Insights from a Genome-Wide Study of Pantoea agglomerans UADEC20: A Promising Strain for Phosphate Solubilization and Exopolysaccharides Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Whole-Genome Sequencing, Assembly, and Annotation
2.2. Phylogenetic Analysis
2.3. Comparative Genome Annotation
2.4. Predictions of Functional Metabolic Pathways
2.5. Virulence Factors
2.6. Prophages and Drug Resistance Genes
3. Results
3.1. Whole-Genome Sequencing, Assembly, and Annotation
3.2. Phylogenetic Analysis
3.3. Comparative Genome Annotation
3.4. Predictions of Functional Metabolic Pathways
3.4.1. Predictions of Metabolic Pathways Related to Phosphate Solubilization
3.4.2. Enzymes Involved in the Biosynthesis, Transport, and Secretion of Exopolysaccharides (EPSs) from the P. agglomerans Genome
3.5. Virulence Genes
3.6. Prophages and Drug Resistance Genes
4. Discussion
4.1. Phylogenetic Analysis and Comparative Genomics
4.2. Metabolic Pathways Related to Phosphate Solubilization
4.3. Biosynthesis, Transport, and Secretion of Exopolysaccharides (EPSs)
4.4. Virulence Genes and Antibiotic Resistance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walterson, A.M.; Stavrinides, J. Pantoea: Insights into a Highly Versatile and Diverse Genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 2015, 39, 968–984. [Google Scholar] [CrossRef]
- Mehar, V.; Yadav, D.; Sanghvi, J.; Gupta, N.; Singh, K. Pantoea Dispersa: An Unusual Cause of Neonatal Sepsis. Braz. J. Infect. Dis. 2013, 17, 726–728. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, S. Examining Phylogenetic Relationships of Erwinia and Pantoea Species Using Whole Genome Sequence Data. Antonie Van. Leeuwenhoek 2015, 108, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, A.S.; Bonatelli, M.L.; Chia, M.A.; Peressim, L.; Quecine, M.C. Opposite Sides of Pantoea agglomerans and Its Associated Commercial Outlook. Microorganisms 2022, 10, 2072. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Mackiewicz, B.; Lemieszek, M.K.; Golec, M.; Milanowski, J. Pantoea agglomerans: A Mysterious Bacterium of Evil and Good. Part IV. Beneficial Effects. Ann. Agric. Environ. Med. 2016, 23, 206–222. [Google Scholar] [CrossRef]
- Amellal, N.; Burtin, G.; Bartoli, F.; Heulin, T. Colonization of Wheat Roots by an Exopolysaccharide-Producing Pantoea agglomerans Strain and Its Effect on Rhizosphere Soil Aggregation. Appl. Environ. Microbiol. 1998, 64, 3740–3747. [Google Scholar] [CrossRef]
- Mohite, B.V.; Koli, S.H.; Patil, S.V. Heavy Metal Stress and Its Consequences on Exopolysaccharide (EPS)-Producing Pantoea agglomerans. Appl. Biochem. Biotechnol. 2018, 186, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Diwan, B. Bacterial Exopolysaccharide Mediated Heavy Metal Removal: A Review on Biosynthesis, Mechanism and Remediation Strategies. Biotechnol. Rep. 2017, 13, 58–71. [Google Scholar] [CrossRef]
- Ortmann, I.; Conrath, U.; Moerschbacher, B.M. Exopolysaccharides of Pantoea agglomerans Have Different Priming and Eliciting Activities in Suspension-cultured Cells of Monocots and Dicots. FEBS Lett. 2006, 580, 4491–4494. [Google Scholar] [CrossRef] [PubMed]
- Velázquez, E.; Rodríguez-Barrueco, C. (Eds.) First International Meeting on Microbial Phosphate Solubilization; Springer: Dordrecht, The Netherlands, 2007; ISBN 978-1-4020-4019-1. [Google Scholar]
- Naseem, H.; Ahsan, M.; Shahid, M.A.; Khan, N. Exopolysaccharides Producing Rhizobacteria and Their Role in Plant Growth and Drought Tolerance. J. Basic Microbiol. 2018, 58, 1009–1022. [Google Scholar] [CrossRef]
- Luziatelli, F.; Ficca, A.G.; Melini, F.; Ruzzi, M. Genome Sequence of the Plant Growth-Promoting Rhizobacterium Pantoea agglomerans C1. Microbiol. Resour. Announc. 2019, 8, e00828-19. [Google Scholar] [CrossRef]
- Alkaabi, A.S.; Sudalaimuthuasari, N.; Kundu, B.; AlMaskari, R.S.; Salha, Y.; Hazzouri, K.M.; El-Tarabily, K.A.; AbuQamar, S.F.; Amiri, K.M.A. Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pantoea agglomerans Strain UAEU18, Isolated from Date Palm Rhizosphere Soil in the United Arab Emirates. Microbiol. Resour. Announc. 2020, 9, e00174-20. [Google Scholar] [CrossRef] [PubMed]
- Zahradník, J.; Plačková, M.; Palyzová, A.; Marešová, H.; Kyslíková, E.; Kyslík, P. Draft Genome Sequence of Pantoea agglomerans JM1, a Strain Isolated from Soil Polluted by Industrial Production of Beta-Lactam Antibiotics That Exhibits Valacyclovir-Like Hydrolase Activity. Genome Announc. 2017, 5, e00921-17. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data 2019.
