Establishment of a Rapid and Convenient Fluoroimmunoassay Platform Using Antibodies Against PDL1 and HER2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Expression of scFvs
2.3. Fluorescent Labeling
2.4. FLISA
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xia, N.; Li, Y.; He, C.; Deng, D. Nanolabels Prepared by the Entrapment or Self-Assembly of Signaling Molecules for Colorimetric and Fluorescent Immunoassays. Biosensors 2024, 14, 597. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Chang, Y.; Zhou, Q.; Ding, S.; Gao, F. An Overview of the Design of Metal-Organic Frameworks-Based Fluorescent Chemosensors and Biosensors. Biosensors 2022, 12, 928. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Ge, Y.; Xia, N. Overview of the Design and Application of Dual-Signal Immunoassays. Molecules 2024, 29, 4551. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Chang, Y.; Liu, W.; Ren, M.; Xia, N.; Hao, Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. Biosensors 2023, 13, 773. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, H. Monoplex and multiplex immunoassays: Approval, advancements, and alternatives. Comp. Clin. Pathol. 2022, 31, 333–345. [Google Scholar] [CrossRef]
- Hayrapetyan, H.; Tran, T.; Tellez-Corrales, E.; Madiraju, C. Enzyme-Linked Immunosorbent Assay: Types and Applications. Methods Mol. Biol. 2023, 2612, 1–17. [Google Scholar] [CrossRef]
- Prasse, A.A.; Zauner, T.; Büttner, K.; Hoffmann, R.; Zuchner, T. Improvement of an antibody-enzyme coupling yield by enzyme surface supercharging. BMC Biotechnol. 2014, 14, 88. [Google Scholar] [CrossRef]
- Regidi, S.; Ravindran, S.; Vijayan, A.L.; Maya, V.; Sreedharan, L.; Varghese, J.; Ramaswami, K.; Gopi, M. Effect of lyophilization on HRP-antibody conjugation: An enhanced antibody labeling technology. BMC Res. Notes 2018, 11, 596. [Google Scholar] [CrossRef]
- Winston, S.E.; Fuller, S.A.; Evelegh, M.J.; Hurrell, J.G. Conjugation of enzymes to antibodies. Curr. Protoc. Mol. Biol. 2001, 50, 11.1.1–11.1.7. [Google Scholar] [CrossRef]
- Ahmadzadeh, M.; Mohit, E. Therapeutic potential of a novel IP-10-(anti-HER2 scFv) fusion protein for the treatment of HER2-positive breast cancer. Biotechnol. Lett. 2023, 45, 371–385. [Google Scholar] [CrossRef]
- Huang, P.-L.; Kan, H.-T.; Hsu, C.-H.; Hsieh, H.-T.; Cheng, W.-C.; Huang, R.-Y.; You, J.-J. A bispecific antibody AP203 targeting PD-L1 and CD137 exerts potent antitumor activity without toxicity. J. Transl. Med. 2023, 21, 346. [Google Scholar] [CrossRef] [PubMed]
- Nikkhoi, S.K.; Heydarzadeh, H.; Vandavasi, V.G.; Yang, G.; Louro, P.; Polunas, M.; Owji, H.; Hatefi, A. A high affinity and specificity anti-HER2 single-domain antibody (VHH) that targets trastuzumab’s epitope with versatile biochemical, biological, and medical applications. Immunol. Res. 2024, 72, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, Y.; Bao, M.; Chu, Y.; Liu, R.; Chen, Q.; Lin, Y. Advanced detection of cervical cancer biomarkers using engineered filamentous phage nanofibers. Appl. Microbiol. Biotechnol. 2024, 108, 221. [Google Scholar] [CrossRef]
- Yun, H.; Jeong, H.-J. Fluorogenic enzyme-linked immunosorbent assay with a dual color variation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 310, 123973. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Ding, S.; Wen, K.; Xie, S.; Wang, Q.; Pei, X.; Xie, J.; Wang, Z.; Jiang, H. Development of a fluorescence-linked immunosorbent assay for detection of avermectins using a fluorescent single-domain antibody. Anal. Methods 2015, 7, 3728–3734. [Google Scholar] [CrossRef]
- Kim, J.-K.; Yun, H.-Y.; Kim, J.-S.; Kim, W.; Lee, C.-S.; Kim, B.-G.; Jeong, H.-J. Development of fluorescence-linked immunosorbent assay for rapid detection of Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2023, 108, 2. [Google Scholar] [CrossRef]
- Kim, S.-H.; Jeong, H.-J. Generation of fluorescent minibodies for rapid FLISA-based detection of pine wilt disease marker. J. Chem. Technol. Biotechnol. 2024, 99, 381–384. [Google Scholar] [CrossRef]
- Magnusson, K.E.; Bartonek, E.; Nordkvist, E.; Sundqvist, T.; Asbrink, E. Fluorescence-linked immunosorbent assay (FLISA) for quantification of antibodies to food antigens. Immunol. Investig. 1987, 16, 227–240. [Google Scholar] [CrossRef]
