Lupardus, P.J. The janus kinase (JAK) FERM and SH2 domains: Bringing specificity to JAK-receptor interactions. Front. Endocrinol. 2017, 8, 71. [Google Scholar] [CrossRef]
- Burja, B.; Mertelj, T.; Frank-Bertoncelj, M. Hi-JAKi-Ng Synovial Fibroblasts in Inflammatory Arthritis With JAK Inhibitors. Front. Med. 2020, 7, 1653. [Google Scholar] [CrossRef]
- Williams, N.K.; Bamert, R.S.; Patel, O.; Wang, C.; Walden, P.M.; Wilks, A.F.; Fantino, E.; Rossjohn, J.; Lucet, I.S. Dissecting Specificity in the Janus Kinases: The Structures of JAK-Specific Inhibitors Complexed to the JAK1 and JAK2 Protein Tyrosine Kinase Domains. J. Mol. Biol. 2009, 387, 219–232. [Google Scholar] [CrossRef]
- Sk, M.F.; Jonniya, N.A.; Roy, R.; Kar, P. Unraveling the Molecular Mechanism of Recognition of Selected Next-Generation Antirheumatoid Arthritis Inhibitors by Janus Kinase 1. ACS Omega 2022, 7, 6195–6209. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, R.; Schiff, M.; van der Heijde, D.; Ramos-Remus, C.; Spindler, A.; Stanislav, M.; Zerbini, C.A.; Gurbuz, S.; Dickson, C.; de Bono, S.; et al. Baricitinib, methotrexate, or combination in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis Rheumatol. 2017, 69, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Sanachai, K.; Mahalapbutr, P.; Choowongkomon, K.; Poo-Arporn, R.P.; Wolschann, P.; Rungrotmongkol, T. Insights into the Binding Recognition and Susceptibility of Tofacitinib toward Janus Kinases. ACS Omega 2020, 5, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Akahane, K.; McNally, R.; Reyskens, K.M.; Ficarro, S.B.; Liu, S.; Herter-Sprie, G.S.; Koyama, S.; Pattison, M.J.; Labella, K.; et al. Development of Selective Covalent Janus Kinase 3 Inhibitors. J. Med. Chem. 2015, 58, 6589–6606. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.J.; Lee, K.T.; Rho, J.R.; Choi, J.H. Phorbaketal A, Isolated from the Marine Sponge Phorbas sp., Exerts Its Anti-Inflammatory Effects via NF-κB Inhibition and Heme Oxygenase-1 Activation in Lipopolysaccharide-Stimulated Macrophages. Mar. Drugs. 2015, 13, 7005–7019. [Google Scholar] [CrossRef]
- Kapoor, S.; Nailwal, N.; Kumar, M.; Barve, K. Recent Patents and Discovery of Anti-inflammatory Agents from Marine Source. Recent Pat. Inflamm. Allergy Drug Discov. 2019, 13, 105–114. [Google Scholar] [CrossRef]
- Yang, L.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.; Cao, Y. CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, W159–W164. [Google Scholar]
- Yang, X.; Liu, Y.; Gan, J.; Xiao, Z.; Cao, Y. FitDock: Protein-ligand docking by template fitting. Brief. Bioinform. 2022, 23, bbac087. [Google Scholar] [CrossRef]
- Lemkul, J.A. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular 436 Simulation Package, v1.0. Living J. Comp. Mol. Sci. 2018, 1, 5068. [Google Scholar] [CrossRef]
- Cholbi, R.; Ferrándiz, M.L.; Terencio, M.C.; De Rosa, S.; Alcaraz, M.J.; Payá, M. Inhibition of phospholipase A2 activities and some inflammatory responses by the marine product ircinin. Naunyn Schmiedebergs Arch. Pharmacol. 1996, 354, 677–683. [Google Scholar] [CrossRef]
- Moodie, L.W.K.; Sepčić, K.; Turk, T.; Frangež, R.; Svenson, J. Natural cholinesterase inhibitors from marine organisms. Nat. Prod. Rep. 2019, 36, 1053–1092. [Google Scholar] [CrossRef] [PubMed]
- Shawky, A.M.; Almalki, F.A.; Abdalla, A.N.; Abdelazeem, A.H.; Gouda, A.M. A Comprehensive Overview of Globally Approved JAK Inhibitors. Pharmaceutics 2022, 14, 1001. [Google Scholar] [CrossRef] [PubMed]