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple Alignment of Conserved Genomic Sequence with Rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Vallenet, D.; Calteau, A.; Dubois, M.; Amours, P.; Bazin, A.; Beuvin, M.; Burlot, L.; Bussell, X.; Fouteau, S.; Gautreau, G.; et al. MicroScope: An Integrated Platform for the Annotation and Exploration of Microbial Gene Functions through Genomic, Pangenomic and Metabolic Comparative Analysis. Nucleic Acids Res. 2019, 48, D579–D589. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, N.-F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple Prokaryote Genome Comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, J.; Kaleta, C.; Waschina, S. Gapseq: Informed Prediction of Bacterial Metabolic Pathways and Reconstruction of Accurate Metabolic Models. Genome Biol. 2020, 22, 81. [Google Scholar] [CrossRef]
- Saier, M.H.; Reddy, V.S.; Tamang, D.G.; Västermark, Å. The Transporter Classification Database. Nucl. Acids Res. 2014, 42, D251–D258. [Google Scholar] [CrossRef]
- Ijaz, U.Z.; Abram, F.; Quince, C. Metaproteomics Data Analysis Workflow. Available online: https://userweb.eng.gla.ac.uk/umer.ijaz/bioinformatics/Metaproteomics.html (accessed on 14 July 2014).
- Joyce, A.; Ijaz, U.Z.; Nzeteu, C.; Vaughan, A.; Shirran, S.L.; Botting, C.H.; Quince, C.; O’Flaherty, V.; Abram, F. Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass. Front. Microbiol. 2018, 9, 540. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Doak, T.G. A Parsimony Approach to Biological Pathway Reconstruction/Inference for Genomes and Metagenomes. PLoS Comput. Biol. 2009, 5, e1000465. [Google Scholar] [CrossRef] [PubMed]
- Chen, L. VFDB: A Reference Database for Bacterial Virulence Factors. Nucleic Acids Res. 2004, 33, D325–D328. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded Curation, Support for Machine Learning, and Resistome Prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Wishart, D.S.; Han, S.; Saha, S.; Oler, E.; Peters, H.; Grant, J.R.; Stothard, P.; Gautam, V. PHASTEST: Faster than PHASTER, Better than PHAST. Nucleic Acids Res. 2023, 51, W443–W450. [Google Scholar] [CrossRef]
- Socea, J.N.; Bowman, G.R.; Wing, H.J. VirB, a Key Transcriptional Regulator of Virulence Plasmid Genes in Shigella flexneri, Forms DNA-Binding Site-Dependent Foci in the Bacterial Cytoplasm. J. Bacteriol. 2021, 203, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Abeles, A.L.; Friedman, S.A.; Austin, S.J. Partition of Unit-Copy Miniplasmids to Daughter Cells. J. Mol. Biol. 1985, 185, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Tamayo, R.; Torres-Tejerizo, G.; Brom, S.; Romero, D. Site-Specific Bacterial Chromosome Engineering Mediated by IntA Integrase from Rhizobium etli. BMC Microbiol. 2016, 16, 133. [Google Scholar] [CrossRef]
- Liu, M.; Boulouis, H.-J.; Biville, F. Heme Degrading Protein HemS Is Involved in Oxidative Stress Response of Bartonella henselae. PLoS ONE 2012, 7, e37630. [Google Scholar] [CrossRef] [PubMed]
- Vignais, P. Classification and Phylogeny of Hydrogenases. FEMS Microbiol. Rev. 2001, 25, 455–501. [Google Scholar] [CrossRef] [PubMed]
- Waugh, R.; Boxer, D.H. Pleiotropic Hydrogenase Mutants of Escherichia coli K12: Growth in the Presence of Nickel Can Restore Hydrogenase Activity. Biochimie 1986, 68, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Matsumi, R.; Arai, T.; Atomi, H.; Imanaka, T.; Miki, K. Crystal Structures of [NiFe] Hydrogenase Maturation Proteins HypC, HypD, and HypE: Insights into Cyanation Reaction by Thiol Redox Signaling. Mol. Cell 2007, 27, 29–40. [Google Scholar] [CrossRef]