- Matsukuma, E.; Kato, Z.; Omoya, K.; Hashimoto, K.; Li, A.; Yamamoto, Y.; Ohnishi, H.; Hiranuma, H.; Komine, H.; Kondo, N. Development of Fluorescence-linked Immunosorbent Assay for High Throughput Screening of Interferon-γ. Allergol. Int. 2006, 55, 49–54. [Google Scholar] [CrossRef]
- Yin, J.; Wang, A.; Zhou, J.; Chen, Y.; Liang, C.; Zhu, X.; Zhang, Y.; Liu, Y.; Jia, R.; Zhang, G. Establishment of an Immunological Method for Detection of Bluetongue Virus by Fluorescence-Linked Immunosorbent Assay. Microbiol. Spectr. 2022, 10, e0142922. [Google Scholar] [CrossRef]
- Liu, S.; Boyer-Chatenet, L.; Lu, H.; Jiang, S. Rapid and automated fluorescence-linked immunosorbent assay for high-throughput screening of HIV-1 fusion inhibitors targeting gp41. J. Biomol. Screen 2003, 8, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.-J.; Huong, D.T.; Han, J.-H.; Kim, J.-Y.; Lee, W.-J.; Shin, H.-J.; Han, E.-T.; Park, H. Performance of coumarin-derived dendrimer-based fluorescence-linked immunosorbent assay (FLISA) to detect malaria antigen. Malar. J. 2014, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Jeong, H.-J. Soluble Expression of Small Antibody Fragments against PD-L1 Using Escherichia coli with High Yield and Purity. Appl. Sci. 2021, 11, 9149. [Google Scholar] [CrossRef]
- Yun, H.; Kim, S.-H.; Kim, S.-H.; Park, H.-M.; Jeong, H.-J. Efficient generation of recombinant anti-HER2 scFv with high yield and purity using a simple method. Biotechnol. J. 2024, 19, 2300745. [Google Scholar] [CrossRef]
- Motulsky, H. Analyzing Data with GraphPad Prism; GraphPad Software Incorporated: La Jolla, CA, USA, 1999. [Google Scholar]
- Latham, D.R.; Diaz, A.R.; Ribich, J.; Saikia, N.; Mulry, E.; Casabianca, L.; Ding, F.; Sanabria, H. Quantitative Fluorescence Quenching by Aromatic Amino Acids. Biophys. J. 2020, 118, 472a. [Google Scholar] [CrossRef]
- Marmé, N.; Knemeyer, J.P.; Sauer, M.; Wolfrum, J. Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan. Bioconjug. Chem. 2003, 14, 1133–1139. [Google Scholar] [CrossRef]
- Vaiana, A.C.; Neuweiler, H.; Schulz, A.; Wolfrum, J.; Sauer, M.; Smith, J.C. Fluorescence Quenching of Dyes by Tryptophan: Interactions at Atomic Detail from Combination of Experiment and Computer Simulation. J. Am. Chem. Soc. 2003, 125, 14564–14572. [Google Scholar] [CrossRef]
- Abe, R.; Ohashi, H.; Iijima, I.; Ihara, M.; Takagi, H.; Hohsaka, T.; Ueda, H. “Quenchbodies”: Quench-based antibody probes that show antigen-dependent fluorescence. J. Am. Chem. Soc. 2011, 133, 17386–17394. [Google Scholar] [CrossRef]
- Ogawa, M.; Kosaka, N.; Choyke, P.L.; Kobayashi, H. H-Type Dimer Formation of Fluorophores: A Mechanism for Activatable, in Vivo Optical Molecular Imaging. ACS Chem. Biol. 2009, 4, 535–546. [Google Scholar] [CrossRef]
- Gibbs, J. ELISA Tehcnical Bulletin-No 3. Corning Inc. Life Sci. 2001, 3, 1–11. [Google Scholar]
- Xiao, Y.; Isaacs, S.N. Enzyme-linked immunosorbent assay (ELISA) and blocking with bovine serum albumin (BSA)—Not all BSAs are alike. J. Immunol. Methods 2012, 384, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Steinitz, M. Quantitation of the Blocking Effect of Tween 20 and Bovine Serum Albumin in ELISA Microwells. Anal. Biochem. 2000, 282, 232–238. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.E.; Yun, H.; Jeong, H.-J. Establishment of a Rapid and Convenient Fluoroimmunoassay Platform Using Antibodies Against PDL1 and HER2. Curr. Issues Mol. Biol. 2025, 47, 62. https://doi.org/10.3390/cimb47010062
Choi JE, Yun H, Jeong H-J. Establishment of a Rapid and Convenient Fluoroimmunoassay Platform Using Antibodies Against PDL1 and HER2. Current Issues in Molecular Biology. 2025; 47(1):62. https://doi.org/10.3390/cimb47010062
Chicago/Turabian StyleChoi, Ji Eun, Hanool Yun, and Hee-Jin Jeong. 2025. "Establishment of a Rapid and Convenient Fluoroimmunoassay Platform Using Antibodies Against PDL1 and HER2" Current Issues in Molecular Biology 47, no. 1: 62. https://doi.org/10.3390/cimb47010062
APA StyleChoi, J. E., Yun, H., & Jeong, H.-J. (2025). Establishment of a Rapid and Convenient Fluoroimmunoassay Platform Using Antibodies Against PDL1 and HER2. Current Issues in Molecular Biology, 47(1), 62. https://doi.org/10.3390/cimb47010062