- Kondratyev, M.; Rudnev, V.R.; Nikolsky, K.S.; Stepanov, A.A.; Petrovsky, D.V.; Kulikova, L.I.; Kopylov, A.T.; Malsagova, K.A.; Kaysheva, A.L. Atomic Simulation of the Binding of JAK1 and JAK2 with the Selective Inhibitor Ruxolitinib. Int. J. Mol. Sci. 2022, 23, 10466. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Cheng, P.; Tu, J.; Zhai, H.L.; Zhang, X.Y. Enhancing specificity in the Janus kinases: A study on the thienopyridine JAK2 selective mechanism combined molecular dynamics simulation. Mol. Biosyst. 2016, 12, 575–587. [Google Scholar] [CrossRef]
- Parmentier, J.M.; Voss, J.; Graff, C.; Schwartz, A.; Argiriadi, M.; Friedman, M.; Camp, H.S.; Padley, R.J.; George, J.S.; Hyland, D.; et al. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). BMC Rheumatol. 2018, 2, 23. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Z.; She, N.; Chen, X.; Zhao, Y.; Zhang, J. Atomistic insight into the inhibition mechanisms of suppressors of cytokine signaling on Janus kinase. Phys. Chem. Chem. Phys. 2019, 21, 12905–12915. [Google Scholar] [CrossRef]
- Xiao, L.; Lin, S.; Zhan, F. One of the active ingredients in Paeoniae Radix Alba functions as JAK1 inhibitor in rheumatoid arthritis. Front. Pharmacol. 2022, 13, 906763. [Google Scholar] [CrossRef]
- Babu, S.; Nagarajan, S.K.; Sathish, S.; Negi, V.S.; Sohn, H.; Madhavan, T. Identification of Potent and Selective JAK1 Lead Compounds Through Ligand-Based Drug Design Approaches. Front. Pharmacol. 2022, 13, 837369. [Google Scholar] [CrossRef]
- Yoon, W.J.; Heo, S.J.; Han, S.C.; Lee, H.J.; Kang, G.J.; Kang, H.K.; Hyun, J.W.; Koh, Y.S.; Yoo, E.S. Anti-inflammatory effect of sargachromanol G isolated from Sargassum siliquastrum in RAW 264.7 cells. Arch. Pharm. Res. 2012, 35, 1421–1430. [Google Scholar] [CrossRef]
- Yoon, W.J.; Heo, S.J.; Han, S.C.; Lee, H.J.; Kang, G.J.; Yang, E.J.; Park, S.S.; Kang, H.K.; Yoo, E.S. Sargachromanol G regulates the expression of osteoclastogenic factors in human osteoblast-like MG-63 cells. Food Chem. Toxicol. 2012, 50, 3273–3279. [Google Scholar] [CrossRef]
- Yoon, W.J.; Kim, K.N.; Heo, S.J.; Han, S.C.; Kim, J.; Ko, Y.J.; Kang, H.K.; Yoo, E.S. Sargachromanol G inhibits osteoclastogenesis by suppressing the activation NF-κB and MAPKs in RANKL-induced RAW 264.7 cells. Biochem. Biophys. Res. Commun. 2013, 434, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Newton, C.G.; Drew, S.L.; Lawrence, A.L.; Willis, A.C.; Paddon-Row, M.N.; Sherburn, M.S. Pseudopterosin synthesis from a chiral cross-conjugated hydrocarbon through aseries of cycloadditions. Nat. Chem. 2015, 7, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Hitoshi, Y.; Lin, N.; Payan, D.G.; Markovtsov, V. The current status and the future of JAK2 inhibitors for the treatment of myeloproliferative diseases. Int. J. Hematol. 2010, 91, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Forster, M.; Gehringer, M.; Laufer, S.A. Recent advances in JAK3 inhibition: Isoform selectivity by covalent cysteine targeting. Bioorg. Med. Chem. Lett. 2017, 27, 4229–4237. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.A.; Abdelsalam, S.A. Virtual Screening-based Molecular Analysis of Marine Bioactive Molecules as Inhibitors for Janus Kinase. J. Disabil. Res. 2023, 2, 106–113. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Alzahrani, A.M.; Abdelsalam, S.A.; Ibrahim, H.M. Flavipin from fungi as a potential inhibitor of rheumatoid arthritis signaling molecules. Inflammopharmacology 2024, 32, 1171–1186. [Google Scholar] [CrossRef]
Bond Interaction (Energy in kJ/mol) | Docking Score | Bound Amino Acids Residues | Distance in Angstrom (A) | Docking Score | Bound Amino Acids Residues | Distance in Angstrom (A) |
---|---|---|---|---|---|---|
Tofacitinib Virtual binding to JAK1 | Baricitinib Virtual binding to JAK1 | |||||
Conventional Hydrogen | −7.8 | SER996, ARG997 | 3.15, 3.31 | −7.1 | ARG930 | 3.12 |
Hydrogen Carbon | TYR940 | 3.33 | SER996 | 3.24 | ||