- Olson, J.W.; Mehta, N.S.; Maier, R.J. Requirement of Nickel Metabolism Proteins HypA and HypB for Full Activity of Both Hydrogenase and Urease in Helicobacter Pylori. Mol. Microbiol. 2001, 39, 176–182. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L.; Ma, K.; Li, G.; Zhang, C.; Zhao, H.; Lai, Q.; Li, H.-P.; Xing, X.-H. Characteristics of Hydrogen Production of an Enterobacter aerogenes Mutant Generated by a New Atmospheric and Room Temperature Plasma (ARTP). Biochem. Eng. J. 2011, 55, 17–22. [Google Scholar] [CrossRef]
- Sauter, M.; Böhm, R.; Böck, A. Mutational Analysis of the Operon (Hyc) Determining Hydrogenase 3 Formation in Escherichia coli. Mol. Microbiol. 1992, 6, 1523–1532. [Google Scholar] [CrossRef]
- Zhao, J.; Song, W.; Cheng, J.; Liu, M.; Zhang, C.; Cen, K. Improvement of Fermentative Hydrogen Production Using Genetically Modified Enterobacter aerogenes. Int. J. Hydrogen Energy 2017, 42, 3676–3681. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Li, L.; Chen, R.; Zuo, Z.; Lv, Z.; Yang, Z.; Mao, W.; Liu, Y.; Zhou, Y.; Huang, J.; Song, Z. Evaluation and Improvement of Phosphate Solubilization by an Isolated Bacterium Pantoea agglomerans ZB. World J. Microbiol. Biotechnol. 2020, 36, 27. [Google Scholar] [CrossRef]
- Mulford, C.A.; Osborn, M.J. An Intermediate Step in Translocation of Lipopolysaccharide to the Outer Membrane of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 1983, 80, 1159–1163. [Google Scholar] [CrossRef]
- McGrath, B.C.; Osborn, M.J. Localization of the Terminal Steps of O-Antigen Synthesis in Salmonella typhimurium. J. Bacteriol. 1991, 173, 649–654. [Google Scholar] [CrossRef]
- Suresh Kumar, A.; Mody, K.; Jha, B. Bacterial Exopolysaccharides—A Perception. J. Basic Microbiol. 2007, 47, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Biville, F.; Turlin, E.; Gasser, F. Cloning and Genetic Analysis of Six Pyrroloquinoline Quinone Biosynthesis Genes in Methylobacterium organophilum DSM 760. Microbiology 1989, 135, 2917–2929. [Google Scholar] [CrossRef]
- Kim, C.H.; Han, S.H.; Kim, K.Y.; Cho, B.H.; Kim, Y.H.; Koo, B.S.; Kim, Y.C. Cloning and Expression of Pyrroloquinoline Quinone (PQQ) Genes from a Phosphate-Solubilizing Bacterium Enterobacter intermedium. Curr. Microbiol. 2003, 47, 457–461. [Google Scholar] [CrossRef]
- Eastman, A.W.; Heinrichs, D.E.; Yuan, Z.-C. Comparative and Genetic Analysis of the Four Sequenced Paenibacillus polymyxa Genomes Reveals a Diverse Metabolism and Conservation of Genes Relevant to Plant-Growth Promotion and Competitiveness. BMC Genom. 2014, 15, 851. [Google Scholar] [CrossRef]
- Vera-Cardoso, B.; Muñoz-Rojas, J.; Munive, J. Pirroloquinolinaquinona (PQQ) y las bacterias promotoras del crecimiento vegetal (PGPR). De la biosíntesis a los fenotipos. Alianzas Y Tend. 2017, 2, 22–29. [Google Scholar]
- Shariati, J.V.; Malboobi, M.A.; Tabrizi, Z.; Tavakol, E.; Owlia, P.; Safari, M. Comprehensive Genomic Analysis of a Plant Growth-Promoting Rhizobacterium Pantoea agglomerans Strain P5. Sci. Rep. 2017, 7, 15610. [Google Scholar] [CrossRef]
- Rodríguez, H.; Fraga, R.; Gonzalez, T.; Bashan, Y. Genetics of Phosphate Solubilization and Its Potential Applications for Improving Plant Growth-Promoting Bacteria. Plant Soil. 2006, 287, 15–21. [Google Scholar] [CrossRef]
- Rodríguez, H.; Fraga, R. Phosphate Solubilizing Bacteria and Their Role in Plant Growth Promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, S.; Imlay, K.R.C.; Imlay, J.A. The Cytochrome Bd Oxidase of Escherichia coli Prevents Respiratory Inhibition by Endogenous and Exogenous Hydrogen Sulfide. Mol. Microbiol. 2016, 101, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Jha, C.K.; Saraf, M. Plant Growth Promoting Rhizobacteria (PGPR): A Review. E. J. Agric. Res. Dev. 2015, 5, 108–119. [Google Scholar]
- Noumavo, P.A.; Agbodjato, N.A.; Baba-Moussa, F.; Adjanohoun, A.; Baba Moussa, L. Plant Growth Promoting Rhizobacteria: Beneficial Effects for Healthy and Sustainable Agriculture. Afr. J. Biotechnol. 2016, 15, 1452–1463. [Google Scholar] [CrossRef]
- Liu, D.; Cole, R.A.; Reeves, P.R. An O-Antigen Processing Function for Wzx (RfbX): A Promising Candidate for O-Unit Flippase. J. Bacteriol. 1996, 178, 2102–2107. [Google Scholar] [CrossRef]
- Feldman, M.F.; Marolda, C.L.; Monteiro, M.A.; Perry, M.B.; Parodi, A.J.; Valvano, M.A. The Activity of a Putative Polyisoprenol-Linked Sugar Translocase (Wzx) Involved in Escherichia coli O Antigen Assembly Is Independent of the Chemical Structure of the O Repeat. J. Biol. Chem. 1999, 274, 35129–35138. [Google Scholar] [CrossRef] [PubMed]
- Alaimo, C.; Catrein, I.; Morf, L.; Marolda, C.L.; Callewaert, N.; Valvano, M.A.; Feldman, M.F.; Aebi, M. Two Distinct but Interchangeable Mechanisms for Flipping of Lipid-Linked Oligosaccharides. EMBO J. 2006, 25, 967–976. [Google Scholar] [CrossRef]
- Cuthbertson, L.; Mainprize, I.L.; Naismith, J.H.; Whitfield, C. Pivotal Roles of the Outer Membrane Polysaccharide Export and Polysaccharide Copolymerase Protein Families in Export of Extracellular Polysaccharides in Gram-Negative Bacteria. Microbiol. Mol. Biol. Rev. 2009, 73, 155–177. [Google Scholar] [CrossRef] [PubMed]
- Whitney, J.C.; Howell, P.L. Synthase-Dependent Exopolysaccharide Secretion in Gram-Negative Bacteria. Trends Microbiol. 2013, 21, 63–72. [Google Scholar] [CrossRef]
- Masuelli, M.; Renard, D. (Eds.) Advances in Physicochemical Properties of Biopolymers (Part 2); Bentham Science Publishers: Sharjah, United Arab Emirates, 2017; ISBN 978-1-68108-544-9. [Google Scholar]
- Economou, A.; Christie, P.J.; Fernandez, R.C.; Palmer, T.; Plano, G.V.; Pugsley, A.P. Secretion by Numbers: Protein Traffic in Prokaryotes. Mol. Microbiol. 2006, 62, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.M.; Williams, A.; Edwards, A.; Posadas, D.M.; Finnie, C.; Dankert, M.; Downie, J.A.; Zorreguieta, A. Proteins Exported via the PrsD-PrsE Type I Secretion System and the Acidic Exopolysaccharide Are Involved in Biofilm Formation by Rhizobium leguminosarum. J. Bacteriol. 2006, 188, 4474–4486. [Google Scholar] [CrossRef]
- Linhartová, I.; Bumba, L.; Mašín, J.; Basler, M.; Osička, R.; Kamanová, J.; Procházková, K.; Adkins, I.; Hejnová-Holubová, J.; Sadílková, L.; et al. RTX Proteins: A Highly Diverse Family Secreted by a Common Mechanism. FEMS Microbiol. Rev. 2010, 34, 1076–1112. [Google Scholar] [CrossRef] [PubMed]
- Bleves, S.; Viarre, V.; Salacha, R.; Michel, G.P.F.; Filloux, A.; Voulhoux, R. Protein Secretion Systems in Pseudomonas aeruginosa: A Wealth of Pathogenic Weapons. Int. J. Med. Microbiol. 2010, 300, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Akatsuka, H.; Kawai, E.; Omori, K.; Shibatani, T. The Three Genes lipB, lipC, and lipD Involved in the Extracellular Secretion of the Serratia marcescens Lipase Which Lacks an N-Terminal Signal Peptide. J. Bacteriol. 1995, 177, 6381–6389. [Google Scholar] [CrossRef] [PubMed]