Conventional Hydrogen | −7.6 | Gly884 | 3.22 | −7.9 | GLU957, GLU883 | 2.48, 3.09 |
Hydrogen Carbon | GLY1023 | 3.5 | LEU881 | 3.31 | ||
Conventional Hydrogen | −7.1 | ARG1007, ASN1008 | 1.97, 2.79 | −7.8 | HIS885, HIS918, ARG1007, HIS918, PHE886, ARG1007, LYS905 | 2.99, 3.18, 2.20, 3.18, 3.2, 2.2, 2.94 |
Hydrogen Carbon | LYS908 | 3.5 | LYS908, LUE959, ASP1021, ARG1042 | 3.10, 2.94, 3, 3.3 | ||
Conventional Hydrogen | −8.2 | LEU959 | 2.57 | |||
tofacitinib Virtual binding to JAK2 | Baricitinib Virtual binding to JAK2 | |||||
Conventional Hydrogen | −6.9 | GLU930, LEU932 | 2.88, 3.37 | −7.8 | GLU930, LEU932 | 2.18, 3.01 |
Hydrogen Carbon | LEU932 | 3.30 | ASN981, LEU932 | 3.76, 3.47 | ||
Conventional Hydrogen | −5.8 | ARG938 | 3.1 | −6 | ARG938, SER1056 | 3.28, 2.98 |
Hydrogen Carbon | GLU1015 | 3.65 | GLU1015 | 3.58 | ||
Conventional Hydrogen | −6.2 | VAL1033, ALA1034 | 3.25, 3.98 | −5.4 | ARG1090, ASP1092, TRY1099 | 2.98, 3.19, 2.98 |
Hydrogen Carbon | GLU1006 | 3.48 | ARG1090, PRO1091 | 3.45, 3.62 | ||
tofacitinib Virtual binding to JAK3 | Baricitinib Virtual binding to JAK3 | |||||
Conventional Hydrogen | −7 | ARG948, ASP867, TRY994 | 2.99, 2.54, 2.92 | −7.4 | GLN915, ARG953, ASN954, CYS1024 | 3.32, 3.13, 1.98, |
Conventional Hydrogen | −8.2 | LEU905 | 2.25 | −8.5 | LEU905 | 2.06 |
Conventional Hydrogen | −6.9 | GLN988, ARG911 | 2.8, 3.16 | −5.5 | ALA923, GLU1069, TRY1023 | 2.06, 2.25, 2.92, |
Conventional Hydrogen | −5.6 | GLU1069, ALA923, TYR1023 | 2.20, 2.17, 2.83, 2.20 | −6.8 | ARG948, SER989, TRY994 | 3.03, 3.23, 3.01 |
Hydrogen Carbon | GLU1098 | 2.8 | GLU985, PRO986, | 3.49, 3.39 |
Energy (kJ/mol) | Average | Err. Est. | RMSD | Tot-Drift |
---|---|---|---|---|
JAK1/SG | ||||
bond | 3631.04 | 1.1 | 100.266 | −6.71359 |
Angle | 168.444 | 0.58 | 19.5854 | 1.21744 |
LJ (SR) | 63,434.2 | 4.9 | 722.14 | −25.6262 |
Potential | −507907 | 48 | 809.057 | −326.584 |
Kinetic En. | 100067 | 2.6 | 564.691 | −6.83606 |
Total Energy | −407840 | 50 | 1075.7 | −333.421 |
JAK2/ZAX | ||||
bond | 3773.51 | 0.85 | 101.737 | 4.76318 |
Angle | 145.789 | 2.5 | 16.249 | −13.6934 |
LJ (SR) | 58,140.2 | 21 | 694.993 | 133.869 |
Potential | −482785 | 42 | 789.258 | −238.977 |
Kinetic En. | 94501 | 5.9 | 553.496 | −30.7843 |
Total Energy | −388284 | 47 | 1056.88 | −269.758 |
JAK3FU | ||||
bond | 3790.28 | 1.7 | 102.87 | −0.10374 |
Angle | 188.253 | 0.63 | 20.8998 | −3.61546 |
LJ (SR) | 64,021.7 | 6.7 | 725.951 | 28.1077 |
Potential | 101552 | 3.6 | 570.884 | −7.54866 |
Kinetic En. | −518637 | 21 | 813.684 | −145.281 |
Total Energy | −417085 | 22 | 1086.43 | −152.829 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, E.A.; Abdelsalam, S.A. Marine Bioactive Molecules as Inhibitors of the Janus Kinases: A Comparative Molecular Docking and Molecular Dynamics Simulation Approach. Curr. Issues Mol. Biol. 2024, 46, 10635-10650. https://doi.org/10.3390/cimb46090631
Ahmed EA, Abdelsalam SA. Marine Bioactive Molecules as Inhibitors of the Janus Kinases: A Comparative Molecular Docking and Molecular Dynamics Simulation Approach. Current Issues in Molecular Biology. 2024; 46(9):10635-10650. https://doi.org/10.3390/cimb46090631
Chicago/Turabian StyleAhmed, Emad A., and Salah A. Abdelsalam. 2024. "Marine Bioactive Molecules as Inhibitors of the Janus Kinases: A Comparative Molecular Docking and Molecular Dynamics Simulation Approach" Current Issues in Molecular Biology 46, no. 9: 10635-10650. https://doi.org/10.3390/cimb46090631
APA StyleAhmed, E. A., & Abdelsalam, S. A. (2024). Marine Bioactive Molecules as Inhibitors of the Janus Kinases: A Comparative Molecular Docking and Molecular Dynamics Simulation Approach. Current Issues in Molecular Biology, 46(9), 10635-10650. https://doi.org/10.3390/cimb46090631