- Kanonenberg, K.; Schwarz, C.K.W.; Schmitt, L. Type I Secretion Systems—A Story of Appendices. Res. Microbiol. 2013, 164, 596–604. [Google Scholar] [CrossRef]
- Voulhoux, R. Involvement of the Twin-Arginine Translocation System in Protein Secretion via the Type II Pathway. EMBO J. 2001, 20, 6735–6741. [Google Scholar] [CrossRef] [PubMed]
- Filloux, A. The Underlying Mechanisms of Type II Protein Secretion. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2004, 1694, 163–179. [Google Scholar] [CrossRef]
- Rossier, O.; Cianciotto, N.P. The Legionella pneumophila tatB Gene Facilitates Secretion of Phospholipase C, Growth under Iron-Limiting Conditions, and Intracellular Infection. Infect. Immun. 2005, 73, 2020–2032. [Google Scholar] [CrossRef] [PubMed]
- Cianciotto, N.P. Type II Secretion: A Protein Secretion System for All Seasons. Trends Microbiol. 2005, 13, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A.; Anderson, J.B.; Derbyshire, M.K.; DeWeese-Scott, C.; Gonzales, N.R.; Gwadz, M.; Hao, L.; He, S.; Hurwitz, D.I.; Jackson, J.D.; et al. CDD: A Conserved Domain Database for Interactive Domain Family Analysis. Nucleic Acids Res. 2007, 35, D237–D240. [Google Scholar] [CrossRef] [PubMed]
- Confer, A.W.; Ayalew, S. The OmpA Family of Proteins: Roles in Bacterial Pathogenesis and Immunity. Vet. Microbiol. 2013, 163, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Haiko, J.; Westerlund-Wikström, B. The Role of the Bacterial Flagellum in Adhesion and Virulence. Biology 2013, 2, 1242–1267. [Google Scholar] [CrossRef]
Replicon | No. of Illumina Reads | Reads After Clipping QC > 30% | Length Size (bp) | No. of Scaffolds | Scaffolds N50 (bp) | Maximum Length of Scaffolds | G+C Content (%) |
---|---|---|---|---|---|---|---|
Chromosome | 20,949,701 | 20,873,634 | 4,203,428 | 13 | 209,743 | 1,523,742 | 54.94 |
Plasmid 1 | - | - | 543,479 | 1 | - | - | 53.6 |
Plasmid 2 | - | - | 174,380 | 1 | - | - | 52.0 |
Organism | Genome Size (Mb) | GC% | No. of rRNA | No. of tRNA | Scaffolds | No. of Genes | No. of Proteins | GenBank Accession No. |
---|---|---|---|---|---|---|---|---|
P. agglomerans UADEC20 | 4.20343 | 54.9 | 22 | 99 | 13 | 4511 | 3843 | GCA_046352745.1 |
P. agglomerans 299R | 4.58148 | 54.3 | 27 | 63 | 109 | 4267 | 4157 | GCA_000330765.1 |
P. agglomerans FDAARGOS 1447 | 3.99969 | 55.5 | 5 | 69 | 3 | 4361 | 4204 | GCF_019048385.1 |
P. agglomerans Tx10 | 4.85699 | 55.1 | 48 | 142 | 22 | 4627 | 4500 | GCA_000475055.1 |
P. agglomerans IG1 | 4.82958 | 55.0 | 2 | 63 | 18 | 4443 | 4341 | GCA_000241285.2 |
P. agglomerans 190 | 5.00257 | 55.1 | 24 | 77 | 5 | 4878 | 4778 | GCA_000731125.1 |
P. agglomerans P5 | 5.16726 | 55.4 | 7 | 63 | 150 | 4745 | 4674 | GCA_002157425.2 |
No. | Gene | Protein | Locus Tag |
---|---|---|---|
1 | appA | Oligopeptide-binding protein AppA | NDPIJCJM_00337 |
2 | gcd_1 | Quinoprotein glucose dehydrogenase | NDPIJCJM_01104 |
3 | gcd_2 | Quinoprotein glucose dehydrogenase | NDPIJCJM_02657 |
4 | gdhl | Glucose dehydrogenase, PQQ-dependent (EC 1.1.5.2) | NDPIJCJM_02770 |
5 | glk | Glucokinase | NDPIJCJM_00198 |
6 | gntK | Thermoresistant gluconokinase | NDPIJCJM_02222 |
7 | gntR | HTH-type transcriptional regulator GntR | NDPIJCJM_02223 |
8 | phnC | Phosphate-import ATP-binding protein PhnC | NDPIJCJM_00558 |
9 | phnD | Phosphate-import protein PhnD | NDPIJCJM_00559 |
10 | phnE_1 | Phosphate-import permease protein PhnE | NDPIJCJM_00560 |
11 | phnE_2 | Phosphate-import permease protein PhnE | NDPIJCJM_00561 |
12 | phnF | Putative transcriptional regulator PhnF | NDPIJCJM_00548 |
13 | phnG | Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit PhnG (EC 2.7.8.37) | NDPIJCJM_00549 |
14 | phnH | Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit PhnH (EC 2.7.8.37) | NDPIJCJM_00550 |
15 | phnI | Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit PhnI (EC 2.7.8.37) | NDPIJCJM_00551 |
16 | phnJ | Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase | NDPIJCJM_00552 |
17 | phnK | Putative phosphonates utilization ATP-binding protein PhnK | NDPIJCJM_00553 |
18 | phnL | Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit PhnL | NDPIJCJM_00554 |
19 | phnM | Alpha-D-ribose 1-methylphosphonate 5-triphosphate diphosphatase | NDPIJCJM_00555 |
20 | phnN | Ribose 1,5-bisphosphate phosphokinase PhnN | NDPIJCJM_00556 |
21 | phnO | Aminoalkylphosphonate N-acetyltransferase | NDPIJCJM_01860 |
22 | phnP | Phosphoribosyl 1,2-cyclic phosphate phosphodiesterase | NDPIJCJM_00557 |
23 | phnV | Putative 2-aminoethylphosphonate transport system permease protein PhnV | NDPIJCJM_02365 |
24 | phoB | Phosphate regulon transcriptional regulatory protein PhoB (SphR) | NDPIJCJM_02028 |
25 | phoH | Phosphate starvation-inducible protein PhoH, predicted ATPase | NDPIJCJM_00650 |
26 | phoP | Transcriptional regulatory protein PhoP | NDPIJCJM_03210 |
27 | phoR | Phosphate regulon sensor protein PhoR (SphS) (EC 2.7.13.3) | NDPIJCJM_02027 |
28 | phoU | Phosphate-specific transport system accessory protein PhoU | NDPIJCJM_02471 |
29 | phy | Phytase | NDPIJCJM_00083 |
30 | pitA_1 | Low-affinity inorganic phosphate transporter 1 | NDPIJCJM_01727 |
31 | pitA_2 | Low-affinity inorganic phosphate transporter 1 | NDPIJCJM_02277 |
32 | ppa | Inorganic pyrophosphatase | NDPIJCJM_03544 |
33 | ppk | T6SS Serine/threonine protein kinase (EC 2.7.11.1) PpkA | NDPIJCJM_00117 |
34 | ppx | Exopolyphosphatase | NDPIJCJM_00116 |
35 | pqqB | Coenzyme PQQ synthesis protein B | NDPIJCJM_01165 |
36 | pqqC | Pyrroloquinoline-quinone synthase | NDPIJCJM_01164 |
37 | pqqD | Coenzyme PQQ synthesis protein D | NDPIJCJM_01163 |
38 | pqqE | Coenzyme PQQ synthesis protein E | NDPIJCJM_01166 |
39 | psiF | Phosphate starvation-inducible protein PsiF | NDPIJCJM_02051 |
40 | pstA_1 | Phosphate transport system permease protein PstA | NDPIJCJM_00119 |
41 | pstA_2 | Phosphate transport system permease protein PstA | NDPIJCJM_00119 |
42 | pstB | Phosphate import ATP-binding protein PstB | NDPIJCJM_02470 |
43 | pstC | Phosphate transport system permease protein PstC | NDPIJCJM_02468 |
44 | pstS_1 | Phosphate-binding protein PstS | NDPIJCJM_02026 |
45 | pstS_2 | Phosphate-binding protein PstS | NDPIJCJM_02026 |
46 | ugpA | sn-glycerol-3-phosphate transport system permease protein UgpA | NDPIJCJM_02231 |
47 | ugpB | sn-glycerol-3-phosphate-binding periplasmic protein UgpB | NDPIJCJM_02232 |
48 | ugpC | sn-glycerol-3-phosphate import ATP-binding protein UgpC | NDPIJCJM_02229 |
49 | ugpQ | Glycerophosphodiester phosphodiesterase, cytoplasmic | NDPIJCJM_02228 |
50 | ushA | Protein UshA | NDPIJCJM_01942 |
51 | zwf | Glucose-6-phosphate 1-dehydrogenase | NDPIJCJM_00714 |
52 | ptxS | 2-ketogluconate utilization repressor ptxS | NDPIJCJM_02300 |
53 | glpT | Glycerol-3-phosphate transporter | NDPIJCJM_02625 |
54 | uhpT | Hexose-6- phosphate:phosphate antiporter | NDPIJCJM_02853 |
55 | phnR | Putative transcriptional regulator of 2-aminoethylphosphonate degradation operons | NDPIJCJM_02369 |
56 | pstC1 | Phosphate transport system permease protein PstC 1 | NDPIJCJM_00118 |
57 | pstB3 | Phosphate import ATP-binding protein PstB 3 | NDPIJCJM_00120 |
No. | Gene | Protein | Locus Tag |
---|---|---|---|
Biosynthesis of exopolysaccharides | |||
1 | tktB | Transketolase 2 | NDPIJCJM_00157 |
2 | cbbT | Transketolase 2 | NDPIJCJM_03242 |
3 | tktA | Transketolase 1 | NDPIJCJM_03750 |
4 | prs | Ribose-phosphate pyrophosphokinase | NDPIJCJM_01374 |
5 | rpe | Ribulose-phosphate 3-epimerase | NDPIJCJM_02168 |
6 | zwf | Glucose-6-phosphate 1-dehydrogenase | NDPIJCJM_00714 |
7 | gnd | 6-phosphogluconate dehydrogenase, decarboxylating | NDPIJCJM_00429 |
8 | pgl_1 | 6-phosphogluconolactonase | NDPIJCJM_00577 |
9 | tal | Transaldolase | NDPIJCJM_00158 |
10 | rfbD | dTDP-4-dehydrorhamnose reductase | NDPIJCJM_00418 |
11 | rffG | dTDP-glucose 4,6-dehydratase 2 | NDPIJCJM_02591 |
12 | rfbB | dTDP-glucose 4,6-dehydratase | NDPIJCJM_00417 |
13 | rfbC | dTDP-4-dehydrorhamnose 3,5-epimerase | NDPIJCJM_00420 |
14 | rffH | Glucose-1-phosphate thymidylyltransferase | NDPIJCJM_02592 |
15 | galE | UDP-glucose 4-epimerase | NDPIJCJM_00416 |
16 | rfbD | dTDP-4-dehydrorhamnose reductase | NDPIJCJM_00418 |
17 | rffG | dTDP-glucose 4,6-dehydratase 2 | NDPIJCJM_02591 |
18 | rfbC | dTDP-4-dehydrorhamnose 3,5-epimerase | NDPIJCJM_00420 |
19 | mshA | D-inositol 3-phosphate glycosyltransferase | NDPIJCJM_00425 |
20 | epsJ_1 | Putative glycosyltransferase EpsJ | NDPIJCJM_01496 |
21 | epsJ_2 | Putative glycosyltransferase EpsJ | NDPIJCJM_01584 |
22 | mrdB | Peptidoglycan glycosyltransferase MrdB | NDPIJCJM_01847 |
23 | ftsW | Putative peptidoglycan glycosyltransferase FtsW | NDPIJCJM_02969 |
Polysaccharide transport and export system | |||
24 | wzxC_1 | Lipopolysaccharide biosynthesis protein WzxC | NDPIJCJM_00414 |
25 | wzxC_2 | Lipopolysaccharide biosynthesis protein WzxC | NDPIJCJM_01530 |
26 | wzyE | Putative ECA polymerase | NDPIJCJM_02597 |
27 | pcp | Pyrrolidone-carboxylate peptidase | NDPIJCJM_01797 |
28 | wzc | Tyrosine-protein kinase Wzc | NDPIJCJM_00404 |
29 | lapA | Lipopolysaccharide assembly protein A | NDPIJCJM_00864 |
30 | lapB | Lipopolysaccharide assembly protein B | NDPIJCJM_00865 |
31 | rfaC | Lipopolysaccharide heptosyltransferase 1 | NDPIJCJM_01493 |
32 | rfaG | Lipopolysaccharide core biosynthesis protein RfaG | NDPIJCJM_01498 |
33 | wzzE | ECA polysaccharide chain length modulation protein | NDPIJCJM_02588 |
34 | rfaQ_2 | Lipopolysaccharide core heptosyltransferase RfaQ | NDPIJCJM_03222 |
35 | rfaQ_3 | Lipopolysaccharide core heptosyltransferase RfaQ | NDPIJCJM_03224 |
36 | lptB_1 | Lipopolysaccharide export system ATP-binding protein LptB | NDPIJCJM_02234 |
37 | lptB_2 | Lipopolysaccharide export system ATP-binding protein LptB | NDPIJCJM_02719 |
38 | lptA | Lipopolysaccharide export system protein LptA | NDPIJCJM_02720 |
39 | lptC | Lipopolysaccharide export system protein LptC | NDPIJCJM_02721 |
40 | lptF | Lipopolysaccharide export system permease protein LptF | NDPIJCJM_02803 |
41 | lptG | Lipopolysaccharide export system permease protein LptG | NDPIJCJM_02804 |
42 | lptB_3 | Lipopolysaccharide export system ATP-binding protein LptB | NDPIJCJM_02899 |
43 | mlaD | Putative phospholipid ABC transporter-binding protein MlaD | NDPIJCJM_02727 |
44 | mlaB | Putative phospholipid ABC transporter-binding protein MlaB | NDPIJCJM_02729 |
45 | yadG | Putative ABC transporter ATP-binding protein YadG | NDPIJCJM_03019 |
46 | yhdY | Inner membrane amino-acid ABC transporter permease protein YhdY | NDPIJCJM_03327 |
47 | yejE | Inner membrane ABC transporter permease protein YejE | NDPIJCJM_00335 |
48 | yejB | Inner membrane ABC transporter permease protein YejB | NDPIJCJM_00336 |
49 | yjfF | Inner membrane ABC transporter permease protein YjfF | NDPIJCJM_01202 |
50 | ytfT | Inner membrane ABC transporter permease protein YtfT | NDPIJCJM_01203 |
51 | ytfQ | ABC transporter periplasmic-binding protein YtfQ | NDPIJCJM_01205 |
52 | ydcV | Inner membrane ABC transporter permease protein YdcV | NDPIJCJM_01647 |
53 | yheS | Putative ABC transporter ATP-binding protein YheS | NDPIJCJM_02143 |
54 | mlaE | Putative phospholipid ABC transporter permease protein MlaE | NDPIJCJM_02726 |
System secretion | |||
55 | prsE_1 | Type I secretion system membrane fusion protein PrsE | NDPIJCJM_00316 |
56 | prsE_2 | Type I secretion system membrane fusion protein PrsE | NDPIJCJM_02849 |
57 | epsF | Type II secretion system protein F | NDPIJCJM_02984 |
58 | gspE | Putative type II secretion system protein E | NDPIJCJM_02985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elizondo-Reyna, E.; Martínez-Montoya, H.; Tamayo-Ordoñez, Y.; Cruz-Hernández, M.A.; Carrillo-Tripp, M.; Tamayo-Ordoñez, M.C.; Sosa-Santillán, G.d.J.; Rodríguez-de la Garza, J.A.; Hernández-Guzmán, M.; Bocanegra-García, V.; et al. Insights from a Genome-Wide Study of Pantoea agglomerans UADEC20: A Promising Strain for Phosphate Solubilization and Exopolysaccharides Production. Curr. Issues Mol. Biol. 2025, 47, 56. https://doi.org/10.3390/cimb47010056
Elizondo-Reyna E, Martínez-Montoya H, Tamayo-Ordoñez Y, Cruz-Hernández MA, Carrillo-Tripp M, Tamayo-Ordoñez MC, Sosa-Santillán GdJ, Rodríguez-de la Garza JA, Hernández-Guzmán M, Bocanegra-García V, et al. Insights from a Genome-Wide Study of Pantoea agglomerans UADEC20: A Promising Strain for Phosphate Solubilization and Exopolysaccharides Production. Current Issues in Molecular Biology. 2025; 47(1):56. https://doi.org/10.3390/cimb47010056
Chicago/Turabian StyleElizondo-Reyna, Edith, Humberto Martínez-Montoya, Yahaira Tamayo-Ordoñez, María Antonia Cruz-Hernández, Mauricio Carrillo-Tripp, María Concepción Tamayo-Ordoñez, Gerardo de Jesús Sosa-Santillán, José Antonio Rodríguez-de la Garza, Mario Hernández-Guzmán, Virgilio Bocanegra-García, and et al. 2025. "Insights from a Genome-Wide Study of Pantoea agglomerans UADEC20: A Promising Strain for Phosphate Solubilization and Exopolysaccharides Production" Current Issues in Molecular Biology 47, no. 1: 56. https://doi.org/10.3390/cimb47010056
APA StyleElizondo-Reyna, E., Martínez-Montoya, H., Tamayo-Ordoñez, Y., Cruz-Hernández, M. A., Carrillo-Tripp, M., Tamayo-Ordoñez, M. C., Sosa-Santillán, G. d. J., Rodríguez-de la Garza, J. A., Hernández-Guzmán, M., Bocanegra-García, V., & Acosta-Cruz, E. (2025). Insights from a Genome-Wide Study of Pantoea agglomerans UADEC20: A Promising Strain for Phosphate Solubilization and Exopolysaccharides Production. Current Issues in Molecular Biology, 47(1), 56. https://doi.org/10.3390/cimb47010056